Download citation
Download citation
link to html
The title mononuclear [Cu(sq)(phen)2]·3H2O complex [sq is squarate (C4O4) and phen is 1,10-phenanthroline (C12H8N2)] has been synthesized and the structure consists of a neutral mononuclear [Cu(sq)(phen)2] unit and three solvate water mol­ecules. The CuII ion has distorted square-pyramidal coordination geometry, comprised of one carboxyl­ate O atom from a monodentate squarate ligand and four N atoms from two chelating phen ligands. An extensive three-dimensional network of OW-H...O/OW hydrogen bonds, face-to-face [pi][pi] interactions between the 1,10-phenanthroline aromatic rings and a weak [pi]-ring interaction are responsible for crystal stabilization.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104020566/sk1754sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104020566/sk1754Isup2.hkl
Contains datablock I

CCDC reference: 254912

Comment top

Studies of the coordination chemistry of the squarate ligand have attracted increasing attention, because it gives rise to a wide variety of complexes and adopts mono- or polydentate coordination modes when acting as a ligand towards first row transition metal ions. The squarate dianion does not act like a chelating ligand but rather like a bridge between two or more metal atoms as a mono- or polydentate ligand (Bernardinelli et al., 1988; Solans et al., 1990; Castro et al., 1999; Crispini et al., 2000; Shu et al., 2000; Yang et al., 2003), or as a counter-ligand in some compounds (Castan et al., 1992; Uçar et al., 2004; Yeşilel et al., 2004). Therefore, very little has been published to date about the structure of mononuclear complexes of the squarate ligand (Solans at al., 1990; Grove et al., 2002; Kirchmaier et al., 2003). Additionally, mixed-ligand metal complexes of 1,10-phenanthroline and its substituted derivatives continue to attract attention because this moiety plays an important role in biological systems, such as binding of small molecules to DNA (Xu et al., 2002; Macias et al., 2003; Mudasir et al., 2003; Sastri et al., 2003; Maheswari & Palaniandavar, 2004). 1,10-Phenanthroline has also been extensively used as a ligand in both analytical and preparative coordination chemistry (Idriss et al., 1980; Templeton & Pollak, 1989; Koch & Ackermann, 1992; Lorenzo et al., 1998; Shabir & Forrow, 2003).

Commonly, ππ stacking interactions have been observed in mixed-ligand phen complexes (Castillo et al., 2001; Zhou et al., 2001; Liang et al., 2002; Guo et al., 2004).ππ interactions in aromatic rings play vital roles in highly efficient and specific biological reactions, and control many molecular-recognition and self-assembly processes in solid-state and crystal engineering (Hunter, 1994; Desiraju, 1995; Claessens & Stoddart, 1997; Roesky & Andruh, 2003; Shi et al., 2004). In this context, the title mixed-ligand complex, (I), of copper squarate with phen has been prepared and its crystal structure is reported here. \sch

A view of the molecule of (I) and its atom-numbering scheme are shown in Fig. 1. Compound (I) has distorted square-pyramidal coordination geometry comprised of one carboxylate O atom from a monodentate squarate ligand and four N atoms from two chelating phen ligands. The coordinated squarate O atom [Cu1—O1 1.9623 (16) Å] and three phen N atoms [Cu1—N varying in the range 1.9913 (19)–2.03731 (18) Å] form the equatorial plane, whereas the fourth phen N atom is in the apical position [Cu1—N3 2.188 (2) Å]. The angles subtended at the Cu atom by the phen ligands are 81.68 (7) and 79.99 (8)°, which are in agreement with those previously reported for other phen-containing CuII complexes (Solans et al., 1990; Castro et al., 1999; Castillo et al., 2001). These `bite' angles are far from the ideal value of 90° because of the constrained geometry of the phen ring systems. There is also a significant tetragonal distortion of the equatorial plane [maximum atomic deviation 0.2739 (10) Å for atom N2], in which the Cu atom is 0.1639 (8) Å out of this mean plane.

The squarate ligand is essentially planar and the largest deviation from the mean plane is 0.0166 (13) Å for atom O2. The dihedral angle between the Cu basal equatorial plane and the squarate plane is 83.50 (5)°. The phen ligands are approximately planar, with r.m.s. deviations of 0.052 and 0.0127 Å for phen 1 (N1/N2/C1—C12) and phen 2 (N3/N4/C13—C24), respectively. Please check added definitions. The largest deviations from the mean planes are 0.024 (2) Å for atom C9 and 0.083 (3) Å for atom C14. The average C—C (1.40 Å) and C—N bonds (1.34 Å) and angles (120°) within the rings are in agreement with these previously reported for 1,10-phenenthroline-coordinated CuII complexes (Potocnak et al., 1996; Parker et al., 1996). The dihedral angles between the squarate plane and the phen mean planes are 82.80 (4) and 64.65 (4)°, while that between the phen mean planes is 70.00 (3)°.

In complex (I), the Cu1—O1 bond distance is nearly identical with that observed in [Cu(C4O4)(H2O)2(phen)]·2H2O (Solans et al., 1990), in which the Cu—O distance is 1.967 (2) Å, whereas it is 0.033 Å shorter than that in [Cu2(C4O4)(phen)4](ClO2)2·2H2O (Castro et al., 1999). This is clearly due to the fact that the squarate is coordinated to the Cu atom in a monodentate fashion and therefore most of the negative charge is located on the coordinated O atom. These C—O bond distances of the squarate ligand are found to be similar to those of related monodentate squarate complexes (Bernardinelli et al., 1988; Solans et al., 1990).

The crystal packing in (I) is formed by intermolecular hydrogen bonding (Fig. 2), and ππ and π–ring (Fig. 3) interactions. Each neutral complex unit is linked to a second unit via hydrogen-bonding interactions through the solvate water molecules and the O atoms of the squarate ligand. The uncoordinated O atoms of the squarate, which are linked to each other by means of two solvate molecules, also make a contribution to the crystal packing (Table 2).

The phen ligand belonging to a unit A at (x, y, z − 1) and that belonging to a crystallographically related unit B at (1 − x, −y, 1 − z) are stacked nearly parallel to each other, with a dihedral angle between their aromatic rings [ring 1 and ring 2 Please define] of 2.85° (Fig. 3). For the ππ stacking interaction, the interplanar separation of these aromatic rings is in the range 3.400–3.435 Å [Cg1···Cg2 3.7124 (15) Å; Cgx denotes the centroid of phen ring x] and the shortest interatomic contact is 3.444 Å. The third neighbouring phen ligand, belonging to unit C at (x + 1/2, 1/2 − y, z − 1/2), is stacked nearly parallel to units A and B. The dihedral angle between aromatic rings 1 and 3 Please define ring 3 (located in units B and C, respectively) is 9.59°, while this angle between aromatic rings 1 and 4 Please define ring 4 is 9.32°. For the ππ stacking interaction, the interplanar separation of these aromatic rings (1 and 3) is in the range 3.603–3.525 Å [Cg1···Cg3 3.6891 (15) Å] and the shortest interatomic contact is 3.429 Å, whereas the interplanar separation of the aromatic rings 1 and 4 is in the range 3.608–3.894 Å [Cg1···Cg4 4.1592 (15) Å] and the shortest interatomic contact is 3.814 Å.

In the structure of (I) there is also a weak C—H···π interaction between C5—H4 (of a phen ligand) and a phen ring (Fig. 3). The C—H···Cg contact distance between the centroid of a phen ring and the H atoms nearest that phen ring is 3.1993 Å. The perpendicular distance between atom H4 and the centre of the phen ring is 3.117 Å and the C—H···Cg angle is 88.33°.

These intermolecular interactions, namely an extensive network of hydrogen bonds, ππ stacking and π–ring interactions, are responsible for constructing an infinite three-dimensional lattice int he crystal of (I).

Experimental top

Squaric acid (H2Sq; 0.57 g, 5 mmol) dissolved in water (25 ml) was neutralized with NaOH (0.40 g, 10 mmol) and added to a hot solution of copper(II) chloride dihydrate (0.853 g, 5 mmol) dissolved in water (50 ml). The mixture was stirred at 353 K for 12 h and then cooled to room temperature. The green crystals which formed were filtered off and washed with water, and dried in vacuo. A solution of 1,10-phenanthroline (0.72 g, 4 mmol) in ethanol (20 ml) was added dropwise with stirring to a suspension of CuSq·2H2O (0.42 g, 2 mmol) in water (50 ml). The mixture was then stirred at 323 K for 12 h and cooled to room temperature. After a few days, well formed crystals of (I) were selected for X-ray studies.

Refinement top

H atoms on C atoms were placed in calculated positions (C—H = 0.93 Å) and were allowed to ride on their parent atom [Uiso(H) = 1.2Ueq(C)]. The remaining H atoms were located in a difference map and refined isotropically. Δρmax and Δρmin of 0.2 and −0.39 Å3, respectively, were found at distances of 0.73 and 0.86 Å from atoms O1 and Cu1, respectively.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the Cu coordination in (I), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level. Phenanthroline H atoms have been omitted for clarity and water H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The three-dimensional structure of the neutral complex (I). Displacement ellipsoids are drawn at the 5% probability level. Dashed lines illustrate the hydrogen bonds.
[Figure 3] Fig. 3. An illustration of a sheet of neutral monomeric entities in the crystal of (I), linked by stacking ππ and π–ring interactions (dashed lines) between the aromatic rings and the H atoms of the 1,10-phenanthroline ligands. Displacement ellipsoids are drawn at the 5% probability level.
Bis(1,10-phenanthroline-κ2N,N')(squarato-κO)copper(II) trihydrate top
Crystal data top
[Cu(C4O4)(C12H8N2)2]·3H2OF(000) = 1212
Mr = 590.05Dx = 1.529 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 16767 reflections
a = 12.5563 (9) Åθ = 1.6–28.0°
b = 16.291 (1) ŵ = 0.91 mm1
c = 12.6208 (9) ÅT = 293 K
β = 96.896 (6)°Prism, black
V = 2563.0 (3) Å30.42 × 0.28 × 0.17 mm
Z = 4
Data collection top
Stoe IPDS 2
diffractometer
5051 independent reflections
Radiation source: fine-focus sealed tube3155 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.105
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.1°
ω scansh = 1515
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 2020
Tmin = 0.736, Tmax = 0.89l = 1515
36262 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 0.82 w = 1/[σ2(Fo2) + (0.0295P)2]
where P = (Fo2 + 2Fc2)/3
5051 reflections(Δ/σ)max = 0.001
385 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Cu(C4O4)(C12H8N2)2]·3H2OV = 2563.0 (3) Å3
Mr = 590.05Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.5563 (9) ŵ = 0.91 mm1
b = 16.291 (1) ÅT = 293 K
c = 12.6208 (9) Å0.42 × 0.28 × 0.17 mm
β = 96.896 (6)°
Data collection top
Stoe IPDS 2
diffractometer
5051 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
3155 reflections with I > 2σ(I)
Tmin = 0.736, Tmax = 0.89Rint = 0.105
36262 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 0.82Δρmax = 0.20 e Å3
5051 reflectionsΔρmin = 0.39 e Å3
385 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1749 (2)0.12453 (14)0.56760 (18)0.0501 (6)
H10.13780.07610.57620.060*
C20.1852 (2)0.15123 (15)0.46545 (19)0.0526 (7)
H20.15470.12120.40690.063*
C30.2403 (2)0.22193 (15)0.45041 (19)0.0503 (6)
H30.24720.24020.38180.060*
C40.28630 (19)0.26662 (13)0.53953 (17)0.0403 (6)
C50.3460 (2)0.34057 (13)0.53399 (19)0.0470 (6)
H40.35750.36140.46770.056*
C60.3862 (2)0.38084 (13)0.62313 (19)0.0460 (6)
H50.42450.42910.61700.055*
C70.37136 (18)0.35101 (12)0.72739 (17)0.0396 (5)
C80.4104 (2)0.38954 (14)0.8226 (2)0.0511 (7)
H60.44960.43790.82170.061*
C90.3906 (2)0.35583 (15)0.9172 (2)0.0596 (7)
H70.41510.38170.98110.071*
C100.3339 (2)0.28286 (15)0.9178 (2)0.0536 (7)
H80.32150.26060.98310.064*
C110.31432 (18)0.27777 (12)0.73458 (17)0.0366 (5)
C120.27173 (18)0.23571 (12)0.64017 (17)0.0365 (5)
C130.3688 (2)0.00929 (17)0.7422 (2)0.0618 (7)
H90.36050.01060.67260.074*
C140.4287 (3)0.08130 (18)0.7649 (3)0.0766 (9)
H100.45760.10950.71090.092*
C150.4439 (2)0.10912 (17)0.8671 (3)0.0754 (9)
H110.48420.15630.88340.090*
C160.3997 (2)0.06770 (15)0.9471 (2)0.0578 (7)
C170.4119 (3)0.09206 (17)1.0578 (3)0.0722 (9)
H120.45480.13711.07910.087*
C180.3634 (3)0.05170 (19)1.1301 (3)0.0729 (9)
H130.37360.06901.20080.087*
C190.2965 (2)0.01712 (16)1.1019 (2)0.0551 (7)
C200.2391 (3)0.05921 (19)1.1724 (2)0.0677 (8)
H140.24600.04391.24390.081*
C210.1734 (3)0.12224 (17)1.1384 (2)0.0649 (8)
H150.13440.14971.18560.078*
C220.1653 (2)0.14522 (15)1.0318 (2)0.0548 (6)
H160.11960.18821.00850.066*
C230.2845 (2)0.04386 (14)0.99515 (19)0.0437 (6)
C240.33839 (19)0.00196 (13)0.9173 (2)0.0452 (6)
C250.00589 (19)0.10904 (12)0.75297 (17)0.0376 (5)
C260.10638 (19)0.09052 (13)0.69038 (17)0.0393 (5)
C270.1484 (2)0.17085 (15)0.72044 (19)0.0502 (6)
C280.0443 (2)0.18846 (13)0.78328 (18)0.0433 (6)
N10.21616 (15)0.16550 (11)0.65441 (14)0.0417 (5)
N20.29648 (16)0.24345 (10)0.82892 (14)0.0409 (5)
N30.32373 (16)0.03127 (11)0.81575 (16)0.0461 (5)
N40.22013 (16)0.10835 (11)0.96170 (15)0.0435 (5)
O10.08312 (13)0.07068 (9)0.77176 (13)0.0474 (4)
O20.14186 (14)0.03201 (9)0.63277 (13)0.0525 (4)
O30.23398 (17)0.20783 (13)0.69983 (18)0.0880 (7)
O40.00259 (16)0.24558 (10)0.83919 (14)0.0633 (5)
O50.0410 (3)0.30172 (18)0.1968 (2)0.0928 (8)
O60.1494 (3)0.48992 (15)0.0398 (2)0.0897 (9)
O70.4802 (2)0.12802 (17)0.48944 (19)0.0734 (6)
Cu10.21389 (2)0.135933 (16)0.80737 (2)0.04113 (9)
H170.482 (3)0.165 (2)0.448 (3)0.118 (16)*
H180.436 (3)0.095 (2)0.476 (3)0.105 (16)*
H190.019 (4)0.330 (3)0.135 (4)0.15 (2)*
H200.103 (4)0.305 (3)0.186 (3)0.124 (19)*
H210.117 (3)0.452 (2)0.031 (3)0.098 (15)*
H220.210 (3)0.476 (2)0.064 (3)0.101 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0593 (17)0.0432 (14)0.0452 (15)0.0074 (12)0.0046 (12)0.0054 (11)
C20.0633 (18)0.0531 (16)0.0383 (14)0.0030 (13)0.0069 (12)0.0090 (12)
C30.0615 (18)0.0541 (15)0.0345 (14)0.0106 (13)0.0025 (12)0.0032 (11)
C40.0476 (15)0.0377 (12)0.0355 (13)0.0082 (11)0.0046 (11)0.0003 (10)
C50.0583 (17)0.0409 (13)0.0433 (14)0.0071 (11)0.0126 (12)0.0089 (10)
C60.0532 (16)0.0341 (13)0.0523 (15)0.0016 (11)0.0127 (12)0.0032 (11)
C70.0442 (14)0.0331 (12)0.0420 (13)0.0019 (10)0.0075 (10)0.0010 (10)
C80.0611 (18)0.0386 (13)0.0536 (16)0.0100 (12)0.0066 (13)0.0043 (11)
C90.082 (2)0.0552 (15)0.0408 (14)0.0206 (15)0.0028 (13)0.0115 (13)
C100.0682 (19)0.0561 (15)0.0363 (15)0.0116 (14)0.0053 (13)0.0025 (12)
C110.0373 (14)0.0346 (11)0.0375 (13)0.0040 (10)0.0029 (10)0.0008 (10)
C120.0379 (14)0.0348 (12)0.0362 (12)0.0058 (10)0.0020 (10)0.0012 (10)
C130.0590 (19)0.0677 (18)0.0600 (18)0.0007 (15)0.0121 (15)0.0071 (14)
C140.071 (2)0.0618 (19)0.100 (3)0.0083 (16)0.0234 (19)0.0209 (18)
C150.055 (2)0.0499 (17)0.120 (3)0.0068 (14)0.004 (2)0.0029 (18)
C160.0442 (17)0.0447 (14)0.082 (2)0.0034 (12)0.0020 (15)0.0075 (14)
C170.061 (2)0.0502 (17)0.099 (3)0.0084 (15)0.0198 (18)0.0302 (17)
C180.076 (2)0.070 (2)0.068 (2)0.0196 (17)0.0141 (18)0.0304 (17)
C190.0593 (18)0.0535 (15)0.0499 (17)0.0164 (13)0.0036 (14)0.0165 (13)
C200.085 (2)0.078 (2)0.0416 (17)0.0286 (17)0.0113 (16)0.0098 (15)
C210.078 (2)0.0708 (19)0.0502 (16)0.0183 (17)0.0251 (15)0.0023 (14)
C220.0602 (17)0.0542 (15)0.0524 (16)0.0053 (13)0.0164 (13)0.0000 (13)
C230.0426 (15)0.0426 (13)0.0449 (14)0.0122 (11)0.0010 (11)0.0059 (11)
C240.0385 (15)0.0398 (13)0.0559 (16)0.0081 (11)0.0003 (12)0.0079 (11)
C250.0434 (15)0.0353 (11)0.0350 (13)0.0044 (10)0.0076 (11)0.0048 (9)
C260.0426 (15)0.0447 (13)0.0311 (13)0.0038 (11)0.0063 (11)0.0020 (10)
C270.0518 (18)0.0556 (14)0.0423 (15)0.0100 (13)0.0018 (13)0.0002 (12)
C280.0549 (17)0.0364 (12)0.0393 (14)0.0006 (11)0.0090 (12)0.0021 (10)
N10.0453 (12)0.0391 (10)0.0387 (11)0.0033 (9)0.0034 (9)0.0017 (8)
N20.0485 (13)0.0426 (10)0.0313 (11)0.0031 (9)0.0037 (9)0.0011 (9)
N30.0415 (13)0.0482 (11)0.0486 (13)0.0027 (9)0.0059 (10)0.0020 (10)
N40.0464 (13)0.0424 (11)0.0422 (12)0.0059 (9)0.0073 (10)0.0009 (9)
O10.0432 (11)0.0349 (8)0.0627 (11)0.0004 (7)0.0010 (8)0.0010 (7)
O20.0587 (12)0.0506 (10)0.0458 (10)0.0110 (8)0.0035 (8)0.0069 (8)
O30.0687 (16)0.0900 (14)0.0985 (17)0.0356 (12)0.0176 (13)0.0169 (12)
O40.0823 (15)0.0410 (9)0.0648 (12)0.0062 (9)0.0010 (10)0.0146 (9)
O50.085 (2)0.0981 (19)0.095 (2)0.0230 (16)0.0103 (17)0.0108 (16)
O60.0650 (18)0.0620 (15)0.133 (2)0.0037 (14)0.0244 (16)0.0027 (14)
O70.0691 (16)0.0648 (14)0.0828 (16)0.0002 (13)0.0052 (12)0.0149 (13)
Cu10.04469 (17)0.04051 (15)0.03731 (15)0.00568 (15)0.00138 (11)0.00260 (14)
Geometric parameters (Å, º) top
C1—N11.333 (3)C17—H120.9300
C1—C21.381 (3)C18—C191.420 (4)
C1—H10.9300C18—H130.9300
C2—C31.368 (3)C19—C201.392 (4)
C2—H20.9300C19—C231.406 (3)
C3—C41.405 (3)C20—C211.354 (4)
C3—H30.9300C20—H140.9300
C4—C121.399 (3)C21—C221.388 (4)
C4—C51.425 (3)C21—H150.9300
C5—C61.347 (3)C22—N41.328 (3)
C5—H40.9300C22—H160.9300
C6—C71.436 (3)C23—N41.362 (3)
C6—H50.9300C23—C241.431 (3)
C7—C81.391 (3)C24—N31.360 (3)
C7—C111.400 (3)C25—O11.278 (3)
C8—C91.364 (3)C25—C261.438 (3)
C8—H60.9300C25—C281.448 (3)
C9—C101.386 (3)C26—O21.248 (3)
C9—H70.9300C26—C271.478 (3)
C10—N21.329 (3)C27—O31.232 (3)
C10—H80.9300C27—C281.474 (3)
C11—N21.358 (3)C28—O41.245 (3)
C11—C121.422 (3)N1—Cu11.9931 (18)
C12—N11.363 (3)N2—Cu12.0371 (18)
C13—N31.321 (3)N3—Cu12.188 (2)
C13—C141.405 (4)N4—Cu11.9913 (19)
C13—H90.9300O1—Cu11.9623 (16)
C14—C151.359 (4)O5—H190.92 (5)
C14—H100.9300O5—H200.81 (4)
C15—C161.385 (4)O6—H210.74 (4)
C15—H110.9300O6—H220.82 (4)
C16—C241.397 (3)O7—H170.80 (4)
C16—C171.442 (4)O7—H180.78 (4)
C17—C181.330 (4)
N1—C1—C2122.6 (2)C20—C19—C18124.4 (3)
N1—C1—H1118.7C23—C19—C18118.5 (3)
C2—C1—H1118.7C21—C20—C19120.9 (3)
C3—C2—C1120.0 (2)C21—C20—H14119.6
C3—C2—H2120.0C19—C20—H14119.6
C1—C2—H2120.0C20—C21—C22118.9 (3)
C2—C3—C4119.4 (2)C20—C21—H15120.6
C2—C3—H3120.3C22—C21—H15120.6
C4—C3—H3120.3N4—C22—C21122.7 (3)
C12—C4—C3117.0 (2)N4—C22—H16118.7
C12—C4—C5118.4 (2)C21—C22—H16118.7
C3—C4—C5124.5 (2)N4—C23—C19121.8 (2)
C6—C5—C4121.1 (2)N4—C23—C24117.9 (2)
C6—C5—H4119.4C19—C23—C24120.3 (2)
C4—C5—H4119.4N3—C24—C16123.2 (2)
C5—C6—C7121.6 (2)N3—C24—C23117.3 (2)
C5—C6—H5119.2C16—C24—C23119.5 (2)
C7—C6—H5119.2O1—C25—C26133.6 (2)
C8—C7—C11117.3 (2)O1—C25—C28134.4 (2)
C8—C7—C6124.6 (2)C26—C25—C2891.98 (19)
C11—C7—C6118.1 (2)O2—C26—C25135.1 (2)
C9—C8—C7119.5 (2)O2—C26—C27135.4 (2)
C9—C8—H6120.3C25—C26—C2789.43 (18)
C7—C8—H6120.3O3—C27—C28135.5 (2)
C8—C9—C10119.9 (2)O3—C27—C26135.1 (3)
C8—C9—H7120.1C28—C27—C2689.40 (19)
C10—C9—H7120.1O4—C28—C25133.4 (2)
N2—C10—C9122.6 (2)O4—C28—C27137.4 (2)
N2—C10—H8118.7C25—C28—C2789.19 (19)
C9—C10—H8118.7C1—N1—C12117.79 (19)
N2—C11—C7123.2 (2)C1—N1—Cu1128.73 (16)
N2—C11—C12116.82 (19)C12—N1—Cu1113.43 (14)
C7—C11—C12120.01 (19)C10—N2—C11117.6 (2)
N1—C12—C4123.1 (2)C10—N2—Cu1130.61 (16)
N1—C12—C11116.16 (19)C11—N2—Cu1111.83 (14)
C4—C12—C11120.7 (2)C13—N3—C24117.8 (2)
N3—C13—C14122.6 (3)C13—N3—Cu1132.57 (19)
N3—C13—H9118.7C24—N3—Cu1109.42 (15)
C14—C13—H9118.7C22—N4—C23118.6 (2)
C15—C14—C13118.9 (3)C22—N4—Cu1125.94 (17)
C15—C14—H10120.6C23—N4—Cu1115.44 (15)
C13—C14—H10120.6C25—O1—Cu1117.83 (13)
C14—C15—C16120.5 (3)H19—O5—H2091 (4)
C14—C15—H11119.8H21—O6—H22107 (4)
C16—C15—H11119.8H17—O7—H18117 (4)
C15—C16—C24117.1 (3)O1—Cu1—N492.03 (7)
C15—C16—C17124.5 (3)O1—Cu1—N191.03 (7)
C24—C16—C17118.4 (3)N4—Cu1—N1176.81 (8)
C18—C17—C16121.6 (3)O1—Cu1—N2153.50 (7)
C18—C17—H12119.2N4—Cu1—N295.96 (7)
C16—C17—H12119.2N1—Cu1—N281.68 (7)
C17—C18—C19121.6 (3)O1—Cu1—N395.41 (7)
C17—C18—H13119.2N4—Cu1—N379.99 (8)
C19—C18—H13119.2N1—Cu1—N398.80 (7)
C20—C19—C23117.1 (3)N2—Cu1—N3110.84 (7)
N1—C1—C2—C30.6 (4)O3—C27—C28—O40.4 (5)
C1—C2—C3—C40.2 (4)C26—C27—C28—O4179.3 (3)
C2—C3—C4—C120.6 (4)O3—C27—C28—C25179.3 (3)
C2—C3—C4—C5179.5 (2)C26—C27—C28—C250.41 (17)
C12—C4—C5—C61.1 (3)C2—C1—N1—C121.0 (4)
C3—C4—C5—C6178.8 (2)C2—C1—N1—Cu1178.04 (18)
C4—C5—C6—C70.4 (4)C4—C12—N1—C10.6 (3)
C5—C6—C7—C8179.9 (2)C11—C12—N1—C1179.9 (2)
C5—C6—C7—C110.6 (3)C4—C12—N1—Cu1178.09 (17)
C11—C7—C8—C90.9 (4)C11—C12—N1—Cu12.6 (2)
C6—C7—C8—C9179.5 (2)C9—C10—N2—C110.9 (4)
C7—C8—C9—C101.3 (4)C9—C10—N2—Cu1178.9 (2)
C8—C9—C10—N20.4 (4)C7—C11—N2—C101.2 (3)
C8—C7—C11—N20.3 (3)C12—C11—N2—C10178.7 (2)
C6—C7—C11—N2179.3 (2)C7—C11—N2—Cu1178.61 (17)
C8—C7—C11—C12179.6 (2)C12—C11—N2—Cu11.5 (2)
C6—C7—C11—C120.8 (3)C14—C13—N3—C241.1 (4)
C3—C4—C12—N10.2 (3)C14—C13—N3—Cu1172.9 (2)
C5—C4—C12—N1179.9 (2)C16—C24—N3—C131.0 (4)
C3—C4—C12—C11179.1 (2)C23—C24—N3—C13176.7 (2)
C5—C4—C12—C110.8 (3)C16—C24—N3—Cu1176.33 (19)
N2—C11—C12—N10.7 (3)C23—C24—N3—Cu11.4 (2)
C7—C11—C12—N1179.18 (19)C21—C22—N4—C231.9 (4)
N2—C11—C12—C4180.0 (2)C21—C22—N4—Cu1179.65 (19)
C7—C11—C12—C40.1 (3)C19—C23—N4—C221.8 (3)
N3—C13—C14—C152.1 (5)C24—C23—N4—C22176.6 (2)
C13—C14—C15—C160.9 (5)C19—C23—N4—Cu1179.75 (17)
C14—C15—C16—C241.1 (4)C24—C23—N4—Cu11.3 (3)
C14—C15—C16—C17179.5 (3)C26—C25—O1—Cu1153.4 (2)
C15—C16—C17—C18177.0 (3)C28—C25—O1—Cu124.5 (3)
C24—C16—C17—C182.4 (4)C25—O1—Cu1—N4103.50 (16)
C16—C17—C18—C190.4 (5)C25—O1—Cu1—N177.43 (16)
C17—C18—C19—C20176.4 (3)C25—O1—Cu1—N24.2 (3)
C17—C18—C19—C231.8 (4)C25—O1—Cu1—N3176.36 (16)
C23—C19—C20—C211.1 (4)C22—N4—Cu1—O182.2 (2)
C18—C19—C20—C21177.2 (3)C23—N4—Cu1—O195.55 (16)
C19—C20—C21—C221.0 (4)C22—N4—Cu1—N272.5 (2)
C20—C21—C22—N40.6 (4)C23—N4—Cu1—N2109.76 (16)
C20—C19—C23—N40.3 (4)C22—N4—Cu1—N3177.3 (2)
C18—C19—C23—N4178.7 (2)C23—N4—Cu1—N30.41 (16)
C20—C19—C23—C24178.0 (2)C1—N1—Cu1—O125.8 (2)
C18—C19—C23—C240.3 (3)C12—N1—Cu1—O1157.05 (15)
C15—C16—C24—N32.1 (4)C1—N1—Cu1—N2179.8 (2)
C17—C16—C24—N3178.5 (2)C12—N1—Cu1—N22.63 (15)
C15—C16—C24—C23175.6 (2)C1—N1—Cu1—N369.8 (2)
C17—C16—C24—C233.8 (4)C12—N1—Cu1—N3107.32 (15)
N4—C23—C24—N31.9 (3)C10—N2—Cu1—O1102.6 (3)
C19—C23—C24—N3179.7 (2)C11—N2—Cu1—O177.6 (2)
N4—C23—C24—C16175.9 (2)C10—N2—Cu1—N44.2 (2)
C19—C23—C24—C162.5 (3)C11—N2—Cu1—N4175.61 (15)
O1—C25—C26—O20.5 (4)C10—N2—Cu1—N1178.0 (2)
C28—C25—C26—O2178.0 (3)C11—N2—Cu1—N12.23 (15)
O1—C25—C26—C27178.9 (2)C10—N2—Cu1—N385.7 (2)
C28—C25—C26—C270.42 (17)C11—N2—Cu1—N394.07 (16)
O2—C26—C27—O30.9 (5)C13—N3—Cu1—O183.8 (2)
C25—C26—C27—O3179.3 (3)C24—N3—Cu1—O190.56 (15)
O2—C26—C27—C28178.0 (3)C13—N3—Cu1—N4175.0 (2)
C25—C26—C27—C280.42 (17)C24—N3—Cu1—N40.55 (15)
O1—C25—C28—O40.8 (4)C13—N3—Cu1—N18.0 (2)
C26—C25—C28—O4179.3 (3)C24—N3—Cu1—N1177.56 (15)
O1—C25—C28—C27178.9 (2)C13—N3—Cu1—N292.4 (2)
C26—C25—C28—C270.42 (17)C24—N3—Cu1—N293.17 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H17···O4i0.80 (4)2.03 (4)2.825 (3)175 (4)
O7—H18···O6ii0.78 (4)2.01 (4)2.775 (4)165 (4)
O5—H19···O7iii0.92 (5)1.96 (5)2.874 (4)169 (4)
O5—H20···O3i0.81 (4)2.04 (5)2.825 (4)162 (4)
O6—H21···O7iii0.74 (4)2.17 (4)2.878 (4)160 (4)
O6—H22···O2i0.82 (4)1.96 (4)2.764 (3)167 (3)
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(C4O4)(C12H8N2)2]·3H2O
Mr590.05
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)12.5563 (9), 16.291 (1), 12.6208 (9)
β (°) 96.896 (6)
V3)2563.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.91
Crystal size (mm)0.42 × 0.28 × 0.17
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.736, 0.89
No. of measured, independent and
observed [I > 2σ(I)] reflections
36262, 5051, 3155
Rint0.105
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.068, 0.82
No. of reflections5051
No. of parameters385
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.39

Computer programs: X-AREA (Stoe & Cie, 2002), X-AREA, X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
C25—O11.278 (3)N2—Cu12.0371 (18)
C26—O21.248 (3)N3—Cu12.188 (2)
C27—O31.232 (3)N4—Cu11.9913 (19)
C28—O41.245 (3)O1—Cu11.9623 (16)
N1—Cu11.9931 (18)
O1—Cu1—N492.03 (7)N1—Cu1—N281.68 (7)
O1—Cu1—N191.03 (7)O1—Cu1—N395.41 (7)
N4—Cu1—N1176.81 (8)N4—Cu1—N379.99 (8)
O1—Cu1—N2153.50 (7)N1—Cu1—N398.80 (7)
N4—Cu1—N295.96 (7)N2—Cu1—N3110.84 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H17···O4i0.80 (4)2.03 (4)2.825 (3)175 (4)
O7—H18···O6ii0.78 (4)2.01 (4)2.775 (4)165 (4)
O5—H19···O7iii0.92 (5)1.96 (5)2.874 (4)169 (4)
O5—H20···O3i0.81 (4)2.04 (5)2.825 (4)162 (4)
O6—H21···O7iii0.74 (4)2.17 (4)2.878 (4)160 (4)
O6—H22···O2i0.82 (4)1.96 (4)2.764 (3)167 (3)
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x1/2, y+1/2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds