Download citation
Download citation
link to html
The first crystal structure of a three-terminal sulfur end-capped oligo­phenyl­ene­vinyl­ene, C36H30O3S3·0.5C7H8, has been determined at 122 (1) K. The mol­ecular threefold symmetry is not utilized in the crystal structure. It is confirmed that the double bonds have been fully transformed into a trans configuration by iodine treatment.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105020949/sk1855sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105020949/sk1855Isup2.hkl
Contains datablock I

CCDC reference: 282209

Comment top

Sulfur end-capped oligophenylenevinylenes (OPVs) have recently aroused attention since our group has shown that transistors based on one single OPV (Kubatkin et al., 2003) can be made. Despite their potential applications in molecular electronics, only a limited number of sulfur end-capped OPVs have been reported. The title compound and higher analogues are currently being investigated as molecular components in three-terminal electronic devices, either by simply assembling gold clusters at the sulfur terminals (Novak & Feldheim, 2000) or attached between three gold electrodes manufactured by break junction techniques (Tour et al., 1995; Kergueris et al., 1999). Especially regarding the latter system, it is possible that these molecules upon assembly at the electrodes will provide devices possessing so far unknown nano-electromechanical properties.

Unlike their triple-bonded counterparts, phenylene ethynylenes, which can only exist in one geometry, OPVs can adopt several conformations as a result of the possibility of having either cis or trans conformation of each double bond. We recently reported the synthesis of a novel family of molecules, sulfur end-capped OPVs (Stuhr-Hansen, 2003; Stuhr-Hansen et al., 2003). All OPVs were prepared all-trans by treatment with a catalytically amount of iodine in boiling toluene. By this treatment, eventual cis-linkages are transformed into the thermodynamically more stable trans geometries. In order to determine the structure of the OPVs a crystal of a representative sulfur end-capped OPV, the title compound, (I)·5C7H8, was obtained in an appropriate quality for X-ray analysis by slow recrystallization from toluene. To our knowlegde, this is the first structure determination of a three-terminal sulfur end-capped OPV.

The structure of (I) shown in Fig. 1 confirms that all double bonds have been converted into the trans conformation by the iodine treatment. Furthermore, it the possible molecular threefold symmetry is not utilized in the crystal packing. As all three double bonds are found in trans conformations with the same bond distances (see Table 1), the lack of molecular symmetry is found in the conformations of the three 4-(acetylsufanyl)styryl groups. The angles between the planes of the side-chain phenyl groups and the central benzene ring are slightly different, viz. 2.25 (9), 9.45 (8) and 5.07 (8)°. Another difference is found in the conformation of the acetylsulfanyl groups, which can be illustrated by the torsion angles Cn5—Sn—Cn2—Cn1 (n = 1,2,3). The torsion angles shown in Table 1 and Fig. 1 illutrate that all three acetylsulfanyl groups are situated on the same side of the molecular plane, but are rotated differently. The side group including S1 differs from the other two by having a torsion angle less than 90° and thereby being on located on the other side of the plane perpendicular to the phenyl group. Only one bond distance in the acetylsulfanyl group differs, viz. Sn—Cn5. This difference seems to be related to the variation in the torsion angles just mentioned. The closer the torsion angle is to 90° the shorter is the Sn—Cn5 bond distance.

There does not seem to be any appreciable degree of conjugation between the phenyl groups via the double bonds, as the Cethenyl—Cph distances are all within 2 s.u. of 1.470 Å, compared with an the average double-bond distance of 1.333 (2) Å. These bond lengths (Table 1) are also in perfect agreement with the average styrylbenzene moities extracted from the Cambridge Structural Database (Version 5.26 of November 2004; Allen, 2002), where the complementary average bond lengths are 1.469 and 1.326 Å for the single and double bond, respectively.

The structure forms alternating layers of sections including the acetylsulfanyl groups (layers centered at c = 0 and c = 1/2) and sections consisting of only the aromatic groups (layers are centered at c = 1/4 and c = 3/4), as seen in Fig. 2. The packing arrangement as illustrated in Fig. 2 shows that the three long substituents of the central benzene ring make it difficult to form a dense crystal packing. Therefore, channels along the b axis in the aromatic layers are observed that accomodate toluene molecules in a disordered fashion. The disorder could be resolved into two sites related by symmetry (1/2 − x, 1/2 + y, 1/2 − z) with an occupation factor of 0.5. The toluene molecules are involved in intermolecular interactions with the phenyl groups of (I). The toluene molecules occupying one site are engaged in ππ interaction with (I) as well as acting as a hydrogen-bond donor in a C—H···π hydrogen bond, whereas toluene molecules in the other position act as hydrogen acceptors besides participating in π···π interactions with (I). No classical hydrogen-bond donors are available; hence only a few weak bonds that fall within the geometric criteria for C—H···O hydrogen bonds suggested by Steiner (1996) are observed. The five hydrogen bonds observed are listed in Table 2.

Experimental top

The title compound was synthesized as described by Stuhr-Hansen et al. (2003). Crystals suitable for an X-ray diffraction analysis were obtained by slow crystallization from hot toluene.

Refinement top

All H atoms were found in a difference Fourier map and then treated as riding atoms, with C—H distances of 0.95 Å for Carom and 0.98 Å for CMe. Isotropic displacement parameters for all H atoms were constrained to 1.2Ueq of the connected non-H atom (1.5Ueq for Me groups). Disordered toluene molecules were identified in the difference Fourier map. The toluene molecules are related by the symmetry operation (1/2 − x, 1/2 + y, 1/2 − z). Toluene was introduced with a fixed geometry obtained from the literature (Irngartinger et al., 1999) and initially refined as a rigid body with a fixed occupancy of 0.5. In the final model the geometrical constraints were removed and displacement parameters of all non-H atoms were refined. The occupancy factor of toluene did not change upon release and joint refinement.

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003) and Mercury (Bruno et al., 2002); software used to prepare material for publication: program (reference)?.

Figures top
[Figure 1] Fig. 1. ORTEP drawing (Johnson, 1976) of (I), including labelling of the atoms. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres with arbitrary radii. The disordered toluene molecule is not shown.
[Figure 2] Fig. 2. Packing diagram of (I)·0.5C7H8, viewed down the b axis, illustrating the alternating layers of aromatic and acetylsulfanyl groups.
(E,E,E)-1,3,5-Tris[4-(acetylsulfanyl)styryl]benzene toluene hemisolvate top
Crystal data top
C36H30O3S3·0.5C7H8F(000) = 2744
Mr = 652.85Dx = 1.293 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 37009 reflections
a = 38.419 (3) Åθ = 2.2–30.0°
b = 6.8061 (4) ŵ = 0.26 mm1
c = 28.813 (3) ÅT = 122 K
β = 117.115 (12)°Needle, light-yellow
V = 6706.1 (12) Å30.42 × 0.34 × 0.18 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
9790 independent reflections
Radiation source: fine-focus sealed tube7824 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω and ϕ scansθmax = 30.0°, θmin = 2.2°
Absorption correction: numerical
via Gaussian integration (Coppens, 1970)
h = 5454
Tmin = 0.91, Tmax = 0.96k = 99
86319 measured reflectionsl = 4040
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: difference Fourier map
wR(F2) = 0.125H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0498P)2 + 9.7732P]
where P = (Fo2 + 2Fc2)/3
9790 reflections(Δ/σ)max = 0.001
442 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.78 e Å3
Crystal data top
C36H30O3S3·0.5C7H8V = 6706.1 (12) Å3
Mr = 652.85Z = 8
Monoclinic, C2/cMo Kα radiation
a = 38.419 (3) ŵ = 0.26 mm1
b = 6.8061 (4) ÅT = 122 K
c = 28.813 (3) Å0.42 × 0.34 × 0.18 mm
β = 117.115 (12)°
Data collection top
Nonius KappaCCD
diffractometer
9790 independent reflections
Absorption correction: numerical
via Gaussian integration (Coppens, 1970)
7824 reflections with I > 2σ(I)
Tmin = 0.91, Tmax = 0.96Rint = 0.057
86319 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.09Δρmax = 0.50 e Å3
9790 reflectionsΔρmin = 0.78 e Å3
442 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.341115 (15)1.20269 (8)0.478420 (18)0.04102 (14)
S20.067351 (12)0.52545 (6)0.041961 (15)0.02285 (9)
S30.157890 (12)1.44589 (7)0.11078 (2)0.03233 (11)
O10.32139 (4)1.4495 (2)0.39987 (5)0.0390 (3)
O20.04501 (4)0.2846 (2)0.03902 (5)0.0340 (3)
O30.13039 (4)1.70861 (19)0.06896 (5)0.0340 (3)
C10.11917 (4)0.7911 (2)0.26659 (6)0.0196 (3)
C20.12072 (4)0.6043 (2)0.24710 (6)0.0202 (3)
C30.08726 (4)0.5132 (2)0.20971 (6)0.0196 (3)
C40.05142 (4)0.6098 (2)0.19304 (6)0.0201 (3)
C50.04870 (4)0.7959 (2)0.21147 (6)0.0193 (3)
C60.08306 (4)0.8848 (2)0.24892 (6)0.0194 (3)
C70.15467 (5)0.8916 (2)0.30446 (6)0.0229 (3)
C80.19120 (5)0.8298 (3)0.32038 (7)0.0276 (3)
C90.22711 (5)0.9252 (3)0.35858 (7)0.0277 (3)
C100.22720 (6)1.1079 (3)0.38037 (10)0.0463 (6)
C110.26152 (6)1.1923 (3)0.41686 (10)0.0475 (6)
C120.29679 (5)1.0973 (3)0.43177 (7)0.0326 (4)
C130.29746 (5)0.9175 (3)0.41020 (8)0.0370 (4)
C140.26286 (5)0.8316 (3)0.37425 (8)0.0335 (4)
C150.34492 (5)1.4116 (2)0.44364 (7)0.0268 (3)
C160.38073 (5)1.5311 (3)0.47573 (7)0.0319 (4)
C170.09112 (5)0.3226 (2)0.18819 (6)0.0219 (3)
C180.06363 (5)0.2391 (2)0.14535 (6)0.0214 (3)
C190.06617 (4)0.0524 (2)0.12164 (6)0.0199 (3)
C200.10023 (4)0.0609 (2)0.13960 (6)0.0214 (3)
C210.10065 (5)0.2362 (2)0.11512 (6)0.0210 (3)
C220.06697 (4)0.3003 (2)0.07228 (6)0.0196 (3)
C230.03281 (5)0.1896 (2)0.05418 (6)0.0229 (3)
C240.03263 (5)0.0153 (2)0.07864 (6)0.0230 (3)
C250.05264 (4)0.4506 (3)0.02391 (6)0.0245 (3)
C260.05066 (5)0.6206 (3)0.05817 (7)0.0355 (4)
C270.01014 (4)0.8903 (2)0.18975 (6)0.0211 (3)
C280.00262 (4)1.0798 (2)0.19309 (6)0.0207 (3)
C290.03654 (4)1.1694 (2)0.17043 (6)0.0197 (3)
C300.07046 (5)1.0693 (2)0.13618 (6)0.0238 (3)
C310.10679 (5)1.1580 (2)0.11723 (6)0.0253 (3)
C320.11036 (5)1.3475 (2)0.13259 (6)0.0228 (3)
C330.07718 (5)1.4506 (2)0.16622 (6)0.0234 (3)
C340.04078 (5)1.3625 (2)0.18385 (6)0.0223 (3)
C350.15850 (5)1.6504 (2)0.07229 (6)0.0250 (3)
C360.19844 (5)1.7419 (3)0.04401 (8)0.0398 (5)
C810.27138 (14)1.4887 (8)0.27684 (17)0.0503 (11)0.50
C820.25164 (18)1.3223 (9)0.2792 (2)0.0533 (13)0.50
C830.2125 (2)1.2977 (19)0.2439 (3)0.0538 (19)0.50
C840.19435 (13)1.4365 (9)0.20672 (19)0.0532 (12)0.50
C850.21379 (14)1.6047 (8)0.20502 (17)0.0469 (11)0.50
C860.25250 (15)1.6323 (7)0.23968 (17)0.0457 (10)0.50
C870.2735 (3)1.8121 (17)0.2380 (4)0.074 (3)0.50
H20.14510.53850.25970.024*
H40.02820.54690.16850.024*
H60.08171.01040.26240.023*
H70.15121.01130.31880.027*
H80.19440.71110.30540.033*
H100.20321.17590.37000.056*
H110.26091.31600.43170.057*
H130.32170.85230.42000.044*
H140.26360.70650.36010.040*
H170.11510.25400.20630.026*
H180.03960.30840.12820.026*
H200.12330.01750.16880.026*
H210.12390.31220.12770.025*
H230.00970.23390.02510.027*
H240.00930.06000.06600.028*
H270.01180.80760.17130.025*
H280.02431.16380.21160.025*
H300.06850.93900.12580.029*
H310.12941.08880.09360.030*
H330.07941.57990.17700.028*
H340.01811.43530.20570.027*
H16A0.37371.64120.49180.048*
H16B0.40021.44840.50310.048*
H16C0.39171.58200.45330.048*
H26A0.05600.74290.03810.053*
H26B0.02450.62710.08790.053*
H26C0.07020.60300.07090.053*
H36A0.21251.68270.00930.060*
H36B0.21311.71910.06380.060*
H36C0.19571.88360.04050.060*
H810.29821.50480.30090.060*0.50
H820.26481.22490.30490.064*0.50
H830.19851.18520.24580.065*0.50
H840.16791.41750.18150.064*0.50
H850.20031.70260.17960.056*0.50
H87A0.30051.80660.26560.111*0.50
H87B0.27341.82140.20400.111*0.50
H87C0.26041.92750.24320.111*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0297 (2)0.01860 (17)0.01911 (17)0.00193 (15)0.01017 (15)0.00147 (14)
S30.02101 (19)0.0324 (2)0.0478 (3)0.00349 (16)0.01936 (19)0.0109 (2)
S10.0366 (3)0.0421 (3)0.0269 (2)0.0170 (2)0.00076 (18)0.00317 (19)
C190.0242 (7)0.0172 (7)0.0201 (7)0.0013 (6)0.0118 (6)0.0006 (5)
C60.0233 (7)0.0184 (7)0.0174 (6)0.0006 (6)0.0100 (6)0.0008 (5)
C270.0202 (7)0.0234 (7)0.0177 (6)0.0001 (6)0.0069 (6)0.0008 (6)
C30.0233 (7)0.0167 (7)0.0195 (6)0.0016 (5)0.0105 (6)0.0001 (5)
C290.0211 (7)0.0228 (7)0.0161 (6)0.0017 (6)0.0093 (5)0.0014 (5)
C220.0255 (7)0.0166 (7)0.0185 (6)0.0008 (6)0.0116 (6)0.0005 (5)
C50.0211 (7)0.0205 (7)0.0173 (6)0.0007 (6)0.0095 (6)0.0017 (5)
C40.0204 (7)0.0200 (7)0.0186 (6)0.0017 (6)0.0077 (6)0.0008 (5)
O20.0369 (7)0.0403 (7)0.0264 (6)0.0130 (6)0.0157 (5)0.0101 (5)
C20.0200 (7)0.0187 (7)0.0211 (7)0.0005 (5)0.0088 (6)0.0009 (6)
O30.0299 (6)0.0294 (7)0.0444 (7)0.0032 (5)0.0184 (6)0.0107 (6)
O10.0345 (7)0.0343 (7)0.0361 (7)0.0006 (6)0.0055 (6)0.0042 (6)
C210.0229 (7)0.0200 (7)0.0197 (7)0.0019 (6)0.0092 (6)0.0018 (6)
C200.0215 (7)0.0221 (7)0.0182 (6)0.0023 (6)0.0070 (6)0.0002 (6)
C240.0215 (7)0.0227 (7)0.0222 (7)0.0028 (6)0.0077 (6)0.0001 (6)
C10.0205 (7)0.0199 (7)0.0179 (6)0.0021 (6)0.0084 (6)0.0013 (5)
C70.0228 (7)0.0210 (7)0.0245 (7)0.0024 (6)0.0104 (6)0.0065 (6)
C180.0247 (7)0.0177 (7)0.0216 (7)0.0013 (6)0.0105 (6)0.0018 (6)
C320.0208 (7)0.0244 (8)0.0258 (7)0.0027 (6)0.0129 (6)0.0062 (6)
C280.0199 (7)0.0255 (7)0.0168 (6)0.0002 (6)0.0085 (6)0.0017 (6)
C230.0207 (7)0.0243 (8)0.0211 (7)0.0013 (6)0.0073 (6)0.0026 (6)
C80.0238 (8)0.0239 (8)0.0339 (9)0.0031 (6)0.0122 (7)0.0099 (7)
C330.0263 (7)0.0226 (7)0.0235 (7)0.0022 (6)0.0133 (6)0.0000 (6)
C300.0257 (7)0.0211 (7)0.0234 (7)0.0008 (6)0.0102 (6)0.0006 (6)
C170.0235 (7)0.0180 (7)0.0243 (7)0.0001 (6)0.0109 (6)0.0005 (6)
C340.0226 (7)0.0234 (7)0.0200 (7)0.0000 (6)0.0088 (6)0.0007 (6)
C310.0213 (7)0.0253 (8)0.0261 (8)0.0024 (6)0.0079 (6)0.0023 (6)
C90.0225 (7)0.0267 (8)0.0339 (9)0.0042 (6)0.0128 (7)0.0087 (7)
C250.0177 (7)0.0369 (9)0.0183 (7)0.0045 (6)0.0077 (6)0.0001 (6)
C150.0254 (8)0.0229 (8)0.0305 (8)0.0001 (6)0.0112 (7)0.0057 (6)
C350.0221 (7)0.0240 (8)0.0255 (7)0.0028 (6)0.0079 (6)0.0014 (6)
C120.0287 (8)0.0330 (9)0.0280 (8)0.0110 (7)0.0058 (7)0.0025 (7)
C160.0287 (8)0.0267 (8)0.0380 (9)0.0057 (7)0.0133 (7)0.0100 (7)
C140.0259 (8)0.0254 (8)0.0406 (10)0.0009 (7)0.0078 (7)0.0054 (7)
C130.0235 (8)0.0294 (9)0.0439 (10)0.0003 (7)0.0029 (8)0.0025 (8)
C100.0230 (8)0.0407 (11)0.0703 (15)0.0046 (8)0.0169 (9)0.0299 (11)
C110.0341 (10)0.0434 (12)0.0631 (14)0.0123 (9)0.0206 (10)0.0320 (11)
C260.0308 (9)0.0514 (12)0.0224 (8)0.0091 (8)0.0104 (7)0.0081 (8)
C360.0253 (9)0.0450 (11)0.0407 (10)0.0121 (8)0.0076 (8)0.0057 (9)
C810.046 (2)0.058 (3)0.036 (2)0.007 (2)0.0094 (19)0.001 (2)
C820.049 (3)0.060 (3)0.045 (3)0.021 (3)0.017 (2)0.021 (2)
C830.033 (3)0.068 (4)0.059 (5)0.007 (3)0.019 (3)0.019 (4)
C840.036 (2)0.078 (4)0.046 (2)0.008 (2)0.020 (2)0.019 (2)
C850.047 (2)0.059 (3)0.039 (2)0.016 (2)0.023 (2)0.015 (2)
C860.059 (3)0.043 (2)0.037 (2)0.001 (2)0.024 (2)0.0047 (18)
C870.074 (7)0.062 (5)0.077 (7)0.024 (7)0.027 (6)0.022 (6)
Geometric parameters (Å, º) top
S2—C221.7673 (15)C8—H80.9500
S3—C321.7695 (16)C33—C341.388 (2)
S1—C121.7706 (18)C33—H330.9500
S1—C151.7834 (19)C30—C311.384 (2)
S2—C251.7898 (16)C30—H300.9500
S3—C351.7731 (18)C17—H170.9500
C19—C241.397 (2)C34—H340.9500
C19—C201.399 (2)C31—H310.9500
C6—C11.396 (2)C9—C141.389 (2)
C6—C51.405 (2)C9—C101.393 (3)
C6—H60.9500C25—C261.500 (2)
C5—C271.468 (2)C15—C161.500 (2)
C27—C281.335 (2)C35—C361.506 (2)
C28—C291.472 (2)C12—C131.378 (3)
C27—H270.9500C12—C111.381 (3)
C3—C21.391 (2)C16—H16A0.9800
C3—C41.399 (2)C16—H16B0.9800
C3—C171.474 (2)C16—H16C0.9800
C17—C181.332 (2)C14—C131.388 (2)
C18—C191.467 (2)C14—H140.9500
C29—C341.400 (2)C13—H130.9500
C29—C301.401 (2)C10—C111.382 (3)
C22—C211.390 (2)C10—H100.9500
C22—C231.392 (2)C11—H110.9500
C5—C41.396 (2)C26—H26A0.9800
C4—H40.9500C26—H26B0.9800
O2—C251.198 (2)C26—H26C0.9800
C2—C11.402 (2)C36—H36A0.9800
C2—H20.9500C36—H36B0.9800
O3—C351.195 (2)C36—H36C0.9800
O1—C151.198 (2)C81—C861.386 (7)
C21—C201.390 (2)C81—C821.382 (8)
C21—H210.9500C81—H810.9500
C20—H200.9500C82—C831.390 (8)
C24—C231.382 (2)C82—H820.9500
C24—H240.9500C83—C841.359 (11)
C1—C71.471 (2)C83—H830.9500
C7—C81.331 (2)C84—C851.380 (7)
C8—C91.467 (2)C84—H840.9500
C7—H70.9500C85—C861.375 (7)
C18—H180.9500C85—H850.9500
C32—C331.389 (2)C86—C871.478 (12)
C32—C311.391 (2)C87—H87A0.9800
C28—H280.9500C87—H87B0.9800
C23—H230.9500C87—H87C0.9800
C22—S2—C25101.98 (8)C30—C31—C32120.44 (15)
C32—S3—C35103.68 (8)C30—C31—H31119.8
C12—S1—C15101.14 (9)C32—C31—H31119.8
C24—C19—C20118.39 (14)C14—C9—C10117.65 (16)
C24—C19—C18117.92 (14)C14—C9—C8119.57 (16)
C20—C19—C18123.69 (14)C10—C9—C8122.79 (16)
C1—C6—C5120.87 (14)O2—C25—C26123.89 (15)
C1—C6—H6119.6O2—C25—S2124.09 (13)
C5—C6—H6119.6C26—C25—S2112.02 (13)
C28—C27—C5126.97 (14)O1—C15—C16124.89 (17)
C28—C27—H27116.5O1—C15—S1123.20 (14)
C5—C27—H27116.5C16—C15—S1111.91 (13)
C2—C3—C4118.30 (14)O3—C35—C36123.70 (17)
C2—C3—C17118.90 (14)O3—C35—S3123.78 (13)
C4—C3—C17122.77 (14)C36—C35—S3112.52 (13)
C34—C29—C30117.56 (14)C13—C12—C11119.53 (17)
C34—C29—C28119.36 (14)C13—C12—S1119.53 (15)
C30—C29—C28123.07 (14)C11—C12—S1120.94 (15)
C21—C22—C23120.01 (14)C15—C16—H16A109.5
C21—C22—S2119.79 (12)C15—C16—H16B109.5
C23—C22—S2120.18 (12)H16A—C16—H16B109.5
C4—C5—C6118.43 (14)C15—C16—H16C109.5
C4—C5—C27118.08 (13)H16A—C16—H16C109.5
C6—C5—C27123.48 (14)H16B—C16—H16C109.5
C5—C4—C3121.92 (14)C13—C14—C9121.18 (17)
C5—C4—H4119.0C13—C14—H14119.4
C3—C4—H4119.0C9—C14—H14119.4
C3—C2—C1121.43 (14)C12—C13—C14120.16 (18)
C3—C2—H2119.3C12—C13—H13119.9
C1—C2—H2119.3C14—C13—H13119.9
C20—C21—C22119.89 (14)C11—C10—C9121.31 (18)
C20—C21—H21120.1C11—C10—H10119.3
C22—C21—H21120.1C9—C10—H10119.3
C21—C20—C19120.72 (14)C12—C11—C10120.15 (19)
C21—C20—H20119.6C12—C11—H11119.9
C19—C20—H20119.6C10—C11—H11119.9
C23—C24—C19121.22 (15)C25—C26—H26A109.5
C23—C24—H24119.4C25—C26—H26B109.5
C19—C24—H24119.4H26A—C26—H26B109.5
C6—C1—C2119.01 (14)C25—C26—H26C109.5
C6—C1—C7119.31 (14)H26A—C26—H26C109.5
C2—C1—C7121.67 (14)H26B—C26—H26C109.5
C8—C7—C1125.76 (15)C35—C36—H36A109.5
C8—C7—H7117.1C35—C36—H36B109.5
C1—C7—H7117.1H36A—C36—H36B109.5
C17—C18—C19127.49 (15)C35—C36—H36C109.5
C17—C18—H18116.3H36A—C36—H36C109.5
C19—C18—H18116.3H36B—C36—H36C109.5
C33—C32—C31119.87 (15)C86—C81—C82120.7 (5)
C33—C32—S3121.80 (13)C86—C81—H81119.7
C31—C32—S3118.26 (12)C82—C81—H81119.7
C27—C28—C29125.39 (15)C81—C82—C83119.9 (7)
C27—C28—H28117.3C81—C82—H82120.1
C29—C28—H28117.3C83—C82—H82120.1
C24—C23—C22119.77 (14)C84—C83—C82119.2 (9)
C24—C23—H23120.1C84—C83—H83120.4
C22—C23—H23120.1C82—C83—H83120.4
C7—C8—C9127.04 (16)C83—C84—C85120.9 (6)
C7—C8—H8116.5C83—C84—H84119.5
C9—C8—H8116.5C85—C84—H84119.5
C34—C33—C32119.25 (15)C86—C85—C84120.7 (4)
C34—C33—H33120.4C86—C85—H85119.6
C32—C33—H33120.4C84—C85—H85119.6
C31—C30—C29120.87 (15)C85—C86—C81118.5 (5)
C31—C30—H30119.6C85—C86—C87121.0 (6)
C29—C30—H30119.6C81—C86—C87120.5 (5)
C18—C17—C3125.20 (15)C86—C87—H87A109.5
C18—C17—H17117.4C86—C87—H87B109.5
C3—C17—H17117.4H87A—C87—H87B109.5
C33—C34—C29121.94 (15)C86—C87—H87C109.5
C33—C34—H34119.0H87A—C87—H87C109.5
C29—C34—H34119.0H87B—C87—H87C109.5
C15—S1—C12—C1167.1 (2)C34—C29—C30—C311.1 (2)
C25—S2—C22—C21123.26 (13)C28—C29—C30—C31177.90 (14)
C35—S3—C32—C31117.27 (13)C19—C18—C17—C3178.64 (14)
C25—S2—C22—C2358.35 (14)C2—C3—C17—C18165.27 (16)
C1—C6—C5—C41.2 (2)C4—C3—C17—C1812.8 (2)
C1—C6—C5—C27177.37 (14)C32—C33—C34—C292.6 (2)
C28—C27—C5—C4163.98 (15)C30—C29—C34—C333.0 (2)
C28—C27—C5—C614.6 (2)C28—C29—C34—C33176.08 (14)
C6—C5—C4—C31.8 (2)C29—C30—C31—C321.1 (2)
C27—C5—C4—C3176.87 (14)C33—C32—C31—C301.5 (2)
C2—C3—C4—C52.2 (2)S3—C32—C31—C30175.46 (13)
C17—C3—C4—C5175.83 (14)C7—C8—C9—C14174.32 (19)
C4—C3—C2—C12.2 (2)C7—C8—C9—C105.6 (3)
C17—C3—C2—C1175.99 (14)C22—S2—C25—O20.34 (17)
C23—C22—C21—C200.5 (2)C22—S2—C25—C26179.87 (12)
S2—C22—C21—C20178.87 (12)C12—S1—C15—O10.86 (18)
C22—C21—C20—C190.1 (2)C12—S1—C15—C16179.14 (13)
C24—C19—C20—C210.1 (2)C32—S3—C35—O36.96 (18)
C18—C19—C20—C21179.70 (14)C32—S3—C35—C36172.73 (13)
C20—C19—C24—C230.0 (2)C15—S1—C12—C13113.17 (17)
C18—C19—C24—C23179.85 (14)C10—C9—C14—C130.3 (3)
C5—C6—C1—C21.1 (2)C8—C9—C14—C13179.82 (18)
C5—C6—C1—C7177.91 (14)C11—C12—C13—C140.8 (3)
C3—C2—C1—C61.6 (2)S1—C12—C13—C14178.90 (16)
C3—C2—C1—C7177.38 (14)C9—C14—C13—C121.1 (3)
C6—C1—C7—C8172.41 (16)C14—C9—C10—C110.9 (3)
C2—C1—C7—C86.6 (3)C8—C9—C10—C11179.0 (2)
C24—C19—C18—C17175.28 (16)C13—C12—C11—C100.3 (4)
C20—C19—C18—C174.9 (3)S1—C12—C11—C10179.97 (19)
C35—S3—C32—C3365.81 (15)C9—C10—C11—C121.2 (4)
C5—C27—C28—C29179.57 (14)C86—C81—C82—C830.2 (10)
C34—C29—C28—C27169.74 (15)C81—C82—C83—C841.5 (13)
C30—C29—C28—C279.3 (2)C82—C83—C84—C852.9 (13)
C19—C24—C23—C220.4 (2)C83—C84—C85—C862.7 (9)
C21—C22—C23—C240.6 (2)C84—C85—C86—C810.9 (7)
S2—C22—C23—C24179.00 (12)C84—C85—C86—C87179.9 (6)
C1—C7—C8—C9179.06 (16)C82—C81—C86—C850.5 (7)
C31—C32—C33—C340.3 (2)C82—C81—C86—C87178.7 (6)
S3—C32—C33—C34177.15 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O3i0.982.523.403 (2)150
C16—H16B···O2ii0.982.463.368 (2)155
C24—H24···O2iii0.952.413.356 (2)173
C26—H26C···O3iv0.982.403.272 (2)148
C81—H81···O10.952.603.181 (5)120
Symmetry codes: (i) x+1/2, y7/2, z+1/2; (ii) x+1/2, y3/2, z+1/2; (iii) x, y, z; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formulaC36H30O3S3·0.5C7H8
Mr652.85
Crystal system, space groupMonoclinic, C2/c
Temperature (K)122
a, b, c (Å)38.419 (3), 6.8061 (4), 28.813 (3)
β (°) 117.115 (12)
V3)6706.1 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.42 × 0.34 × 0.18
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionNumerical
via Gaussian integration (Coppens, 1970)
Tmin, Tmax0.91, 0.96
No. of measured, independent and
observed [I > 2σ(I)] reflections
86319, 9790, 7824
Rint0.057
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.125, 1.09
No. of reflections9790
No. of parameters442
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.78

Computer programs: COLLECT (Nonius, 1999), DIRAX (Duisenberg, 1992), EVALCCD (Duisenberg et al., 2003), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003) and Mercury (Bruno et al., 2002), program (reference)?.

Selected geometric parameters (Å, º) top
S1—C151.7834 (19)C3—C171.474 (2)
S2—C251.7898 (16)C17—C181.332 (2)
S3—C351.7731 (18)C18—C191.467 (2)
C5—C271.468 (2)C1—C71.471 (2)
C27—C281.335 (2)C7—C81.331 (2)
C28—C291.472 (2)C8—C91.467 (2)
C15—S1—C12—C1167.1 (2)C35—S3—C32—C31117.27 (13)
C25—S2—C22—C21123.26 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O3i0.982.523.403 (2)150
C16—H16B···O2ii0.982.463.368 (2)155
C24—H24···O2iii0.952.413.356 (2)173
C26—H26C···O3iv0.982.403.272 (2)148
C81—H81···O10.952.603.181 (5)120
Symmetry codes: (i) x+1/2, y7/2, z+1/2; (ii) x+1/2, y3/2, z+1/2; (iii) x, y, z; (iv) x, y1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds