organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

3-Phenyl-4H,6H-1,2,4-oxa­diazo­l-5-one

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, Scotland, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 16 September 2004; accepted 20 September 2004; online 22 October 2004)

Molecules of the title compound, C9H8N2O2, are linked into complex sheets by a combination of N—H⋯O, C—H⋯N and C—H⋯O hydrogen bonds.

Comment

The title compound, (I[link]) (Fig. 1[link]), is a lactam which was obtained on the attempted recrystallization of H2N(Ph)C=NOCH2COOH from hot water.

[Scheme 1]

The bond distances within the heterocyclic ring of (I[link]) (Table 1[link]) show very strong bond fixation in the C—N bonds. Thus, N2—C3 is very much shorter than C3—N4, which is rather long for its type (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). These values effectively preclude any electron delocalization in the N2—C3—N4 fragment. The ring puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) of θ = 66.5 (2)° and φ = 335.9 (2)° for the atom sequence O1—N2—C3—N4—C5—C6 indicate a screw-boat conformation for the heterocyclic ring (Evans & Boeyens, 1989[Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.]). The torsion angles within this ring (Table 1[link]) indicate the near-planarity of the O1—N2—C3—N4 fragment containing the N2=C3 double bond, and of the cis-amidic fragment C3—N4—C5—C6.

The mol­ecules of (I[link]) are linked into a sheet of some complexity via a combination of N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds (Table 2[link]). The formation of the sheet can most readily be analysed and described in terms of two one-dimensional substructures.

Atom N4 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor to carbonyl atom O5 in the mol­ecule at ([{1 \over 2}] − x, [-{1 \over 2}] − y, 1 − z), so generating a centrosymmetric R22(8) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) dimer centred at ([{1 \over 4}], −[{1 \over 4}], [{1 \over 2}]) (Fig. 2[link]). The formation of this dimer is reinforced by the C—H⋯O hydrogen bond which links the same two mol­ecules in an R22(14) motif, in which the R22(8) ring is embedded, so producing two additional rings, of R21(7) type (Fig. 2[link]).

These dimers are linked into [130] chains by one of the C—H⋯N hydrogen bonds. Aryl atom C36 in the mol­ecule at (x, y, z) acts as donor to ring atom N2 in the mol­ecule at (1 − x, 1 − y, 1 − z), so generating a centrosymmetric R22(10) motif, centred at ([{1 \over 2}], [{1 \over 2}], [{1 \over 2}]), and linking pairs of the R22(8) dimers into a chain of centrosymmetric rings running parallel to the [130] direction (Fig. 2[link]).

A second chain motif is generated by the combined action of the two C—H⋯N hydrogen bonds, which unexpectedly have the same acceptor, viz. ring atom N2. Ring atom C6 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor, via the axial atom H6A, to atom N2 in the mol­ecule at (1 − x, −y, 1 − z), so generating a centrosymmetric R22(8) ring centred at ([{1 \over 2}], 0, [{1 \over 2}]). This motif, in combination with the R22(10) motif, also generated by paired C—H⋯N hydrogen bonds, produces a chain of spiro-fused rings running parallel to the [010] direction (Fig. 3[link]). The combination of the [130] and [010] chains generates an (001) sheet, but there are no direction-specific interactions between adjacent sheets.

[Figure 1]
Figure 1
The mol­ecule of (I[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2]
Figure 2
A stereoview of part of the crystal structure of (I[link]), showing the formation of a [130] chain of edge-fused rings. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 3]
Figure 3
Part of the crystal structure of (I[link]), showing the formation of an [010] chain of spiro-fused rings. For the sake of clarity, H atoms not involved in the motifs shown have been omitted. Atoms marked with an asterisk (*), hash (#), dollar sign ($) or ampersand (&) are at the symmetry positions (1 − x, 1 − y, 1 − z), (1 − x, −y, 1 − z) (x, 1 + y, z) and (x, y − 1, z), respectively.

Experimental

The title compound was obtained on the attempted recrystallization of H2N(Ph)C=NOCH2COOH (Forrester et al., 1979[Forrester, A. R., Gill, M., Meyer, C. I., Sadd, J. S. & Thomson, R. H. (1979). J. Chem. Soc. Perkin Trans. 1, pp. 5606-5611.]) from hot water.

Crystal data
  • C9H8N2O2

  • Mr = 176.17

  • Monoclinic, C2/c

  • a = 18.9100 (10) Å

  • b = 5.1093 (2) Å

  • c = 17.0632 (9) Å

  • β = 90.885 (3)°

  • V = 1648.40 (14) Å3

  • Z = 8

  • Dx = 1.420 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1903 reflections

  • θ = 3.2–27.6°

  • μ = 0.10 mm−1

  • T = 120 (2) K

  • Lath, colourless

  • 0.55 × 0.12 × 0.03 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.954, Tmax = 0.997

  • 10 146 measured reflections

  • 1903 independent reflections

  • 1200 reflections with I > 2σ(I)

  • Rint = 0.066

  • θmax = 27.6°

  • h = −24 → 24

  • k = −6 → 6

  • l = −20 → 22

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.136

  • S = 0.98

  • 1903 reflections

  • 118 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0779P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Selected geometric parameters (Å, °)

O1—N2 1.4320 (18)
N2—C3 1.287 (2)
C3—N4 1.396 (2)
N4—C5 1.361 (2)
C5—C6 1.493 (2)
C6—O1 1.426 (2)
O1—N2—C3—N4 3.4 (2)
N2—C3—N4—C5 21.4 (2)
C3—N4—C5—C6 −4.0 (2)
N4—C5—C6—O1 −33.9 (2)
C5—C6—O1—N2 58.6 (2)
C6—O1—N2—C3 −43.56 (19)

Table 2
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O5i 0.85 2.06 2.886 (2) 165
C32—H32⋯O5i 0.95 2.39 3.296 (2) 159
C6—H6A⋯N2ii 0.99 2.59 3.475 (2) 148
C36—H36⋯N2iii 0.95 2.56 3.476 (2) 161
Symmetry codes: (i) [{\script{1\over 2}}-x,-{\script{1\over 2}}-y,1-z]; (ii) 1-x,-y,1-z; (iii) 1-x,1-y,1-z.

The systematic absences permitted Cc and C2/c as possible space groups; C2/c was selected and confirmed by the subsequent structure analysis. All H atoms were located from difference maps and then treated as riding, with C—H distances of 0.95 (aromatic) or 0.99 Å (CH2) and an N—H distance of 0.85 Å, and with Uiso(H) = 1.2Ueq(C,N).

Data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

The title compound, (I) (Fig. 1), is a lactam, which was obtained on the attempted recrystallization of H2N(Ph)CNOCH2COOH from hot water. \sch

The bond distances within the heterocyclic ring of (I) (Table 1) show very strong bond fixation in the C—N bonds. Thus, N2—C3 is very much shorter than C3—N4, which is rather long for its type (Allen et al., 1987). These values effectively preclude any electron delocalization in the N2—C3—N4 fragment. The ring puckering parameters (Cremer & Pople, 1975) of θ = 66.5 (2)° and ϕ = 335.9 (2)° for the atom-sequence O1/N2/C3/N4/C5/C6 indicate a screw-boat conformation for the heterocyclic ring (Evans & Boeyens, 1989). The torsion angles within this ring (Table 1) indicate the near-planarity of the O1—N2—C3—N4 fragment containing the N2C3 double bond, and of the cis-amidic fragment C3—N4—C5—C6.

The molecules of (I) are linked into a sheet of some complexity via a combination of N—H···O, C—H···O and C—H···N hydrogen bonds (Table 2). The formation of the sheet can most readily be analysed and described in terms of two one-dimensional sub-structures.

Atom N4 in the molecule at (x, y, z) acts as hydrogen-bond donor to carbonyl atom O5 in the molecule at (1/2 − x, −1/2 − y, 1 − z), so generating a centrosymmetric R22(8) (Bernstein et al., 1995) dimer centred at (1/4, −1/4, 1/2) (Fig. 2). The formation of this dimer is reinforced by the C—H···O hydrogen bond which links the same two molecules in an R22(14) motif, in which the R22(8) ring is embedded, so producing two additional rings, of R21(7) type (Fig. 2).

These dimers are linked into [130] chains by one of the C—H···N hydrogen bonds. Aryl atom C36 in the molecule at (x, y, z) acts as donor to ring atom N2 in the molecule at (1 − x, 1 − y, 1 − z), so generating a centrosymmetric R22(10) motif, centred at (1/2, 1/2, 1/2), and linking pairs of the R22(8) dimers into a chain of centrosymmetric rings running parallel to the [130] direction (Fig. 2).

A second chain motif is generated by the combined action of the two C—H···N hydrogen bonds, which unexpectedly have the same acceptor, ring atom N2. Ring atom C6 in the molecule at (x, y, z) acts as hydrogen-bond donor, via the axial atom H6A, to atom N2 in the molecule at (1 − x, −y, 1 − z), so generating a centrosymmetric R22(8) ring centred at (1/2, 0, 1/2). This motif, in combination with the R22(10) motif, also generated by paired C—H···N hydrogen bonds, produces a chain of spiro-fused rings running parallel to the [010] direction (Fig. 3). The combination of the [130] and [010] chains generates an (001) sheet, but there are no direction-specific interactions between adjacent sheets.

Experimental top

The title compound was obtained on the attempted recrystallization of H2N(Ph)CNOCH2COOH (Forrester et al., 1979) from hot water.

Refinement top

The systematic absences permitted Cc and C2/c as possible space groups; C2/c was selected, and confirmed by the subsequent structure analysis. All H atoms were located from difference maps and then treated as riding, with C—H distances of 0.95 (aromatic) or 0.99 Å (CH2) and an N—H distance of 0.85 Å, and with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A stereoview of part of the crystal structure of (I), showing the formation of a [130] chain of edge-fused rings. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of an [010] chain of spiro-fused rings. For the sake of clarity, H atoms not involved in the motifs shown have been omitted. Atoms marked with an asterisk (*), hash (#), dollar sign () or ampersand () are at the symmetry positions (1 − x, 1 − y, 1 − z), (1 − x, −y, 1 − z) (x, 1 + y, z) and (x, y − 1, z), respectively.
3-Phenyl-4H,6H-1,2,4-oxadiazolin-5-one top
Crystal data top
C9H8N2O2F(000) = 736
Mr = 176.17Dx = 1.420 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1903 reflections
a = 18.910 (1) Åθ = 3.2–27.6°
b = 5.1093 (2) ŵ = 0.10 mm1
c = 17.0632 (9) ÅT = 120 K
β = 90.885 (3)°Lath, colourless
V = 1648.40 (14) Å30.55 × 0.12 × 0.03 mm
Z = 8
Data collection top
Nonius KappaCCD area-detector
diffractometer
1903 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1200 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 3.2°
ϕ and ω scansh = 2424
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 66
Tmin = 0.954, Tmax = 0.997l = 2022
10146 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0779P)2]
where P = (Fo2 + 2Fc2)/3
1903 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C9H8N2O2V = 1648.40 (14) Å3
Mr = 176.17Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.910 (1) ŵ = 0.10 mm1
b = 5.1093 (2) ÅT = 120 K
c = 17.0632 (9) Å0.55 × 0.12 × 0.03 mm
β = 90.885 (3)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
1903 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1200 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.997Rint = 0.066
10146 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 0.98Δρmax = 0.23 e Å3
1903 reflectionsΔρmin = 0.27 e Å3
118 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.43308 (6)0.1136 (2)0.40375 (7)0.0266 (4)
O50.30092 (6)0.3600 (2)0.42484 (7)0.0272 (4)
N20.43312 (8)0.2398 (3)0.47870 (9)0.0240 (4)
N40.32837 (7)0.0004 (3)0.49774 (8)0.0222 (4)
C30.37966 (9)0.1813 (3)0.52107 (11)0.0200 (4)
C50.34240 (9)0.1851 (3)0.44265 (10)0.0222 (4)
C60.41412 (9)0.1560 (3)0.40829 (11)0.0243 (5)
C310.37249 (9)0.3179 (3)0.59706 (10)0.0207 (4)
C320.32239 (9)0.2428 (4)0.65152 (11)0.0253 (5)
C330.31777 (10)0.3726 (4)0.72243 (11)0.0280 (5)
C340.36309 (10)0.5784 (4)0.74019 (11)0.0284 (5)
C350.41289 (10)0.6536 (4)0.68611 (11)0.0272 (5)
C360.41785 (10)0.5258 (3)0.61516 (11)0.0246 (5)
H40.28960.01060.52210.027*
H6A0.44930.25060.44120.029*
H6B0.41430.23410.35520.029*
H320.29120.10180.64000.030*
H330.28330.32040.75920.034*
H340.36000.66680.78900.034*
H350.44400.79470.69790.033*
H360.45230.57940.57850.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0312 (7)0.0264 (7)0.0223 (7)0.0068 (6)0.0039 (6)0.0006 (6)
O50.0238 (7)0.0293 (8)0.0286 (8)0.0070 (6)0.0019 (6)0.0062 (6)
N20.0265 (9)0.0240 (9)0.0215 (9)0.0030 (7)0.0016 (7)0.0024 (7)
N40.0175 (8)0.0256 (9)0.0237 (9)0.0035 (6)0.0033 (7)0.0030 (7)
C30.0176 (9)0.0181 (9)0.0244 (10)0.0002 (7)0.0012 (8)0.0026 (8)
C50.0221 (10)0.0234 (10)0.0209 (10)0.0024 (8)0.0011 (8)0.0007 (8)
C60.0245 (10)0.0226 (10)0.0258 (11)0.0049 (8)0.0033 (8)0.0034 (8)
C310.0201 (9)0.0200 (10)0.0219 (10)0.0016 (7)0.0011 (8)0.0011 (8)
C320.0228 (10)0.0247 (10)0.0284 (11)0.0041 (8)0.0011 (8)0.0024 (9)
C330.0270 (10)0.0318 (11)0.0254 (11)0.0022 (8)0.0036 (9)0.0011 (9)
C340.0310 (11)0.0269 (11)0.0271 (11)0.0025 (9)0.0031 (9)0.0062 (9)
C350.0277 (11)0.0239 (10)0.0298 (11)0.0047 (8)0.0051 (9)0.0043 (9)
C360.0232 (9)0.0225 (10)0.0282 (11)0.0019 (8)0.0008 (8)0.0028 (8)
Geometric parameters (Å, º) top
O1—N21.4320 (18)C33—C341.387 (3)
N2—C31.287 (2)C33—H330.95
C3—N41.396 (2)C34—C351.383 (3)
N4—C51.361 (2)C34—H340.95
C5—C61.493 (2)C35—C361.380 (3)
C6—O11.426 (2)C35—H350.95
C3—C311.481 (3)C36—H360.95
C31—C321.391 (2)N4—H40.85
C31—C361.397 (2)C5—O51.2243 (19)
C32—C331.384 (3)C6—H6A0.99
C32—H320.95C6—H6B0.99
C6—O1—N2112.52 (13)C36—C35—H35119.7
C3—N2—O1114.05 (14)C34—C35—H35119.7
N2—C3—N4122.85 (17)C35—C36—C31120.26 (17)
N2—C3—C31117.77 (16)C35—C36—H36119.9
N4—C3—C31119.38 (16)C31—C36—H36119.9
C32—C31—C36118.96 (17)C5—N4—C3121.07 (15)
C32—C31—C3121.84 (16)C5—N4—H4118.3
C36—C31—C3119.19 (16)C3—N4—H4120.1
C33—C32—C31120.32 (17)O5—C5—N4123.13 (16)
C33—C32—H32119.8O5—C5—C6123.88 (16)
C31—C32—H32119.8N4—C5—C6112.97 (15)
C32—C33—C34120.48 (18)O1—C6—C5110.36 (14)
C32—C33—H33119.8O1—C6—H6A109.6
C34—C33—H33119.8C5—C6—H6A109.6
C35—C34—C33119.31 (18)O1—C6—H6B109.6
C35—C34—H34120.3C5—C6—H6B109.6
C33—C34—H34120.3H6A—C6—H6B108.1
C36—C35—C34120.67 (17)
O1—N2—C3—N43.4 (2)C3—C31—C32—C33179.12 (16)
N2—C3—N4—C521.4 (2)C31—C32—C33—C340.2 (3)
C3—N4—C5—C64.0 (2)C32—C33—C34—C350.3 (3)
N4—C5—C6—O133.9 (2)C33—C34—C35—C360.1 (3)
C5—C6—O1—N258.6 (2)C34—C35—C36—C310.0 (3)
C6—O1—N2—C343.56 (19)C32—C31—C36—C350.1 (3)
O1—N2—C3—C31175.50 (13)C3—C31—C36—C35179.03 (16)
N2—C3—C31—C32170.97 (16)C31—C3—N4—C5159.71 (15)
N4—C3—C31—C3210.1 (2)C3—N4—C5—O5174.28 (15)
N2—C3—C31—C368.2 (2)N2—O1—C6—C558.59 (19)
N4—C3—C31—C36170.81 (15)O5—C5—C6—O1147.78 (16)
C36—C31—C32—C330.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O5i0.852.062.886 (2)165
C32—H32···O5i0.952.393.296 (2)159
C6—H6A···N2ii0.992.593.475 (2)148
C36—H36···N2iii0.952.563.476 (2)161
Symmetry codes: (i) x+1/2, y1/2, z+1; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC9H8N2O2
Mr176.17
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)18.910 (1), 5.1093 (2), 17.0632 (9)
β (°) 90.885 (3)
V3)1648.40 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.55 × 0.12 × 0.03
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.954, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
10146, 1903, 1200
Rint0.066
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.136, 0.98
No. of reflections1903
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.27

Computer programs: COLLECT (Hooft, 1999), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) top
O1—N21.4320 (18)N4—C51.361 (2)
N2—C31.287 (2)C5—C61.493 (2)
C3—N41.396 (2)C6—O11.426 (2)
O1—N2—C3—N43.4 (2)N4—C5—C6—O133.9 (2)
N2—C3—N4—C521.4 (2)C5—C6—O1—N258.6 (2)
C3—N4—C5—C64.0 (2)C6—O1—N2—C343.56 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O5i0.852.062.886 (2)165
C32—H32···O5i0.952.393.296 (2)159
C6—H6A···N2ii0.992.593.475 (2)148
C36—H36···N2iii0.952.563.476 (2)161
Symmetry codes: (i) x+1/2, y1/2, z+1; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1.
 

Acknowledgements

The X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants which have provided computing facilities for this work. JLW thanks CNPq and FAPERJ for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEvans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581–590.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationForrester, A. R., Gill, M., Meyer, C. I., Sadd, J. S. & Thomson, R. H. (1979). J. Chem. Soc. Perkin Trans. 1, pp. 5606–5611.  Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds