Download citation
Download citation
link to html
The present structure determination of di-[mu]-hydroxo-bis{[N,N'-bis­(dipiperidino­methyl­ene)­propane-1,3-di­amine-[kappa]2N,N']copper(II)} bis­(hexa­fluoro­phosphate), [Cu2(OH)2(C25H46N6)2](PF6)2, is the first to crystallographically characterize a Cu2([mu]-OH)2 complex with a bidentate guanidine ligand. The cation lies on a crystallographic inversion centre and shows planar fourfold coordination of the copper centres. The Cu2([mu]-OH)2 species can be distinguished from Cu2([mu]-O)2 by the Cu-O bond lengths. The packing is determined by strong intermolecular anion-cation hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104023832/sk1771sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104023832/sk1771Isup2.hkl
Contains datablock I

CCDC reference: 259029

Comment top

The activation of dioxygen by tyrosinase-like CuI complexes plays an important role in biological and synthetic oxidation processes. Recent efforts have been directed towards elucidating the structure–reactivity relationship of the underlying Cu2O2 species through synthetic model systems (Tolman, 1997; Que & Tolman, 2002). In search of bifunctional N-atom donor ligands able to stabilize unusually high metal oxidation states, we extended our interests towards guanidyl-type systems (Herres et al., 2004a). The first derivative, the bis-tetramethylguanidinopropylen ligand (btmgp), and its complexes with copper, iron and nickel were investigated with regard to their coordination chemistry (Harmjanz, 1997; Waden, 1999; Pohl et al., 2000; Schneider, 2000; Herres, 2002). We have now examined the reaction behaviour of mono- and binuclear copper(I) complexes containing the (DPipG2p) ligand towards molecular oxygen. The reaction products have been identified as rare examples of alkoxo-bridged binuclear copper complexes, demonstrating that the bidentate ligand has been hydroxylated in an unprecedented manner (Herres et al., 2004b). Another product, the bishydroxo-bridged binuclear copper title complex, [Cu2(DPipG2p)2(µ-OH)2][PF6]2, will be discussed here.

The geometric centre of the cation lies on a crystallographic inversion centre, and thus the resulting Cu2O2 core is strictly planar. The Cu atom is coordinated in a planar quadratic manner by two guanidinyl N atoms and the two bridging O atoms. The deviation of the Cu atom from the N2O2 plane is 0.036 (1) Å, and the chelate heterocycle adopts a chair conformation. The presence of the hydroxo H atom was confirmed from Fourier maps. According to the existing (\-OH) bridges the Cu.·Cu and Cu—O distances of 3.0740 (6) and av. 1.935 (2) Å are clearly elongated compared with those of bis-µ-oxo-bridged Cu2O2 moieties, which range from 2.743 (1) to 2.906 (1) Å, and from 1.796 (6) to 1.865 (3) Å, respectively. Similar observations hold for related Fe complexes (Que & Tolman, 2002). As pointed out by Que & Tolman (2002), the significant differences between the short [in M2(µ-O)2] and long [in M2(µ-OH)2] M—O distances are obviously a suitable measure to distinguish between these two species. The N6 piperidine group is disordered over two sites with occupation factors 0.823 (6) and 0.177 (6). Fig. 1 displays only the major position. The packing is determined by intermolecular hydrogen bonds between the cation and the hexafluorophosphate anions [C14—H14A.·F16(-x + 2, −y + 2, −z + 1) with H···F = 2.275 (4) Å and C—H···F = 170.4 (2)°, C3—H3A···F12(x, y, z) with H···F = 2.384 (5) Å and C—H···F = 160.7 (3)°, and C251—H25A.·F15(x − 0.5, −y + 0.5 + 1, z − 0.5) with H···F = 2.406 (4) Å and C—H···F = 142.9 (3)°]. The shortest intramolecular interaction is C241—H125D.·N6 [H.·N = 2.124 (3) Å]. All these values are normalized for a C—H distance of 1.08 Å.

Experimental top

A solution of [Cu2(DPipG2p)]2[PF6]2 (262 mg, 0.2 mmol) (Herres et al., 2004b) in MeCN (50 ml) was treated at room temperature with pure dioxygen. After the mixture had been left to stand for one week, dark-blue crystals suitable for X-ray diffraction were obtained. IR (KBr, cm−1): 3446 [vw, ν(O–H)], 2937 (s), 2852 (s), 1533 [versus, ν(CN)], 1495 [s, ν(CN)], 1446 (versus), 1371 (s), 1335 (m), 1253 (m), 1226 (m), 1205 (m), 1164 (w), 1141 (m), 1110 (m), 1070 (w), 1020 (m), 948 (m), 917 (w), 839 [versus, ν(P–F)], 744 (m), 622 (w), 597 (w), 557 (m), 487 (w).

Refinement top

H atoms attached to C atoms were placed at idealized positions, riding on their attached C atoms, with Uiso(H) values of 1.2Ueq(C) and 1.5Ueq(Cmethyl). All CH3 groups were allowed to rotate but not to tip. The O—H distance of the hydroxo group was restrained to 0.84 (1) Å. The disordered piperidine group at N6 was treated with a split model. Geometric parameters derived for the isotropically refined minor positions are less reliable.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2002); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted, and only the major position of the disordered piperidine group at atom N6 is shown. Atoms labelled with the suffix A are at the symmetry position (-x + 1, −y + 1, −z + 1).
[Figure 2] Fig. 2. The crystal packing, viewed along [010], with the hydrogen-bonding pattern indicated by dashed lines. H atoms not involved in hydrogen bonding have been omitted.
di-µ-hydroxo-bis{[N,N'-bis(di-1-piperidylmethylene)propane-1,3-diamine- κ2N,N']copper(II)} bis(hexafluorophosphate) top
Crystal data top
[Cu2(OH)2(C25H46N6)2](PF6)2F(000) = 1380
Mr = 1312.39Dx = 1.431 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8806 reflections
a = 12.3581 (9) Åθ = 2.4–28.1°
b = 16.7472 (13) ŵ = 0.84 mm1
c = 14.7430 (11) ÅT = 120 K
β = 93.156 (2)°Block, blue
V = 3046.6 (4) Å30.40 × 0.35 × 0.25 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
7264 independent reflections
Radiation source: sealed tube4803 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ϕ and ω scansθmax = 27.9°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1416
Tmin = 0.715, Tmax = 0.810k = 2222
35133 measured reflectionsl = 1917
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: difference Fourier map
wR(F2) = 0.161H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0709P)2 + 4.1986P]
where P = (Fo2 + 2Fc2)/3
7264 reflections(Δ/σ)max = 0.005
382 parametersΔρmax = 0.97 e Å3
44 restraintsΔρmin = 0.85 e Å3
Crystal data top
[Cu2(OH)2(C25H46N6)2](PF6)2V = 3046.6 (4) Å3
Mr = 1312.39Z = 2
Monoclinic, P21/nMo Kα radiation
a = 12.3581 (9) ŵ = 0.84 mm1
b = 16.7472 (13) ÅT = 120 K
c = 14.7430 (11) Å0.40 × 0.35 × 0.25 mm
β = 93.156 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
7264 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
4803 reflections with I > 2σ(I)
Tmin = 0.715, Tmax = 0.810Rint = 0.050
35133 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05544 restraints
wR(F2) = 0.161H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.97 e Å3
7264 reflectionsΔρmin = 0.85 e Å3
382 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.53416 (3)0.54633 (2)0.41625 (2)0.03176 (14)
P10.83493 (16)0.38477 (9)0.70159 (11)0.0877 (6)
O10.4677 (2)0.44706 (15)0.45377 (15)0.0361 (6)
N10.7136 (2)0.67510 (17)0.51160 (17)0.0319 (6)
N20.6176 (2)0.78515 (17)0.45698 (18)0.0333 (6)
N30.5816 (2)0.65741 (17)0.39426 (17)0.0313 (6)
N40.5330 (2)0.51195 (17)0.28853 (17)0.0335 (6)
N50.4762 (2)0.40347 (16)0.19772 (17)0.0304 (6)
N60.6168 (3)0.38962 (18)0.3085 (2)0.0412 (7)
F160.7644 (3)0.3787 (3)0.7871 (2)0.1211 (16)
F150.9257 (3)0.3359 (3)0.7555 (4)0.1394 (18)
F140.7404 (4)0.4324 (3)0.6507 (2)0.140 (2)
F130.7797 (5)0.3030 (3)0.6684 (4)0.1536 (19)
F120.8819 (6)0.4640 (3)0.7403 (4)0.190 (3)
F110.8954 (4)0.3845 (4)0.6141 (4)0.184 (3)
C10.7765 (3)0.6045 (2)0.4905 (2)0.0403 (8)
H1A0.77130.59480.42420.048*
H1B0.74700.55720.52100.048*
C20.8946 (3)0.6169 (3)0.5226 (3)0.0509 (10)
H2A0.93590.56730.51260.061*
H2B0.92620.66000.48650.061*
C30.9043 (4)0.6387 (3)0.6227 (3)0.0587 (12)
H3A0.88090.59280.65910.070*
H3B0.98120.65010.64070.070*
C40.8366 (3)0.7103 (3)0.6427 (3)0.0468 (10)
H4A0.86650.75810.61360.056*
H4B0.83890.71970.70910.056*
C50.7208 (3)0.6978 (2)0.6078 (2)0.0391 (8)
H5A0.68760.65540.64390.047*
H5B0.67930.74760.61580.047*
C60.7055 (3)0.8417 (2)0.4797 (2)0.0384 (8)
H6A0.77610.81400.47840.046*
H6B0.69800.86270.54190.046*
C70.7017 (3)0.9107 (2)0.4119 (3)0.0436 (9)
H7A0.75920.94980.42950.052*
H7B0.71550.89020.35070.052*
C80.5916 (4)0.9518 (3)0.4096 (3)0.0571 (11)
H8A0.58110.97720.46910.069*
H8B0.58910.99430.36270.069*
C90.5009 (3)0.8921 (3)0.3883 (3)0.0535 (11)
H9A0.50480.87300.32500.064*
H9B0.43000.91870.39370.064*
C100.5096 (3)0.8210 (3)0.4532 (3)0.0467 (10)
H10A0.49250.83880.51480.056*
H10B0.45550.78020.43310.056*
C110.6339 (3)0.7047 (2)0.4536 (2)0.0297 (7)
C120.5350 (3)0.6946 (2)0.3103 (2)0.0358 (8)
H12A0.56480.74920.30460.043*
H12B0.45550.69910.31370.043*
C130.5606 (3)0.6461 (2)0.2275 (2)0.0363 (8)
H13A0.63890.63330.23090.044*
H13B0.54530.67910.17250.044*
C140.4969 (3)0.5691 (2)0.2176 (2)0.0351 (8)
H14A0.41880.58030.22220.042*
H14B0.50710.54560.15700.042*
C150.5396 (3)0.4368 (2)0.2663 (2)0.0340 (8)
C160.3604 (3)0.4228 (2)0.1861 (2)0.0342 (7)
H16A0.34340.46670.22790.041*
H16B0.31720.37560.20220.041*
C170.3289 (3)0.4475 (2)0.0896 (2)0.0350 (7)
H17A0.36520.49830.07540.042*
H17B0.24960.45600.08270.042*
C180.3622 (3)0.3829 (2)0.0245 (2)0.0383 (8)
H18A0.34690.40110.03880.046*
H18B0.31890.33410.03390.046*
C190.4823 (3)0.3635 (2)0.0392 (2)0.0388 (8)
H19A0.50090.31900.00130.047*
H19B0.52570.41060.02310.047*
C200.5107 (3)0.3402 (2)0.1374 (2)0.0355 (8)
H20A0.47400.28960.15170.043*
H20B0.58990.33200.14640.043*
C230.7741 (4)0.2946 (3)0.4075 (4)0.0720 (15)
H23C0.80350.28400.34760.086*0.181 (6)
H23D0.81780.26560.45520.086*0.181 (6)
H23A0.75050.29810.47050.086*0.819 (6)
H23B0.83990.26090.40790.086*0.819 (6)
C2110.6996 (4)0.4282 (3)0.3667 (3)0.0369 (11)0.819 (6)
H21A0.67330.43550.42830.044*0.819 (6)
H21B0.71670.48140.34190.044*0.819 (6)
C2120.7481 (15)0.4170 (10)0.3300 (10)0.022 (4)*0.181 (6)
H21C0.79670.38900.28930.027*0.181 (6)
H21D0.75760.47530.32350.027*0.181 (6)
C2210.7999 (4)0.3765 (3)0.3712 (3)0.0455 (13)0.819 (6)
H22A0.85690.40190.41120.055*0.819 (6)
H22B0.82780.37140.30980.055*0.819 (6)
C2220.7685 (17)0.3903 (8)0.4290 (11)0.036 (5)*0.181 (6)
H22C0.70790.40430.46720.044*0.181 (6)
H22D0.83750.41120.45680.044*0.181 (6)
C2410.6831 (4)0.2559 (3)0.3429 (3)0.0476 (13)0.819 (6)
H24A0.70910.25000.28100.057*0.819 (6)
H24B0.66430.20230.36560.057*0.819 (6)
C2420.6549 (10)0.2730 (11)0.4084 (10)0.031 (4)*0.181 (6)
H24C0.61410.30680.44970.037*0.181 (6)
H24D0.64210.21570.42020.037*0.181 (6)
C2510.5841 (4)0.3098 (3)0.3407 (3)0.0374 (11)0.819 (6)
H25A0.52610.28740.29920.045*0.819 (6)
H25B0.55620.31400.40220.045*0.819 (6)
C2520.6367 (17)0.2961 (11)0.3078 (10)0.026 (4)*0.181 (6)
H25C0.57290.26790.27970.031*0.181 (6)
H25D0.70100.28280.27360.031*0.181 (6)
H10.525 (3)0.421 (3)0.454 (5)0.11 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0395 (3)0.0379 (2)0.01733 (18)0.01106 (19)0.00355 (15)0.00224 (16)
O10.0446 (15)0.0437 (14)0.0198 (10)0.0146 (13)0.0008 (10)0.0020 (10)
N10.0345 (16)0.0394 (15)0.0216 (12)0.0059 (12)0.0016 (11)0.0027 (11)
N20.0300 (15)0.0385 (16)0.0313 (14)0.0024 (12)0.0003 (12)0.0098 (12)
N30.0378 (16)0.0357 (15)0.0199 (12)0.0081 (12)0.0025 (11)0.0009 (11)
N40.0476 (18)0.0354 (15)0.0166 (12)0.0074 (13)0.0049 (11)0.0049 (11)
N50.0367 (16)0.0324 (14)0.0215 (12)0.0053 (12)0.0023 (11)0.0011 (10)
N60.053 (2)0.0355 (16)0.0334 (15)0.0051 (14)0.0150 (14)0.0075 (12)
C10.050 (2)0.0362 (19)0.0338 (18)0.0004 (16)0.0030 (16)0.0005 (15)
C20.042 (2)0.051 (2)0.059 (3)0.0060 (19)0.0070 (19)0.006 (2)
C30.053 (3)0.064 (3)0.057 (3)0.002 (2)0.023 (2)0.001 (2)
C40.049 (2)0.056 (2)0.0338 (19)0.0162 (19)0.0091 (17)0.0010 (17)
C50.046 (2)0.049 (2)0.0222 (15)0.0142 (17)0.0007 (14)0.0020 (14)
C60.041 (2)0.0376 (19)0.0354 (18)0.0058 (16)0.0032 (15)0.0070 (15)
C70.050 (2)0.0352 (19)0.045 (2)0.0018 (17)0.0077 (17)0.0062 (16)
C80.065 (3)0.040 (2)0.066 (3)0.015 (2)0.004 (2)0.012 (2)
C90.043 (2)0.053 (2)0.063 (3)0.0190 (19)0.003 (2)0.010 (2)
C100.035 (2)0.062 (3)0.043 (2)0.0040 (18)0.0073 (17)0.0157 (19)
C110.0298 (18)0.0398 (18)0.0198 (14)0.0074 (14)0.0060 (12)0.0028 (12)
C120.048 (2)0.0344 (18)0.0235 (15)0.0068 (16)0.0062 (14)0.0009 (13)
C130.054 (2)0.0329 (17)0.0210 (14)0.0058 (16)0.0038 (14)0.0034 (13)
C140.051 (2)0.0336 (17)0.0200 (14)0.0061 (15)0.0067 (14)0.0037 (12)
C150.044 (2)0.0370 (19)0.0203 (14)0.0081 (15)0.0043 (13)0.0056 (12)
C160.038 (2)0.0384 (18)0.0265 (15)0.0088 (15)0.0052 (14)0.0030 (14)
C170.0305 (18)0.0418 (19)0.0321 (16)0.0045 (15)0.0025 (14)0.0001 (14)
C180.045 (2)0.045 (2)0.0244 (15)0.0047 (16)0.0057 (14)0.0031 (14)
C190.045 (2)0.047 (2)0.0243 (16)0.0047 (17)0.0008 (14)0.0052 (14)
C200.044 (2)0.0342 (18)0.0283 (16)0.0002 (15)0.0021 (14)0.0013 (13)
C2110.038 (3)0.043 (2)0.029 (2)0.0041 (19)0.0061 (19)0.0005 (18)
C2210.038 (3)0.064 (3)0.034 (2)0.013 (2)0.0055 (19)0.000 (2)
C230.057 (3)0.066 (3)0.092 (4)0.022 (2)0.010 (3)0.027 (3)
C2410.060 (3)0.041 (3)0.042 (3)0.018 (2)0.007 (2)0.008 (2)
C2510.047 (3)0.036 (2)0.029 (2)0.006 (2)0.003 (2)0.0063 (17)
P10.1251 (14)0.0593 (8)0.0842 (10)0.0352 (9)0.0554 (10)0.0207 (7)
F160.131 (3)0.162 (4)0.074 (2)0.077 (3)0.036 (2)0.045 (2)
F150.113 (3)0.126 (3)0.185 (5)0.064 (3)0.054 (3)0.046 (3)
F140.220 (5)0.134 (3)0.069 (2)0.093 (4)0.029 (3)0.035 (2)
F130.194 (5)0.099 (3)0.172 (5)0.001 (3)0.047 (4)0.002 (3)
F120.291 (8)0.082 (3)0.188 (6)0.030 (4)0.065 (5)0.022 (3)
F110.162 (5)0.271 (7)0.129 (4)0.020 (5)0.095 (4)0.031 (4)
Geometric parameters (Å, º) top
Cu1—O1i1.921 (2)C12—H12B0.9900
Cu1—O11.948 (2)C13—C141.514 (5)
Cu1—N41.968 (3)C13—H13A0.9900
Cu1—N31.982 (3)C13—H13B0.9900
O1—Cu1i1.921 (2)C14—H14A0.9900
O1—H10.83 (4)C14—H14B0.9900
N1—C111.362 (4)C16—C171.512 (5)
N1—C11.458 (5)C16—H16A0.9900
N1—C51.466 (4)C16—H16B0.9900
N2—C111.364 (4)C17—C181.518 (5)
N2—C101.462 (5)C17—H17A0.9900
N2—C61.465 (4)C17—H17B0.9900
N3—C111.322 (4)C18—C191.524 (5)
N3—C121.474 (4)C18—H18A0.9900
N4—C151.304 (4)C18—H18B0.9900
N4—C141.468 (4)C19—C201.522 (5)
N5—C151.364 (4)C19—H19A0.9900
N5—C201.462 (4)C19—H19B0.9900
N5—C161.468 (5)C20—H20A0.9900
N6—C151.363 (4)C20—H20B0.9900
N6—C2111.450 (5)C211—C2211.510 (6)
N6—C2511.483 (5)C211—H21A0.9900
N6—C2521.586 (18)C211—H21B0.9900
N6—C2121.699 (18)C221—C231.513 (6)
C1—C21.523 (5)C221—H22A0.9900
C1—H1A0.9900C221—H22B0.9900
C1—H1B0.9900C23—C2421.517 (12)
C2—C31.519 (6)C23—C2411.572 (7)
C2—H2A0.9900C23—C2221.636 (13)
C2—H2B0.9900C23—H23C0.9900
C3—C41.502 (6)C23—H23D0.9900
C3—H3A0.9900C23—H23A0.9900
C3—H3B0.9900C23—H23B0.9899
C4—C51.508 (5)C241—C2511.519 (6)
C4—H4A0.9900C241—H24A0.9900
C4—H4B0.9900C241—H24B0.9900
C5—H5A0.9900C251—H25A0.9900
C5—H5B0.9900C251—H25B0.9900
C6—C71.527 (5)C212—C2221.535 (14)
C6—H6A0.9900C212—H21C0.9900
C6—H6B0.9900C212—H21D0.9900
C7—C81.525 (6)C222—H22C0.9900
C7—H7A0.9900C222—H22D0.9900
C7—H7B0.9900C242—C2521.537 (14)
C8—C91.521 (6)C242—H24C0.9900
C8—H8A0.9900C242—H24D0.9900
C8—H8B0.9900C252—H25C0.9900
C9—C101.528 (6)C252—H25D0.9900
C9—H9A0.9900P1—F111.526 (4)
C9—H9B0.9900P1—F121.544 (5)
C10—H10A0.9900P1—F151.569 (4)
C10—H10B0.9900P1—F141.570 (4)
C12—C131.514 (5)P1—F161.575 (4)
C12—H12A0.9900P1—F131.595 (5)
O1i—Cu1—O174.78 (11)N5—C16—H16B109.3
O1i—Cu1—N4166.25 (11)C17—C16—H16B109.3
O1—Cu1—N492.34 (11)H16A—C16—H16B107.9
O1i—Cu1—N397.40 (10)C16—C17—C18109.6 (3)
O1—Cu1—N3168.62 (12)C16—C17—H17A109.8
N4—Cu1—N396.02 (11)C18—C17—H17A109.8
Cu1i—O1—Cu1105.22 (11)C16—C17—H17B109.8
Cu1i—O1—H195 (5)C18—C17—H17B109.8
Cu1—O1—H194 (5)H17A—C17—H17B108.2
C11—N1—C1122.5 (3)C17—C18—C19110.9 (3)
C11—N1—C5121.1 (3)C17—C18—H18A109.5
C1—N1—C5114.3 (3)C19—C18—H18A109.5
C11—N2—C10122.7 (3)C17—C18—H18B109.5
C11—N2—C6122.5 (3)C19—C18—H18B109.5
C10—N2—C6114.0 (3)H18A—C18—H18B108.0
C11—N3—C12117.1 (3)C20—C19—C18111.2 (3)
C11—N3—Cu1126.3 (2)C20—C19—H19A109.4
C12—N3—Cu1115.4 (2)C18—C19—H19A109.4
C15—N4—C14118.1 (3)C20—C19—H19B109.4
C15—N4—Cu1121.7 (2)C18—C19—H19B109.4
C14—N4—Cu1118.5 (2)H19A—C19—H19B108.0
C15—N5—C20124.9 (3)N5—C20—C19109.5 (3)
C15—N5—C16120.9 (3)N5—C20—H20A109.8
C20—N5—C16113.8 (3)C19—C20—H20A109.8
C15—N6—C211117.8 (3)N5—C20—H20B109.8
C15—N6—C251118.2 (3)C19—C20—H20B109.8
C211—N6—C251114.1 (3)H20A—C20—H20B108.2
C15—N6—C252132.4 (7)N6—C211—C221108.8 (4)
C211—N6—C252109.9 (7)N6—C211—H21A109.9
C15—N6—C212124.5 (6)C221—C211—H21A109.9
C251—N6—C212117.3 (6)N6—C211—H21B109.9
C252—N6—C21297.0 (10)C221—C211—H21B109.9
N1—C1—C2109.7 (3)H21A—C211—H21B108.3
N1—C1—H1A109.7C211—C221—C23110.3 (4)
C2—C1—H1A109.7C211—C221—H22A109.6
N1—C1—H1B109.7C23—C221—H22A109.6
C2—C1—H1B109.7C211—C221—H22B109.6
H1A—C1—H1B108.2C23—C221—H22B109.6
C3—C2—C1111.0 (4)H22A—C221—H22B108.1
C3—C2—H2A109.4C221—C23—C242116.3 (7)
C1—C2—H2A109.4C221—C23—C241108.5 (4)
C3—C2—H2B109.4C242—C23—C222100.4 (11)
C1—C2—H2B109.4C241—C23—C222119.0 (7)
H2A—C2—H2B108.0C221—C23—H23C75.6
C4—C3—C2111.6 (3)C242—C23—H23C111.7
C4—C3—H3A109.3C241—C23—H23C70.8
C2—C3—H3A109.3C222—C23—H23C111.7
C4—C3—H3B109.3C221—C23—H23D125.3
C2—C3—H3B109.3C242—C23—H23D111.7
H3A—C3—H3B108.0C241—C23—H23D124.9
C3—C4—C5110.5 (3)C222—C23—H23D111.7
C3—C4—H4A109.5H23C—C23—H23D109.5
C5—C4—H4A109.5C221—C23—H23A110.9
C3—C4—H4B109.5C242—C23—H23A70.8
C5—C4—H4B109.5C241—C23—H23A110.8
H4A—C4—H4B108.1C222—C23—H23A75.1
N1—C5—C4111.8 (3)H23C—C23—H23A171.6
N1—C5—H5A109.2H23D—C23—H23A62.6
C4—C5—H5A109.2C221—C23—H23B109.2
N1—C5—H5B109.2C242—C23—H23B131.5
C4—C5—H5B109.2C241—C23—H23B109.2
H5A—C5—H5B107.9C222—C23—H23B126.9
N2—C6—C7110.1 (3)H23C—C23—H23B63.9
N2—C6—H6A109.6H23D—C23—H23B45.6
C7—C6—H6A109.6H23A—C23—H23B108.3
N2—C6—H6B109.6C251—C241—C23108.5 (4)
C7—C6—H6B109.6C251—C241—H24A110.0
H6A—C6—H6B108.2C23—C241—H24A110.0
C8—C7—C6110.6 (4)C251—C241—H24B110.0
C8—C7—H7A109.5C23—C241—H24B110.0
C6—C7—H7A109.5H24A—C241—H24B108.4
C8—C7—H7B109.5N6—C251—C241108.0 (4)
C6—C7—H7B109.5N6—C251—H25A110.1
H7A—C7—H7B108.1C241—C251—H25A110.1
C9—C8—C7110.7 (3)N6—C251—H25B110.1
C9—C8—H8A109.5C241—C251—H25B110.1
C7—C8—H8A109.5H25A—C251—H25B108.4
C9—C8—H8B109.5C222—C212—N6101.8 (12)
C7—C8—H8B109.5C222—C212—H21C111.4
H8A—C8—H8B108.1N6—C212—H21C111.4
C8—C9—C10111.0 (4)C222—C212—H21D111.4
C8—C9—H9A109.4N6—C212—H21D111.4
C10—C9—H9A109.4H21C—C212—H21D109.3
C8—C9—H9B109.4C212—C222—C2396.2 (10)
C10—C9—H9B109.4C212—C222—H22C112.5
H9A—C9—H9B108.0C23—C222—H22C112.5
N2—C10—C9112.1 (3)C212—C222—H22D112.5
N2—C10—H10A109.2C23—C222—H22D112.5
C9—C10—H10A109.2H22C—C222—H22D110.0
N2—C10—H10B109.2C23—C242—C25291.4 (11)
C9—C10—H10B109.2C252—C242—H23A125.6
H10A—C10—H10B107.9C23—C242—H24C113.4
N3—C11—N1120.6 (3)C252—C242—H24C113.4
N3—C11—N2123.3 (3)H23A—C242—H24C82.9
N1—C11—N2116.1 (3)C23—C242—H24D113.4
N3—C12—C13111.2 (3)C252—C242—H24D113.4
N3—C12—H12A109.4H23A—C242—H24D106.8
C13—C12—H12A109.4H24C—C242—H24D110.7
N3—C12—H12B109.4C242—C252—N6104.8 (12)
C13—C12—H12B109.4C242—C252—H25C110.8
H12A—C12—H12B108.0N6—C252—H25C110.8
C12—C13—C14113.9 (3)C242—C252—H25D110.8
C12—C13—H13A108.8N6—C252—H25D110.8
C14—C13—H13A108.8H25C—C252—H25D108.9
C12—C13—H13B108.8F11—P1—F1297.1 (4)
C14—C13—H13B108.8F11—P1—F1593.3 (3)
H13A—C13—H13B107.7F12—P1—F1591.0 (3)
N4—C14—C13110.5 (3)F11—P1—F1489.0 (3)
N4—C14—H14A109.5F12—P1—F1489.7 (3)
C13—C14—H14A109.5F15—P1—F14177.5 (3)
N4—C14—H14B109.5F11—P1—F16174.1 (4)
C13—C14—H14B109.5F12—P1—F1688.5 (4)
H14A—C14—H14B108.1F15—P1—F1688.4 (2)
N4—C15—N6119.8 (3)F14—P1—F1689.2 (2)
N4—C15—N5122.7 (3)F11—P1—F1387.6 (3)
N6—C15—N5117.4 (3)F12—P1—F13175.2 (4)
N5—C16—C17111.7 (3)F15—P1—F1389.4 (3)
N5—C16—H16A109.3F14—P1—F1389.7 (3)
C17—C16—H16A109.3F16—P1—F1386.8 (3)
O1i—Cu1—O1—Cu1i0.0C211—N6—C15—N49.5 (5)
N4—Cu1—O1—Cu1i175.09 (14)C251—N6—C15—N4134.2 (4)
N3—Cu1—O1—Cu1i47.6 (6)C252—N6—C15—N4170.4 (10)
O1i—Cu1—N3—C1122.5 (3)C212—N6—C15—N443.9 (9)
O1—Cu1—N3—C1168.4 (7)C211—N6—C15—N5166.5 (3)
N4—Cu1—N3—C11154.5 (3)C251—N6—C15—N549.8 (5)
O1i—Cu1—N3—C12144.9 (2)C252—N6—C15—N513.6 (11)
O1—Cu1—N3—C1298.9 (6)C212—N6—C15—N5132.2 (8)
N4—Cu1—N3—C1238.2 (3)C20—N5—C15—N4145.3 (3)
O1i—Cu1—N4—C159.1 (7)C16—N5—C15—N442.3 (5)
O1—Cu1—N4—C1529.4 (3)C20—N5—C15—N630.6 (5)
N3—Cu1—N4—C15158.3 (3)C16—N5—C15—N6141.8 (3)
O1i—Cu1—N4—C14155.5 (4)C15—N5—C16—C17129.2 (3)
O1—Cu1—N4—C14135.1 (3)C20—N5—C16—C1757.7 (4)
N3—Cu1—N4—C1437.1 (3)N5—C16—C17—C1855.0 (4)
C11—N1—C1—C2140.4 (3)C16—C17—C18—C1954.6 (4)
C5—N1—C1—C256.0 (4)C17—C18—C19—C2055.6 (4)
N1—C1—C2—C354.7 (4)C15—N5—C20—C19130.6 (3)
C1—C2—C3—C455.0 (5)C16—N5—C20—C1956.6 (4)
C2—C3—C4—C553.5 (5)C18—C19—C20—N555.0 (4)
C11—N1—C5—C4140.2 (3)C15—N6—C211—C221154.3 (4)
C1—N1—C5—C455.9 (4)C251—N6—C211—C22160.6 (5)
C3—C4—C5—N153.0 (4)C252—N6—C211—C22125.8 (9)
C11—N2—C6—C7132.8 (3)C212—N6—C211—C22142.7 (11)
C10—N2—C6—C756.7 (4)N6—C211—C221—C2358.7 (5)
N2—C6—C7—C856.6 (4)C211—C221—C23—C24215.3 (9)
C6—C7—C8—C955.8 (5)C211—C221—C23—C24159.0 (5)
C7—C8—C9—C1053.0 (5)C211—C221—C23—C22255.1 (12)
C11—N2—C10—C9134.8 (3)C221—C23—C241—C25159.2 (5)
C6—N2—C10—C954.8 (4)C242—C23—C241—C25149.9 (10)
C8—C9—C10—N251.9 (4)C222—C23—C241—C25121.3 (9)
C12—N3—C11—N1153.3 (3)C15—N6—C251—C241153.6 (4)
Cu1—N3—C11—N139.5 (4)C211—N6—C251—C24161.4 (5)
C12—N3—C11—N222.3 (5)C252—N6—C251—C24128.0 (11)
Cu1—N3—C11—N2144.8 (3)C212—N6—C251—C24128.2 (8)
C1—N1—C11—N326.2 (5)C23—C241—C251—N658.3 (5)
C5—N1—C11—N3136.4 (3)C15—N6—C212—C222134.2 (8)
C1—N1—C11—N2149.8 (3)C211—N6—C212—C22247.6 (9)
C5—N1—C11—N247.7 (4)C251—N6—C212—C22243.9 (13)
C10—N2—C11—N346.0 (5)C252—N6—C212—C22270.6 (12)
C6—N2—C11—N3144.3 (3)N6—C212—C222—C2373.8 (12)
C10—N2—C11—N1138.2 (3)C221—C23—C222—C21233.8 (8)
C6—N2—C11—N131.5 (4)C242—C23—C222—C21287.0 (13)
C11—N3—C12—C13133.8 (3)C241—C23—C222—C21247.9 (14)
Cu1—N3—C12—C1357.7 (3)C221—C23—C242—C25251.6 (13)
N3—C12—C13—C1473.0 (4)C241—C23—C242—C25236.7 (8)
C15—N4—C14—C13141.0 (3)C222—C23—C242—C25286.0 (12)
Cu1—N4—C14—C1353.9 (4)C23—C242—C252—N684.6 (13)
C12—C13—C14—N469.6 (4)C15—N6—C252—C242131.8 (8)
C14—N4—C15—N6147.6 (3)C211—N6—C252—C24248.1 (13)
Cu1—N4—C15—N647.8 (4)C251—N6—C252—C24255.8 (10)
C14—N4—C15—N528.2 (5)C212—N6—C252—C24276.1 (13)
Cu1—N4—C15—N5136.4 (3)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(OH)2(C25H46N6)2](PF6)2
Mr1312.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)12.3581 (9), 16.7472 (13), 14.7430 (11)
β (°) 93.156 (2)
V3)3046.6 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.84
Crystal size (mm)0.40 × 0.35 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.715, 0.810
No. of measured, independent and
observed [I > 2σ(I)] reflections
35133, 7264, 4803
Rint0.050
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.161, 1.03
No. of reflections7264
No. of parameters382
No. of restraints44
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.97, 0.85

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SAINT, SHELXTL (Bruker, 2002), SHELXTL.

Selected geometric parameters (Å, º) top
Cu1—O1i1.921 (2)N2—C111.364 (4)
Cu1—O11.948 (2)N3—C111.322 (4)
Cu1—N41.968 (3)N4—C151.304 (4)
Cu1—N31.982 (3)N5—C151.364 (4)
N1—C111.362 (4)N6—C151.363 (4)
O1i—Cu1—O174.78 (11)O1—Cu1—N3168.62 (12)
O1i—Cu1—N4166.25 (11)N4—Cu1—N396.02 (11)
O1—Cu1—N492.34 (11)Cu1i—O1—Cu1105.22 (11)
O1i—Cu1—N397.40 (10)
Symmetry code: (i) x+1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds