Download citation
Download citation
link to html
The structures of two diastereoisomers of 9-chloro-8-fluoro-4-phenyl-2,3,3a,4,5,9b-hexa­hydro­furo­[3,2-c]­quinoline, C17H15ClFNO, are very similar. The orientation of the furan ring, as a result of its fusion to the quinoline nucleus, constitutes the significant difference between the two structures. The dihedral angles between the furan and phenyl rings are 73.4 (1) and 63.8 (1)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104023789/sk1768sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104023789/sk1768Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104023789/sk1768IIsup3.hkl
Contains datablock II

CCDC references: 259045; 259046

Comment top

Pyrano- and furoquinoline moieties have been extensively studied for a range of biological applications such as psychotropic (Nesterova et al., 1995), anti-allergic (Yamada et al., 1992) and anti-inflammatory (Faber et al., 1984) applications. Hence, efforts have been directed to the synthesis of these compounds. We have recently synthesized and purified four diastereoisomers of disubstituted pyrano- and furoquinolines by the application of the imino Diels-Alder reaction using ZrCl4 as a new catalyst (Mahesh et al., 2004). These diastereoisomers differ according to the stereochemistry (cis/trans) of the ring-junction H atoms and the orientation (endo/exo) of the furan ring. The contrasting responses of the different isomers to bactericidal and bacteriolytic activity prompted us to carry out crystal structure determinations, with a view to understanding the structure-activity relationships. We present here the structures of the two title diastereoisomers, (I) (Fig. 1) and (II) (Fig. 2). \sch

In all essential details, the two structures are similar as far as bond distances and angles are concerned (Tables 1 and 3). The greatest differences are 0.018 Å in the bond distances (for C2—C1) and 3.3° in the angles (for O1—C5—C6). Atoms H7 and H8 have a trans arrangement in (I); the H7—C7—C8—H8 torsion angle of −176.9° is in accordance with a larger coupling constant J = 10.8 Hz. In contrast, the other stereoisomer, (II), with a corresponding torsion angle of 55.3°, shows a coupling constant J = 5.2 Hz and is in a cis configuration.

The chloro- and fluoro-substituted phenyl ring of the quinoline ring system is planar, with deviations of 0.047 (1) and −0.018 (1) Å for (I) and (II), respectively. The non-planar pyridine ring adopts a sofa conformation in both structures, with asymmetry parameters (Nardelli, 1983) of ΔCS(C3) = 0.053 (1) and ΔC2(C3—C9) = 0.069 (1) in (I), and ΔCS(C3) = 0.057 (1) and ΔC2(C4—C3) = 0.088 (1) in (II).

The most significant distinctive pattern in both structures is the perpendicular orientation of the furan ring (Fig. 3). This is oriented above the least-squares plane (N1/C9/C3/C4/C7) of the quinoline ring system in (I), with atom O1 displaced by 1.325 (2) Å, and below in (II), with atom O1 displaced by −1.394 (2) Å. The C6—C7—C8—C12 torsion angle, between the furan and phenyl rings, shows the role of ring fusion, with values of −68.8 (2)° in (I) and 58.1 (2)° in (II).

The furan ring adopts a distorted envelope conformation in (I) [q2 = 0.341 (2) Å and ϕ = 171.9 (5)°] and twist conformation in (II) [q2 = 0.345 (2) Å and ϕ = 92.3 (2)°] (Cremer & Pople, 1975).

The phenyl substituent at C8 rotated through the C8—C12 bond by −134.6 (2)° in (I) and 32.8 (2)° in (II), perhaps to facilitate the cis/trans orientation for the H atoms at C8. A non-bonded interaction between atoms H17 and H8 of 2.36 Å is observed in (II), while this distance is 3.58 Å in (I).

The crystal structure is stabilized by a C—H···F intermolecular interaction in (I) (Table 2), whereas no such interaction is observed in (II). Furthermore, symmetry-related molecules are interlinked by weak C—H···π interactions in both compounds. In (I), atom H11 is 2.87 Å from the centroid of the phenyl substituent (C12—C17) at symmetry position (1/2 + x, 1/2 + y, z), with an angle of 159° and a C11···centroid distance of 3.752 (3) Å. Similarly in (II), atom H11 is 2.86 Å from the centroid of the phenyl substituent at symmetry position (2 − x, 1 − y, 1 − z), with an angle of 133° and a C11···.centroid distance of 3.561 (2) Å.

Experimental top

To a solution of 3-chloro-4-fluoro-N-benzylideneaniline (5.5 mmol) in dichloromethane (5 ml) at room temperature were added 2,3-dihydrofuran (5.5 mmol) and ZrCl4 (10 mol%), and the resulting solution was stirred for 90 min. The reaction was quenched with water and the crude product was purified by column chromatography, using 2% ethyl acetate and hexane, to yield the title compounds. Crystals for X-ray study were obtained by recystallization from methanol–water (3:1) solutions.

Refinement top

All H atoms were positioned geometrically and treated as riding on their parent atoms, with aromatic C—H = 0.93 Å, methylene C—H = 0.98 Å, ethylene C—H = 0.97 Å and N—H = 0.90 Å, and with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C,N) for other H.

Computing details top

For both compounds, data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the molecule of (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. The orientational difference in the furan ring between the structures of (I) and (II), visualized through the least-squares plane fitting atoms N1/C9/C3/C4/C7.
(I) 9-Chloro-8-fluoro-4-phenyl-2,3,3a,4,5,9 b-hexahydrofuro[3,2-c]quinoline top
Crystal data top
C17H15ClFNOF(000) = 1264
Mr = 303.75Dx = 1.424 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 448 reflections
a = 17.0056 (17) Åθ = 2.2–27.5°
b = 10.7527 (11) ŵ = 0.28 mm1
c = 15.7079 (16) ÅT = 293 K
β = 99.367 (2)°Needle, yellow
V = 2834.0 (5) Å30.20 × 0.15 × 0.11 mm
Z = 8
Data collection top
CCD area-etector
diffractometer
2244 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 28.0°, θmin = 2.3°
ω scansh = 2221
8450 measured reflectionsk = 1413
3079 independent reflectionsl = 1820
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0731P)2 + 1.4718P]
where P = (Fo2 + 2Fc2)/3
3079 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C17H15ClFNOV = 2834.0 (5) Å3
Mr = 303.75Z = 8
Monoclinic, C2/cMo Kα radiation
a = 17.0056 (17) ŵ = 0.28 mm1
b = 10.7527 (11) ÅT = 293 K
c = 15.7079 (16) Å0.20 × 0.15 × 0.11 mm
β = 99.367 (2)°
Data collection top
CCD area-etector
diffractometer
2244 reflections with I > 2σ(I)
8450 measured reflectionsRint = 0.025
3079 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.03Δρmax = 0.30 e Å3
3079 reflectionsΔρmin = 0.19 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.13249 (4)0.74432 (7)0.00429 (5)0.0727 (3)
F11.20787 (8)0.97953 (17)0.04091 (10)0.0831 (5)
O11.01402 (8)0.62954 (14)0.11530 (11)0.0568 (4)
N10.91876 (10)0.93423 (16)0.15223 (12)0.0496 (5)
H10.92050.97880.20100.059*
C11.13700 (13)0.9681 (3)0.06821 (16)0.0576 (6)
C21.09425 (12)0.8610 (2)0.05275 (14)0.0489 (5)
C31.02190 (11)0.84542 (19)0.08229 (13)0.0414 (5)
C40.97463 (11)0.72846 (19)0.06420 (15)0.0433 (5)
H40.97110.70740.00300.052*
C50.95679 (16)0.5377 (3)0.1223 (3)0.0977 (12)
H5A0.96480.50460.18060.117*
H5B0.96210.46990.08290.117*
C60.87559 (13)0.5936 (2)0.10118 (17)0.0556 (6)
H6A0.84590.58190.14830.067*
H6B0.84600.55650.04940.067*
C70.89060 (11)0.73187 (18)0.08725 (14)0.0424 (5)
H70.85230.76460.03910.051*
C80.88984 (11)0.80933 (19)0.16835 (14)0.0428 (5)
H80.92650.77160.21600.051*
C90.99256 (12)0.94399 (19)0.12591 (13)0.0440 (5)
C101.03724 (15)1.0536 (2)0.13955 (15)0.0547 (6)
H101.01771.11990.16790.066*
C111.10942 (15)1.0646 (2)0.11180 (16)0.0622 (7)
H111.13931.13700.12250.075*
C120.80798 (12)0.8189 (2)0.19416 (14)0.0460 (5)
C130.79063 (15)0.7511 (2)0.26345 (16)0.0559 (6)
H130.82930.69980.29410.067*
C140.71607 (17)0.7591 (3)0.28757 (19)0.0721 (8)
H140.70470.71260.33400.086*
C150.65904 (16)0.8351 (3)0.2435 (2)0.0752 (9)
H150.60910.84050.26010.090*
C160.67533 (15)0.9035 (3)0.1747 (2)0.0745 (8)
H160.63650.95520.14480.089*
C170.74990 (14)0.8954 (2)0.14955 (18)0.0597 (6)
H170.76080.94150.10270.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0521 (4)0.0957 (5)0.0778 (5)0.0148 (3)0.0328 (3)0.0158 (4)
F10.0508 (8)0.1176 (13)0.0827 (12)0.0397 (8)0.0167 (8)0.0114 (9)
O10.0371 (8)0.0502 (9)0.0842 (12)0.0054 (6)0.0132 (8)0.0054 (8)
N10.0508 (10)0.0478 (10)0.0516 (12)0.0075 (8)0.0131 (9)0.0095 (8)
C10.0446 (12)0.0776 (16)0.0498 (15)0.0237 (11)0.0049 (11)0.0118 (12)
C20.0404 (11)0.0659 (14)0.0402 (13)0.0110 (10)0.0056 (9)0.0038 (10)
C30.0362 (10)0.0511 (11)0.0362 (12)0.0102 (8)0.0041 (9)0.0019 (9)
C40.0362 (10)0.0506 (11)0.0442 (13)0.0093 (8)0.0095 (9)0.0053 (9)
C50.0497 (15)0.0603 (16)0.184 (4)0.0088 (12)0.0204 (19)0.028 (2)
C60.0438 (11)0.0533 (13)0.0733 (17)0.0151 (10)0.0202 (11)0.0111 (11)
C70.0329 (9)0.0507 (11)0.0437 (13)0.0070 (8)0.0070 (9)0.0047 (9)
C80.0349 (10)0.0494 (11)0.0445 (13)0.0040 (8)0.0080 (9)0.0012 (9)
C90.0438 (11)0.0478 (11)0.0390 (12)0.0091 (9)0.0026 (9)0.0037 (9)
C100.0667 (14)0.0496 (12)0.0458 (14)0.0152 (11)0.0035 (11)0.0007 (10)
C110.0652 (15)0.0649 (16)0.0515 (15)0.0344 (12)0.0051 (12)0.0119 (12)
C120.0408 (10)0.0520 (12)0.0473 (13)0.0033 (9)0.0132 (10)0.0096 (10)
C130.0562 (13)0.0676 (15)0.0472 (14)0.0054 (11)0.0183 (11)0.0061 (11)
C140.0743 (17)0.0850 (19)0.0668 (18)0.0158 (15)0.0412 (15)0.0200 (14)
C150.0565 (15)0.0787 (18)0.101 (2)0.0076 (14)0.0440 (16)0.0371 (17)
C160.0496 (14)0.0671 (16)0.109 (2)0.0099 (12)0.0182 (15)0.0180 (16)
C170.0487 (12)0.0623 (14)0.0703 (17)0.0050 (11)0.0161 (12)0.0001 (12)
Geometric parameters (Å, º) top
Cl1—C21.729 (2)C7—C81.524 (3)
F1—C11.349 (2)C7—H70.9800
O1—C51.404 (3)C8—C121.516 (3)
O1—C41.432 (3)C8—H80.9800
N1—C91.388 (3)C9—C101.399 (3)
N1—C81.466 (3)C10—C111.373 (3)
N1—H10.9000C10—H100.9300
C1—C21.363 (3)C11—H110.9300
C1—C111.367 (4)C12—C131.381 (3)
C2—C31.394 (3)C12—C171.385 (3)
C3—C91.398 (3)C13—C141.384 (3)
C3—C41.495 (3)C13—H130.9300
C4—C71.531 (3)C14—C151.367 (4)
C4—H40.9800C14—H140.9300
C5—C61.493 (4)C15—C161.372 (4)
C5—H5A0.9700C15—H150.9300
C5—H5B0.9700C16—C171.391 (3)
C6—C71.530 (3)C16—H160.9300
C6—H6A0.9700C17—H170.9300
C6—H6B0.9700
C5—O1—C4107.45 (18)C6—C7—H7110.8
C9—N1—C8117.75 (17)C4—C7—H7110.8
C9—N1—H1107.9N1—C8—C12109.43 (16)
C8—N1—H1107.9N1—C8—C7107.91 (17)
F1—C1—C2119.9 (2)C12—C8—C7113.19 (16)
F1—C1—C11119.1 (2)N1—C8—H8108.7
C2—C1—C11121.0 (2)C12—C8—H8108.7
C1—C2—C3121.1 (2)C7—C8—H8108.7
C1—C2—Cl1118.10 (17)N1—C9—C3120.07 (17)
C3—C2—Cl1120.83 (17)N1—C9—C10120.9 (2)
C2—C3—C9118.51 (18)C3—C9—C10119.03 (19)
C2—C3—C4120.93 (19)C11—C10—C9121.0 (2)
C9—C3—C4120.49 (17)C11—C10—H10119.5
O1—C4—C3109.30 (16)C9—C10—H10119.5
O1—C4—C7104.77 (16)C1—C11—C10119.4 (2)
C3—C4—C7115.39 (17)C1—C11—H11120.3
O1—C4—H4109.1C10—C11—H11120.3
C3—C4—H4109.1C13—C12—C17119.1 (2)
C7—C4—H4109.1C13—C12—C8119.9 (2)
O1—C5—C6109.1 (2)C17—C12—C8121.0 (2)
O1—C5—H5A109.9C12—C13—C14120.4 (3)
C6—C5—H5A109.9C12—C13—H13119.8
O1—C5—H5B109.9C14—C13—H13119.8
C6—C5—H5B109.9C15—C14—C13120.3 (3)
H5A—C5—H5B108.3C15—C14—H14119.9
C5—C6—C7104.69 (17)C13—C14—H14119.9
C5—C6—H6A110.8C14—C15—C16120.1 (2)
C7—C6—H6A110.8C14—C15—H15119.9
C5—C6—H6B110.8C16—C15—H15119.9
C7—C6—H6B110.8C15—C16—C17120.0 (3)
H6A—C6—H6B108.9C15—C16—H16120.0
C8—C7—C6112.78 (19)C17—C16—H16120.0
C8—C7—C4110.25 (16)C12—C17—C16120.1 (2)
C6—C7—C4101.21 (16)C12—C17—H17119.9
C8—C7—H7110.8C16—C17—H17119.9
F1—C1—C2—C3178.2 (2)C6—C7—C8—C1268.8 (2)
C11—C1—C2—C31.3 (4)C4—C7—C8—C12178.91 (17)
F1—C1—C2—Cl11.5 (3)C8—N1—C9—C326.3 (3)
C11—C1—C2—Cl1178.99 (19)C8—N1—C9—C10156.1 (2)
C1—C2—C3—C92.1 (3)C2—C3—C9—N1176.61 (19)
Cl1—C2—C3—C9178.17 (16)C4—C3—C9—N10.5 (3)
C1—C2—C3—C4179.2 (2)C2—C3—C9—C101.0 (3)
Cl1—C2—C3—C41.1 (3)C4—C3—C9—C10178.1 (2)
C5—O1—C4—C3158.3 (2)N1—C9—C10—C11178.5 (2)
C5—O1—C4—C734.1 (3)C3—C9—C10—C110.8 (3)
C2—C3—C4—O171.9 (2)F1—C1—C11—C10179.9 (2)
C9—C3—C4—O1111.1 (2)C2—C1—C11—C100.7 (4)
C2—C3—C4—C7170.42 (19)C9—C10—C11—C11.7 (4)
C9—C3—C4—C76.6 (3)N1—C8—C12—C13134.6 (2)
C4—O1—C5—C618.8 (3)C7—C8—C12—C13105.0 (2)
O1—C5—C6—C74.1 (4)N1—C8—C12—C1745.0 (3)
C5—C6—C7—C894.4 (3)C7—C8—C12—C1775.4 (3)
C5—C6—C7—C423.3 (3)C17—C12—C13—C140.4 (3)
O1—C4—C7—C884.7 (2)C8—C12—C13—C14180.0 (2)
C3—C4—C7—C835.5 (3)C12—C13—C14—C150.6 (4)
O1—C4—C7—C634.9 (2)C13—C14—C15—C160.3 (4)
C3—C4—C7—C6155.13 (19)C14—C15—C16—C170.1 (4)
C9—N1—C8—C12178.64 (18)C13—C12—C17—C160.1 (3)
C9—N1—C8—C755.1 (2)C8—C12—C17—C16179.6 (2)
C6—C7—C8—N1169.97 (17)C15—C16—C17—C120.3 (4)
C4—C7—C8—N157.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···F1i0.972.473.108 (2)123
C17—H17···F1ii0.932.553.460 (3)167
Symmetry codes: (i) x1/2, y1/2, z; (ii) x+2, y+2, z.
(II) 9-Chloro-8-fluoro-4-phenyl-2,3,3a,4,5,9 b-hexahydrofuro[3,2-c]quinoline top
Crystal data top
C17H15ClFNOF(000) = 632
Mr = 303.75Dx = 1.427 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6613 reflections
a = 8.1796 (6) Åθ = 2.3–27.8°
b = 17.9041 (12) ŵ = 0.28 mm1
c = 9.6562 (7) ÅT = 293 K
β = 91.017 (1)°Needle, colourless
V = 1413.91 (17) Å30.18 × 0.15 × 0.13 mm
Z = 4
Data collection top
CCD area-detector
diffractometer
2940 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 28.0°, θmin = 2.3°
ω scansh = 1010
16081 measured reflectionsk = 2323
3334 independent reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0746P)2 + 0.326P]
where P = (Fo2 + 2Fc2)/3
3334 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C17H15ClFNOV = 1413.91 (17) Å3
Mr = 303.75Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1796 (6) ŵ = 0.28 mm1
b = 17.9041 (12) ÅT = 293 K
c = 9.6562 (7) Å0.18 × 0.15 × 0.13 mm
β = 91.017 (1)°
Data collection top
CCD area-detector
diffractometer
2940 reflections with I > 2σ(I)
16081 measured reflectionsRint = 0.020
3334 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.08Δρmax = 0.34 e Å3
3334 reflectionsΔρmin = 0.19 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.28950 (5)0.39744 (3)0.62978 (5)0.05489 (17)
F10.43418 (15)0.48664 (7)0.84949 (12)0.0697 (3)
O10.5172 (2)0.27339 (8)0.49004 (15)0.0712 (5)
N10.88428 (17)0.39391 (8)0.46759 (15)0.0463 (3)
H10.96950.42570.46990.056*
C10.5449 (2)0.46426 (9)0.75549 (17)0.0482 (4)
C20.4946 (2)0.42132 (8)0.64381 (16)0.0413 (3)
C30.60589 (19)0.39669 (8)0.54643 (15)0.0381 (3)
C40.55288 (19)0.34529 (9)0.43037 (16)0.0438 (4)
H40.45400.36530.38510.053*
C50.5883 (3)0.21687 (11)0.4092 (2)0.0631 (5)
H5A0.51340.20110.33590.076*
H5B0.61620.17390.46600.076*
C60.7387 (2)0.25067 (10)0.3499 (2)0.0604 (5)
H6A0.76990.22530.26560.072*
H6B0.82940.24930.41580.072*
C70.68430 (19)0.33091 (9)0.32040 (16)0.0428 (3)
H70.63150.33250.22850.051*
C80.82138 (19)0.38918 (8)0.32491 (16)0.0401 (3)
H80.77400.43770.29990.048*
C90.77051 (19)0.41740 (8)0.56399 (16)0.0402 (3)
C100.8184 (2)0.46077 (9)0.67783 (17)0.0491 (4)
H100.92770.47410.68930.059*
C110.7064 (2)0.48409 (10)0.77341 (18)0.0531 (4)
H110.73950.51290.84900.064*
C120.95399 (19)0.37150 (9)0.22314 (17)0.0417 (3)
C131.0879 (2)0.32682 (10)0.2567 (2)0.0530 (4)
H131.10160.30880.34650.064*
C141.2011 (2)0.30906 (11)0.1568 (2)0.0603 (5)
H141.28970.27870.17960.072*
C151.1829 (2)0.33619 (12)0.0239 (2)0.0617 (5)
H151.25860.32380.04310.074*
C161.0530 (3)0.38150 (13)0.0093 (2)0.0610 (5)
H161.04130.40020.09870.073*
C170.9392 (2)0.39948 (10)0.08972 (18)0.0496 (4)
H170.85200.43060.06650.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0430 (2)0.0612 (3)0.0605 (3)0.00534 (18)0.00292 (19)0.00376 (19)
F10.0742 (8)0.0817 (8)0.0534 (6)0.0198 (6)0.0029 (6)0.0177 (6)
O10.0907 (10)0.0469 (7)0.0773 (9)0.0286 (7)0.0360 (8)0.0198 (6)
N10.0385 (7)0.0528 (8)0.0473 (8)0.0065 (6)0.0043 (6)0.0029 (6)
C10.0611 (10)0.0433 (9)0.0400 (8)0.0117 (7)0.0013 (7)0.0014 (6)
C20.0449 (8)0.0351 (7)0.0438 (8)0.0042 (6)0.0030 (6)0.0038 (6)
C30.0428 (8)0.0320 (7)0.0393 (7)0.0000 (5)0.0043 (6)0.0017 (5)
C40.0388 (8)0.0462 (8)0.0464 (8)0.0058 (6)0.0019 (6)0.0074 (7)
C50.0685 (12)0.0479 (10)0.0731 (12)0.0083 (9)0.0090 (10)0.0062 (9)
C60.0586 (11)0.0427 (9)0.0801 (13)0.0020 (8)0.0097 (9)0.0063 (9)
C70.0406 (8)0.0464 (8)0.0412 (8)0.0028 (6)0.0026 (6)0.0055 (6)
C80.0400 (8)0.0373 (7)0.0429 (8)0.0010 (6)0.0013 (6)0.0014 (6)
C90.0448 (8)0.0349 (7)0.0407 (8)0.0036 (6)0.0054 (6)0.0036 (6)
C100.0533 (9)0.0458 (9)0.0479 (9)0.0087 (7)0.0116 (7)0.0001 (7)
C110.0719 (12)0.0438 (9)0.0432 (9)0.0034 (8)0.0124 (8)0.0050 (7)
C120.0391 (8)0.0376 (7)0.0485 (8)0.0023 (6)0.0000 (6)0.0010 (6)
C130.0493 (9)0.0499 (9)0.0600 (10)0.0069 (7)0.0012 (8)0.0057 (8)
C140.0473 (10)0.0524 (10)0.0815 (14)0.0099 (8)0.0046 (9)0.0051 (9)
C150.0520 (10)0.0692 (12)0.0643 (11)0.0020 (9)0.0117 (9)0.0186 (10)
C160.0592 (11)0.0753 (13)0.0486 (10)0.0031 (9)0.0040 (8)0.0004 (9)
C170.0444 (9)0.0551 (10)0.0493 (9)0.0024 (7)0.0002 (7)0.0039 (7)
Geometric parameters (Å, º) top
Cl1—C21.7342 (17)C7—C81.531 (2)
F1—C11.354 (2)C7—H70.9800
O1—C51.410 (2)C8—C121.510 (2)
O1—C41.442 (2)C8—H80.9800
N1—C91.393 (2)C9—C101.396 (2)
N1—C81.465 (2)C10—C111.377 (3)
N1—H10.9000C10—H100.9300
C1—C111.376 (3)C11—H110.9300
C1—C21.381 (2)C12—C171.386 (2)
C2—C31.392 (2)C12—C131.390 (2)
C3—C91.404 (2)C13—C141.385 (3)
C3—C41.508 (2)C13—H130.9300
C4—C71.546 (2)C14—C151.378 (3)
C4—H40.9800C14—H140.9300
C5—C61.494 (3)C15—C161.370 (3)
C5—H5A0.9700C15—H150.9300
C5—H5B0.9700C16—C171.384 (3)
C6—C71.529 (2)C16—H160.9300
C6—H6A0.9700C17—H170.9300
C6—H6B0.9700
C5—O1—C4109.33 (14)C8—C7—H7108.5
C9—N1—C8114.73 (13)C4—C7—H7108.5
C9—N1—H1108.6N1—C8—C12112.32 (13)
C8—N1—H1108.6N1—C8—C7108.11 (13)
F1—C1—C11119.44 (15)C12—C8—C7111.89 (13)
F1—C1—C2119.62 (16)N1—C8—H8108.1
C11—C1—C2120.94 (16)C12—C8—H8108.1
C1—C2—C3120.95 (16)C7—C8—H8108.1
C1—C2—Cl1118.22 (13)N1—C9—C10120.84 (15)
C3—C2—Cl1120.82 (12)N1—C9—C3119.35 (14)
C2—C3—C9118.16 (14)C10—C9—C3119.81 (15)
C2—C3—C4120.84 (14)C11—C10—C9121.04 (16)
C9—C3—C4120.90 (14)C11—C10—H10119.5
O1—C4—C3107.78 (13)C9—C10—H10119.5
O1—C4—C7105.89 (13)C1—C11—C10119.09 (15)
C3—C4—C7114.70 (13)C1—C11—H11120.5
O1—C4—H4109.4C10—C11—H11120.5
C3—C4—H4109.4C17—C12—C13118.70 (16)
C7—C4—H4109.4C17—C12—C8118.52 (14)
O1—C5—C6105.8 (2)C13—C12—C8122.75 (15)
O1—C5—H5A110.6C14—C13—C12120.20 (18)
C6—C5—H5A110.6C14—C13—H13119.9
O1—C5—H5B110.6C12—C13—H13119.9
C6—C5—H5B110.6C15—C14—C13120.36 (18)
H5A—C5—H5B108.7C15—C14—H14119.8
C5—C6—C7102.31 (16)C13—C14—H14119.8
C5—C6—H6A111.3C16—C15—C14119.80 (18)
C7—C6—H6A111.3C16—C15—H15120.1
C5—C6—H6B111.3C14—C15—H15120.1
C7—C6—H6B111.3C15—C16—C17120.28 (18)
H6A—C6—H6B109.2C15—C16—H16119.9
C6—C7—C8115.10 (14)C17—C16—H16119.9
C6—C7—C4103.42 (14)C16—C17—C12120.63 (17)
C8—C7—C4112.63 (13)C16—C17—H17119.7
C6—C7—H7108.5C12—C17—H17119.7
F1—C1—C2—C3179.19 (14)C6—C7—C8—C1258.1 (2)
C11—C1—C2—C30.2 (2)C4—C7—C8—C12176.34 (13)
F1—C1—C2—Cl10.3 (2)C8—N1—C9—C10146.11 (15)
C11—C1—C2—Cl1179.04 (13)C8—N1—C9—C334.3 (2)
C1—C2—C3—C90.7 (2)C2—C3—C9—N1179.61 (13)
Cl1—C2—C3—C9179.52 (11)C4—C3—C9—N14.1 (2)
C1—C2—C3—C4175.58 (14)C2—C3—C9—C100.8 (2)
Cl1—C2—C3—C43.2 (2)C4—C3—C9—C10175.50 (14)
C5—O1—C4—C3134.74 (16)N1—C9—C10—C11179.97 (15)
C5—O1—C4—C711.54 (19)C3—C9—C10—C110.4 (2)
C2—C3—C4—O169.75 (18)F1—C1—C11—C10179.64 (15)
C9—C3—C4—O1106.42 (16)C2—C1—C11—C100.2 (3)
C2—C3—C4—C7172.60 (14)C9—C10—C11—C10.2 (3)
C9—C3—C4—C711.2 (2)N1—C8—C12—C17148.88 (15)
C4—O1—C5—C631.0 (2)C7—C8—C12—C1789.30 (18)
O1—C5—C6—C737.0 (2)N1—C8—C12—C1332.8 (2)
C5—C6—C7—C8152.09 (15)C7—C8—C12—C1389.01 (19)
C5—C6—C7—C428.82 (18)C17—C12—C13—C142.0 (3)
O1—C4—C7—C611.65 (17)C8—C12—C13—C14176.35 (16)
C3—C4—C7—C6107.07 (16)C12—C13—C14—C150.8 (3)
O1—C4—C7—C8136.54 (14)C13—C14—C15—C160.6 (3)
C3—C4—C7—C817.8 (2)C14—C15—C16—C170.6 (3)
C9—N1—C8—C12173.88 (13)C15—C16—C17—C120.6 (3)
C9—N1—C8—C762.18 (17)C13—C12—C17—C161.9 (3)
C6—C7—C8—N166.10 (18)C8—C12—C17—C16176.51 (17)
C4—C7—C8—N152.13 (17)

Experimental details

(I)(II)
Crystal data
Chemical formulaC17H15ClFNOC17H15ClFNO
Mr303.75303.75
Crystal system, space groupMonoclinic, C2/cMonoclinic, P21/c
Temperature (K)293293
a, b, c (Å)17.0056 (17), 10.7527 (11), 15.7079 (16)8.1796 (6), 17.9041 (12), 9.6562 (7)
β (°) 99.367 (2) 91.017 (1)
V3)2834.0 (5)1413.91 (17)
Z84
Radiation typeMo KαMo Kα
µ (mm1)0.280.28
Crystal size (mm)0.20 × 0.15 × 0.110.18 × 0.15 × 0.13
Data collection
DiffractometerCCD area-etector
diffractometer
CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8450, 3079, 2244 16081, 3334, 2940
Rint0.0250.020
(sin θ/λ)max1)0.6610.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.147, 1.03 0.050, 0.136, 1.08
No. of reflections30793334
No. of parameters190190
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.190.34, 0.19

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003), SHELXL97 and PARST (Nardelli, 1995).

Selected geometric parameters (Å, º) for (I) top
C1—C21.363 (3)C4—C71.531 (3)
O1—C5—C6109.1 (2)
C6—C7—C8—C1268.8 (2)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···F1i0.972.473.108 (2)123
C17—H17···F1ii0.932.553.460 (3)167
Symmetry codes: (i) x1/2, y1/2, z; (ii) x+2, y+2, z.
Selected geometric parameters (Å, º) for (II) top
C1—C21.381 (2)C4—C71.546 (2)
O1—C5—C6105.8 (2)
C6—C7—C8—C1258.1 (2)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds