Download citation
Download citation
link to html
In the title compound, C29H35N2O2P, the stereogenic C center [alpha] to the P atom, formed during the Pudovik condensation reaction between a deprotonated chiral diaza­phosphole and benz­aldehyde, has disordered substituents, giving a mixture of C[alpha]-R and C[alpha]-S diastereoisomers. Moreover, this compound crystallizes with two independent mol­ecules in the asymmetric unit. The observed configuration at the C[alpha] atom is 0.741 (6)-S mixed with 0.259 (6)-R, indicating diastereoisomeric enrichment during crystallization. Data from solution and solid-state studies consistently point to an epimerization process at the C[alpha] atom.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104008492/sk1717sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104008492/sk1717Isup2.hkl
Contains datablock I

CCDC reference: 243605

Comment top

There are many examples in the literature of biologically active α-hydroxy phosphonates and phosphonic acids (e.g. Engel, 1977; Hilderbrand, 1983; De Clercq et al., 1986; Kitamura et al., 1995). Interest for this class of compounds has been motivated by the need to access a variety of phosphorous derivatives, particularly with substitutions at the Cα position, since such derivatives display required physiological properties (Yokomatsu & Shibuya, 1992; Öhler & Kotzinger, 1993; Berkowitz & Smith, 1995; Bennani & Hanessian, 1997).

In this area, the Pudovik reaction is a well known phosphonylation process that involves the addition of organophosphorous compounds containing a labile P—H bond to unsaturated systems (Pudovik & Konovalova, 1979). During the past decade, enantioselective syntheses of α-hydroxyphosphonates through the asymmetric Pudovik reaction of aldehydes have been reported. These reactions take place in the presence of chiral diols, amino alcohols and diamines as catalysts or using chiral auxiliaries (Davies et al., 1998; Groaning et al., 1998; Duxbury et al., 1999; Yamagishi et al., 1999; Rowe & Spilling, 2001). In this context, we recently obtained moderate diastereoselectivities for the carbonyl phosphonylation of aldehydes using N,N'-bis-[(S)-α-phenylethyl]-bicyclic phosphorous acid diamides (Moreno et al., 2004). When attempting to crystallize the adduct between a deprotonated chiral diazophosphole and benzaldehyde (see the scheme below), we observed an unexpected diastereoisomeric enrichment in the solid state. We now report the crystal structure of this compound, (I).

The asymmetric unit of (I) contains two independent molecules (Z'=2), with all atoms in general positions. Stereogenic Cα atoms C23 and C73, incorporated during the condensation reaction, have disordered OH and H substituents, while the phenyl (C24 and C74) and P-containing moieties (P1 and P51) do not exhibit disorder (Fig. 1 and 2). Positions and site-occupancy factors for the disordered groups were refined (see Experimental), converging to similar models for both independent molecules. Merging of site-occupancy factors results in a stereochemistry for Cα corresponding to a mixture of 0.741 (6)-S and 0.259 (6)-R molecules, randomly distributed in the whole crystal, with remaining chiral C centers as follows: 1S, 2S, 7S, 15S; 51S, 52S, 57S, 65S.

Some comments in relation to the unusual disorder observed in (I) are worthwhile: (i) Chiral centers C1, C2, C7 and C15 (and corresponding chiral C atoms for the second molecule) exhibit the same absolute configuration as in the starting material, as expected from the synthetic route. This fact confirms the assignment of the configurations at atoms C23 and C73. (ii) Although of limited reliability in the present case, because of the relatively low anomalous dispersion of P atoms and the polar character of the space group, the refinement of the Flack (1983) parameter is in agreement with the assigned absolute configuration. An attempt to refine the inverted structure leads to a Flack parameter close to 1. Finally, no symptoms of twinning appeared during data collection and structure refinement. (iii) In order to check the reproducibility of the observed absolute configuration, a single-crystal obtained from another batch was studied; on the basis of 6129 collected reflections (2θmax = 50°, R1 = 0.04 for 634 refined parameters and 4493 independent data), the absolute configuration for Cα converged to 0.746 (6)-S mixed with 0.254 (6)-R, with a Flack parameter of 0.01 (10), a result very close to that obtained for the refinement reported here.

The three above-mentioned accounts provide strong evidence that the absolute configuration of (I) has been assigned correctly. However, the diastereoisomeric enhancement of ca 50% observed in the solid state does not agree with that found in solution. Diastereoiomers were easily distinguishable by 31P NMR spectroscopy; for the crude of the reaction, an isomeric R:S ratio of 1.8:1.0 was estimated, in contrast to the 1.0:1.9 ratio observed in the solid state. Hence, we assume that this enrichment in the minor diastereoisomer probably occurs via a thermodynamically controlled epimerization at the Cα atom, during the crystallization process, while the major isomer in solution corresponds to the kinetic product of the condensation reaction. In order to check this hypothesis, a chemical correlation was carried out. Compound (I) was hydrolyzed to give the corresponding phosphonic acid, which was purified by ion exchange chromatography and then converted to the monocyclohexylammonium salt, using a classical procedure (see Experimental). A comparison with the reported [α]D values for the enantiomerically pure salts (Smaardijk et al., 1985), indicated that the major isomer for (I) in solution is Cα-R.

The two independent molecules in (I) have similar geometry (Table 1). A fit between the two molecules, carried out on non-H atoms, gives an r.m.s deviation of 0.23 Å, mainly becuase of a degree of free rotation for the phenyl groups. The bicyclic ring system consists of a six-membered chair cycle fused with a five-membered envelope ring, a conformation observed in numerous perhydrobenzodiazophosphole-based molecules (e.g. Koeller et al., 1993; Blazis et al., 1995; Wyatt et al., 1999). The crystal packing of (I) is dominated by hydrogen bonds within the asymmetric unit, which are favored by the Z'>1 value and disorder at Cα atoms (Table 2 and Fig. 3). Each oxide group forms a bifurcated hydrogen bond with the H atoms belonging to the disordered hydroxy groups of the other independent molecule. This symmetric arrangement generates a non-crystallographic inversion center, positioned close to the centroid of the O1···O51 line. However, there is no doubt that the space group of (I) is actually non-centrosymmetric, in agreement with the chiral character of the molecules. The emulated space group, P21/c, does not fit the diffraction pattern, for which 255 intensities are above a 3σ threshold in the set of 432 reflections corresponding to the extinction expected for a c glide plane.

In conclusion, we have established, using both chemical and crystallographic evidence, that the title compound can undergo epimerization at Cα, which has been shown previously to be an important chiral center for biological activity for these P-containing molecules. To the best of our knowledge, epimerization processes involved in the Pudovik condensation reaction have not been well documented util now. This potential complication probably deserves more attention when using this valuable synthetic tool.

Experimental top

For the synthesis of (I), a solution of diisopropylamine (0.182 ml, 1.29 mmol) in THF (6 ml) was cooled to 213 K, and n-butyllithium (0.471 ml, 1.18 mmol) was added. To this solution was added the diazaphosphole oxide (1.18 mmol) dissolved in thf (3 ml), previously prepared as reported elsewhere (Moreno et al., 2004). The resulting solution was maintained at 213 K for 1 h, and benzaldehyde (1.29 mmol) was added. After an additional reaction time of 4.5 h at 213 K, the reaction mixture was quenched with aqueous ammonium chloride (0.5 ml) and diluted with CHCl3 (60 ml). The solution was washed with water (2 × 25 ml), dried over Na2SO4 and concentrated in vacuo to give the crude product (yield 65%). Single crystals of (I) were obtained by repeated slow evaporation of an AcOEt solution of the crude. M.p. 467 K. [α]D = 13.10 (c 1, CHCl3); 31P NMR (in CHCl3, referenced to external 85% H3PO4): δ 36.3 (Cα-R isomer) and 34.7 (Cα-S isomer). To a crop of crystals of (I) (0.38 g, 0.93 mmol) dissolved in dioxane (2 ml) was added aqueous 4 N HCl (1 ml). After 2 h, the suspension had dissolved completely. The solution was stirred at room temperature, and the reaction progress was monitored by 31P NMR spectroscopy until completion (ca 12 h). The solution was then concentrated in vacuo and the residue was passed through an ion exchange column (Amberite IR-120+) eluted with water. The first 50 ml fraction was evaporated to yield the diastereoisomeric mixture of α-hydroxy-phosphonic acid resulting from the hydrolysis of (I). The phosphonic acid was dissolved in ethanol and cyclohexylamine was added. The solution was cooled to 263 K for 12 h and the precipitated cyclohexylammonium salt was collected by filtration (50% yield). M.p. 483 K (decomposed). [α]D = − 4.42 (c 0.77, MeOH:H2O 50% v/v), e.e. = 31%.

Refinement top

Atoms O21 and O71 belonging to the hydroxy groups bonded to atoms C23 and C73 were found to be disordered with, respectively, atoms O22 and O72. The coordination of atoms C23 and C73 is completed by disordered H atoms, placed at idealized positions. Site-occupancy factors (SOFs) were refined in two parts, independently for each molecule, with the sum of the SOFs for the two disordered components in each molecule constrained to 1. H atoms of the hydroxy groups were found in difference maps and were included in the disorder model with SOFs corresponding to those of parent the O atoms. Finally, all other H atoms were placed at idealized positions. All H atoms were treated using a riding model, with constrained distances and Uiso(H) values fixed to xUeq(parent) [C—H = 0.98 Å and x = 1.2 for methine H atoms, C—H = 0.97 Å and x = 1.2 for methylene H atoms, C—H = 0.96 Å and x = 1.5 for methyl H atoms, and C—H = 0.93 Å and x = 1.2 for aromatic H atoms]. O—H distances were fixed at the values found from difference maps (x = 1.5).

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: SHELXTL-Plus (Sheldrick, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1998); software used to prepare material for publication: SHELXTL-Plus (Sheldrick, 1998).

Figures top
[Figure 1] Fig. 1. The structure of the first independent molecule in (I), with displacement ellipsoids at the 20% probability level. The minor component of the disorder for substituents at C23 has been omitted (i.e. O22, H22 and H232), so that the Cα-S major isomer in the solid state is shown. For clarity, H atoms, except atoms H21 and H231, have been omitted.
[Figure 2] Fig. 2. The structure of the second independent molecule in (I), with displacement ellipsoids at the 20% probability level. The major component of the disorder for substituents at C73 has been omitted (i.e. O71, H71 and H731), so that the Cα-R minor isomer in the solid state is shown. For clarity, H atoms, except atoms H72 and H732, have been omitted.
[Figure 3] Fig. 3. Hydrogen bonds (dashed lines) observed in the asymmetric unit of the title compound. H atoms other than the disordered hydroxy H atoms have been omitted. The major disorder component is represented by atoms O21 and O71.
(3aS,7aS)-1-{2-Oxo-1,3-bis[(S)-1-phenylethyl]perhydro-1,3,2λ5– benzodiazaphosphol-2-yl]-1-phenylmethanol: top
Crystal data top
C29H35N2O2PF(000) = 1016
Mr = 474.56Dx = 1.189 Mg m3
Monoclinic, P21Melting point: 467 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 9.6413 (11) ÅCell parameters from 85 reflections
b = 17.3888 (11) Åθ = 4.7–13.0°
c = 15.8778 (11) ŵ = 0.13 mm1
β = 95.373 (8)°T = 300 K
V = 2650.2 (4) Å3Irregular, colorless
Z = 40.60 × 0.55 × 0.45 mm
Data collection top
Bruker P4
diffractometer
5554 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube, FN4Rint = 0.028
Graphite monochromatorθmax = 29.0°, θmin = 1.7°
2θ/ω scansh = 1311
Absorption correction: ψ scan
ψ scans (XSCANS; Siemens, 1996)
k = 123
Tmin = 0.926, Tmax = 0.942l = 2121
15139 measured reflections3 standard reflections every 97 reflections
7715 independent reflections intensity decay: 1.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: See text
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0681P)2 + 0.0908P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
7715 reflectionsΔρmax = 0.28 e Å3
633 parametersΔρmin = 0.21 e Å3
1 restraintAbsolute structure: Flack (1983), 446 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (8)
Crystal data top
C29H35N2O2PV = 2650.2 (4) Å3
Mr = 474.56Z = 4
Monoclinic, P21Mo Kα radiation
a = 9.6413 (11) ŵ = 0.13 mm1
b = 17.3888 (11) ÅT = 300 K
c = 15.8778 (11) Å0.60 × 0.55 × 0.45 mm
β = 95.373 (8)°
Data collection top
Bruker P4
diffractometer
5554 reflections with I > 2σ(I)
Absorption correction: ψ scan
ψ scans (XSCANS; Siemens, 1996)
Rint = 0.028
Tmin = 0.926, Tmax = 0.9423 standard reflections every 97 reflections
15139 measured reflections intensity decay: 1.5%
7715 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.129Δρmax = 0.28 e Å3
S = 1.03Δρmin = 0.21 e Å3
7715 reflectionsAbsolute structure: Flack (1983), 446 Friedel pairs
633 parametersAbsolute structure parameter: 0.02 (8)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.66156 (7)0.52220 (4)0.14767 (4)0.04806 (17)
N10.7150 (2)0.47541 (15)0.06674 (14)0.0533 (6)
N20.5074 (2)0.47915 (15)0.14649 (13)0.0501 (5)
O10.7542 (2)0.51962 (15)0.22760 (12)0.0636 (5)
O210.5579 (3)0.6556 (2)0.19133 (19)0.0685 (11)0.703 (6)
H210.62330.68020.21860.103*0.703 (6)
O220.7570 (7)0.6618 (4)0.1191 (4)0.061 (2)0.297 (6)
H220.77260.68080.17410.091*0.297 (6)
C10.5928 (3)0.44083 (18)0.01737 (16)0.0517 (6)
H1B0.54890.48230.01740.062*
C20.4916 (3)0.41987 (18)0.08053 (17)0.0513 (6)
H2A0.52320.37110.10680.062*
C30.3489 (3)0.4061 (2)0.0358 (2)0.0683 (9)
H3A0.31330.45340.00970.082*
H3B0.28560.38970.07630.082*
C40.3579 (4)0.3442 (2)0.0317 (2)0.0707 (9)
H4A0.37230.29480.00400.085*
H4B0.26950.34200.06630.085*
C50.4718 (4)0.3568 (2)0.0884 (2)0.0783 (10)
H5A0.44510.39880.12670.094*
H5B0.48060.31100.12230.094*
C60.6127 (4)0.3750 (2)0.0422 (2)0.0702 (9)
H6A0.64890.33040.01070.084*
H6B0.67830.38930.08220.084*
C70.8561 (3)0.4653 (2)0.0416 (2)0.0617 (7)
H7A0.84920.46630.02040.074*
C80.9184 (3)0.3886 (2)0.0691 (3)0.0685 (9)
C90.9185 (4)0.3640 (3)0.1516 (3)0.0917 (12)
H9A0.87690.39400.19070.110*
C100.9812 (5)0.2937 (3)0.1767 (4)0.1134 (17)
H10A0.97930.27680.23220.136*
C111.0455 (5)0.2498 (3)0.1195 (5)0.132 (3)
H11A1.08960.20390.13610.159*
C121.0432 (5)0.2748 (3)0.0380 (5)0.121 (2)
H12A1.08490.24490.00110.145*
C130.9815 (4)0.3425 (3)0.0124 (3)0.0917 (13)
H13A0.98170.35800.04370.110*
C140.9531 (3)0.5315 (2)0.0730 (3)0.0778 (10)
H14A0.91170.57970.05490.117*
H14B1.04120.52580.05000.117*
H14C0.96700.53030.13360.117*
C150.4451 (3)0.4689 (2)0.22828 (18)0.0606 (8)
H15A0.50060.50080.26980.073*
C160.4618 (4)0.3868 (2)0.25939 (18)0.0637 (8)
C170.5935 (4)0.3611 (3)0.2895 (2)0.0792 (10)
H17A0.66790.39540.29210.095*
C180.6169 (5)0.2867 (3)0.3157 (2)0.0935 (13)
H18A0.70610.27130.33600.112*
C190.5115 (6)0.2360 (3)0.3119 (2)0.0938 (13)
H19A0.52840.18520.32820.113*
C200.3788 (5)0.2589 (3)0.2839 (3)0.0950 (14)
H20A0.30560.22400.28310.114*
C210.3531 (5)0.3349 (3)0.2566 (2)0.0813 (11)
H21B0.26350.35010.23680.098*
C220.2963 (4)0.5007 (3)0.2234 (3)0.0922 (13)
H22B0.29560.55270.20320.138*
H22C0.26350.49950.27870.138*
H22D0.23660.46970.18540.138*
C230.6242 (3)0.62387 (18)0.12136 (19)0.0572 (7)
H2310.71260.65080.11710.069*0.703 (6)
H2320.57690.64650.16740.069*0.297 (6)
C240.5337 (4)0.63508 (19)0.0407 (2)0.0625 (8)
C250.5907 (5)0.6340 (2)0.0365 (2)0.0746 (10)
H25A0.68620.62700.03760.090*
C260.5087 (7)0.6429 (3)0.1110 (3)0.1087 (16)
H26A0.54860.64150.16210.130*
C270.3688 (8)0.6539 (4)0.1106 (4)0.1190 (19)
H27A0.31390.66090.16140.143*
C280.3102 (6)0.6548 (3)0.0374 (4)0.1124 (17)
H28A0.21440.66170.03810.135*
C290.3916 (4)0.6453 (3)0.0413 (3)0.0809 (11)
H29A0.35030.64600.09200.097*
P510.84661 (7)0.74500 (4)0.33839 (4)0.05075 (19)
N510.9885 (2)0.79776 (15)0.35503 (14)0.0547 (6)
N520.7646 (2)0.78184 (15)0.41630 (14)0.0511 (5)
O510.7715 (2)0.74788 (16)0.25253 (11)0.0687 (6)
O710.7506 (3)0.60746 (19)0.36671 (19)0.0717 (10)0.779 (6)
H710.75320.57760.31500.108*0.779 (6)
O720.9494 (13)0.6073 (8)0.3006 (8)0.088 (4)0.221 (6)
H720.90050.57790.28500.131*0.221 (6)
C510.9963 (3)0.82818 (19)0.44201 (18)0.0547 (7)
H51B1.03210.78630.47920.066*
C520.8487 (3)0.84222 (18)0.46154 (17)0.0526 (6)
H52A0.81980.89130.43500.063*
C530.8406 (4)0.8517 (2)0.5547 (2)0.0732 (9)
H53A0.86940.80450.58390.088*
H53B0.74550.86290.56590.088*
C540.9359 (4)0.9174 (2)0.5863 (2)0.0761 (10)
H54A0.89470.96550.56560.091*
H54B0.94110.91870.64760.091*
C551.0814 (4)0.9122 (2)0.5598 (2)0.0809 (11)
H55A1.13030.87100.59120.097*
H55B1.13010.95980.57480.097*
C561.0866 (4)0.8977 (2)0.4656 (2)0.0732 (9)
H56A1.05190.94230.43340.088*
H56B1.18170.88810.45330.088*
C571.0938 (3)0.8155 (2)0.2966 (2)0.0641 (8)
H57A1.18420.81850.33020.077*
C581.0679 (4)0.8928 (2)0.25314 (19)0.0650 (8)
C590.9345 (4)0.9152 (3)0.2208 (2)0.0820 (11)
H59A0.85990.88250.22740.098*
C600.9101 (6)0.9842 (3)0.1795 (3)0.1043 (15)
H60A0.81970.99790.15940.125*
C611.0153 (8)1.0312 (3)0.1682 (3)0.1175 (18)
H61A0.99821.07700.13890.141*
C621.1533 (7)1.0126 (3)0.2004 (3)0.119 (2)
H62A1.22661.04610.19340.142*
C631.1767 (5)0.9416 (3)0.2434 (2)0.0922 (13)
H63A1.26640.92810.26510.111*
C641.1050 (5)0.7530 (3)0.2298 (3)0.0935 (12)
H64A1.12140.70420.25720.140*
H64B1.18090.76470.19690.140*
H64C1.01980.75080.19340.140*
C650.6095 (3)0.7853 (2)0.4069 (2)0.0627 (8)
H65A0.57970.76370.35110.075*
C660.5577 (3)0.8682 (2)0.4053 (2)0.0629 (8)
C670.5752 (4)0.9135 (3)0.3355 (3)0.0778 (10)
H67A0.61760.89300.29030.093*
C680.5297 (4)0.9900 (3)0.3325 (4)0.1029 (15)
H68A0.54261.02060.28580.123*
C690.4656 (4)1.0193 (3)0.3996 (4)0.1050 (15)
H69A0.43501.07000.39750.126*
C700.4462 (4)0.9766 (3)0.4676 (4)0.1007 (15)
H70A0.40270.99740.51220.121*
C710.4920 (4)0.9007 (3)0.4706 (3)0.0830 (11)
H71B0.47820.87100.51780.100*
C720.5490 (4)0.7330 (3)0.4716 (3)0.0980 (14)
H72B0.58740.68230.46800.147*
H72C0.44960.73070.46010.147*
H72D0.57220.75320.52750.147*
C730.8834 (3)0.64337 (19)0.3659 (2)0.0604 (7)
H7310.93270.61990.32110.072*0.779 (6)
H7320.79390.61750.36980.072*0.221 (6)
C740.9696 (4)0.63264 (18)0.4495 (2)0.0662 (9)
C751.1139 (4)0.6314 (2)0.4532 (3)0.0866 (12)
H75A1.15740.63690.40370.104*
C761.1948 (6)0.6220 (3)0.5299 (4)0.1175 (19)
H76A1.29150.62190.53170.141*
C771.1304 (7)0.6127 (3)0.6030 (4)0.119 (2)
H77A1.18400.60530.65420.143*
C780.9899 (7)0.6143 (3)0.6010 (3)0.1100 (17)
H78A0.94770.60840.65090.132*
C790.9059 (5)0.6247 (2)0.5232 (2)0.0830 (11)
H79A0.80930.62610.52220.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0485 (4)0.0479 (4)0.0460 (3)0.0044 (3)0.0057 (3)0.0060 (3)
N10.0426 (11)0.0590 (15)0.0571 (13)0.0018 (11)0.0016 (9)0.0127 (11)
N20.0510 (12)0.0526 (14)0.0460 (11)0.0038 (11)0.0001 (9)0.0051 (10)
O10.0642 (12)0.0688 (13)0.0538 (10)0.0062 (12)0.0166 (9)0.0098 (11)
O210.073 (2)0.063 (2)0.0673 (19)0.0007 (17)0.0074 (15)0.0196 (16)
O220.069 (5)0.048 (4)0.065 (4)0.020 (3)0.003 (3)0.010 (3)
C10.0554 (15)0.0523 (16)0.0466 (13)0.0113 (13)0.0001 (11)0.0042 (12)
C20.0518 (15)0.0504 (16)0.0508 (14)0.0058 (12)0.0007 (11)0.0058 (12)
C30.0605 (18)0.072 (2)0.0698 (19)0.0187 (16)0.0073 (14)0.0065 (17)
C40.075 (2)0.062 (2)0.0706 (19)0.0185 (17)0.0181 (16)0.0090 (17)
C50.107 (3)0.068 (2)0.0563 (17)0.013 (2)0.0112 (18)0.0190 (17)
C60.075 (2)0.073 (2)0.0626 (18)0.0089 (18)0.0064 (15)0.0221 (17)
C70.0531 (15)0.067 (2)0.0659 (17)0.0060 (15)0.0121 (13)0.0028 (15)
C80.0414 (14)0.066 (2)0.098 (3)0.0026 (15)0.0050 (15)0.0074 (19)
C90.073 (2)0.084 (3)0.116 (3)0.012 (2)0.003 (2)0.013 (3)
C100.091 (3)0.089 (4)0.154 (5)0.006 (3)0.019 (3)0.032 (3)
C110.074 (3)0.056 (3)0.260 (8)0.003 (2)0.020 (4)0.016 (4)
C120.074 (3)0.068 (3)0.222 (7)0.003 (2)0.020 (4)0.034 (4)
C130.0543 (19)0.078 (3)0.146 (4)0.0033 (19)0.025 (2)0.027 (3)
C140.0536 (17)0.076 (2)0.103 (3)0.0115 (17)0.0045 (17)0.004 (2)
C150.0590 (17)0.070 (2)0.0533 (15)0.0037 (15)0.0106 (13)0.0054 (15)
C160.077 (2)0.073 (2)0.0418 (13)0.0081 (18)0.0110 (13)0.0002 (14)
C170.087 (2)0.084 (3)0.0639 (19)0.007 (2)0.0037 (17)0.0148 (19)
C180.115 (3)0.089 (3)0.073 (2)0.000 (3)0.012 (2)0.021 (2)
C190.137 (4)0.078 (3)0.065 (2)0.006 (3)0.008 (2)0.009 (2)
C200.118 (3)0.087 (3)0.082 (2)0.037 (3)0.025 (2)0.004 (2)
C210.089 (2)0.091 (3)0.065 (2)0.014 (2)0.0149 (18)0.001 (2)
C220.072 (2)0.103 (3)0.106 (3)0.016 (2)0.034 (2)0.005 (2)
C230.0624 (17)0.0471 (17)0.0605 (16)0.0070 (14)0.0028 (14)0.0106 (14)
C240.075 (2)0.0404 (17)0.0687 (19)0.0061 (15)0.0076 (16)0.0008 (14)
C250.099 (3)0.057 (2)0.067 (2)0.007 (2)0.0013 (18)0.0078 (17)
C260.162 (5)0.088 (3)0.072 (3)0.001 (3)0.010 (3)0.020 (2)
C270.158 (5)0.097 (4)0.092 (3)0.000 (4)0.043 (3)0.017 (3)
C280.101 (3)0.092 (3)0.134 (4)0.011 (3)0.045 (3)0.006 (3)
C290.074 (2)0.074 (2)0.091 (3)0.009 (2)0.0097 (19)0.008 (2)
P510.0585 (4)0.0482 (4)0.0442 (3)0.0088 (3)0.0023 (3)0.0045 (3)
N510.0581 (13)0.0534 (14)0.0523 (12)0.0134 (11)0.0035 (10)0.0044 (11)
N520.0499 (12)0.0521 (13)0.0504 (12)0.0077 (11)0.0007 (9)0.0046 (11)
O510.0856 (14)0.0712 (14)0.0459 (10)0.0125 (13)0.0119 (9)0.0047 (11)
O710.080 (2)0.0625 (19)0.0710 (18)0.0206 (16)0.0010 (15)0.0107 (15)
O720.090 (8)0.077 (8)0.097 (9)0.009 (7)0.016 (6)0.037 (7)
C510.0521 (15)0.0542 (17)0.0558 (15)0.0076 (13)0.0061 (12)0.0093 (13)
C520.0556 (15)0.0500 (16)0.0506 (14)0.0083 (13)0.0037 (11)0.0066 (12)
C530.082 (2)0.079 (2)0.0571 (17)0.0022 (19)0.0015 (15)0.0171 (18)
C540.097 (3)0.069 (2)0.0586 (18)0.003 (2)0.0114 (17)0.0190 (17)
C550.088 (3)0.061 (2)0.086 (2)0.0129 (19)0.031 (2)0.0168 (19)
C560.075 (2)0.063 (2)0.080 (2)0.0190 (18)0.0039 (17)0.0131 (17)
C570.0539 (16)0.070 (2)0.0694 (18)0.0017 (15)0.0109 (14)0.0052 (16)
C580.076 (2)0.067 (2)0.0538 (15)0.0171 (17)0.0174 (15)0.0018 (15)
C590.089 (3)0.074 (2)0.083 (2)0.002 (2)0.0070 (19)0.022 (2)
C600.134 (4)0.081 (3)0.097 (3)0.001 (3)0.005 (3)0.025 (3)
C610.190 (6)0.081 (3)0.082 (3)0.022 (4)0.013 (3)0.009 (3)
C620.172 (5)0.091 (4)0.099 (3)0.069 (4)0.043 (3)0.001 (3)
C630.098 (3)0.102 (3)0.080 (2)0.036 (3)0.030 (2)0.006 (2)
C640.114 (3)0.084 (3)0.089 (3)0.015 (3)0.043 (2)0.000 (2)
C650.0505 (15)0.072 (2)0.0647 (17)0.0140 (15)0.0030 (13)0.0010 (16)
C660.0437 (15)0.072 (2)0.0720 (18)0.0080 (14)0.0000 (13)0.0034 (17)
C670.0595 (19)0.087 (3)0.085 (2)0.0006 (19)0.0030 (16)0.015 (2)
C680.076 (3)0.103 (4)0.127 (4)0.003 (3)0.005 (3)0.036 (3)
C690.067 (2)0.077 (3)0.173 (5)0.002 (2)0.019 (3)0.000 (4)
C700.070 (2)0.094 (4)0.142 (4)0.002 (2)0.029 (3)0.027 (3)
C710.063 (2)0.093 (3)0.095 (3)0.011 (2)0.0183 (18)0.004 (2)
C720.083 (3)0.087 (3)0.128 (4)0.018 (2)0.030 (2)0.016 (3)
C730.0682 (19)0.0473 (17)0.0645 (17)0.0086 (15)0.0005 (15)0.0095 (14)
C740.082 (2)0.0323 (15)0.081 (2)0.0052 (15)0.0132 (18)0.0015 (15)
C750.083 (3)0.062 (2)0.111 (3)0.000 (2)0.017 (2)0.008 (2)
C760.094 (3)0.091 (3)0.157 (5)0.010 (3)0.046 (3)0.027 (4)
C770.142 (5)0.089 (3)0.114 (4)0.020 (3)0.055 (4)0.023 (3)
C780.152 (5)0.091 (3)0.079 (3)0.017 (3)0.033 (3)0.018 (2)
C790.104 (3)0.070 (2)0.071 (2)0.010 (2)0.011 (2)0.0096 (19)
Geometric parameters (Å, º) top
P1—O11.4823 (18)P51—O511.4833 (19)
P1—N11.644 (2)P51—N511.648 (2)
P1—N21.663 (2)P51—N521.658 (2)
P1—C231.844 (3)P51—C731.847 (4)
N1—C71.464 (4)N51—C571.471 (4)
N1—C11.480 (3)N51—C511.474 (4)
N2—C21.467 (4)N52—C521.472 (4)
N2—C151.491 (4)N52—C651.490 (4)
O21—C231.443 (4)O71—C731.426 (4)
O21—H210.8475O71—H710.9738
O22—C231.444 (7)O72—C731.412 (12)
O22—H220.9332O72—H720.7227
C1—C61.508 (4)C51—C521.505 (4)
C1—C21.508 (4)C51—C561.516 (4)
C1—H1B0.9800C51—H51B0.9800
C2—C31.506 (4)C52—C531.498 (4)
C2—H2A0.9800C52—H52A0.9800
C3—C41.528 (5)C53—C541.522 (5)
C3—H3A0.9700C53—H53A0.9700
C3—H3B0.9700C53—H53B0.9700
C4—C51.500 (5)C54—C551.504 (6)
C4—H4A0.9700C54—H54A0.9700
C4—H4B0.9700C54—H54B0.9700
C5—C61.516 (5)C55—C561.522 (5)
C5—H5A0.9700C55—H55A0.9700
C5—H5B0.9700C55—H55B0.9700
C6—H6A0.9700C56—H56A0.9700
C6—H6B0.9700C56—H56B0.9700
C7—C81.511 (5)C57—C581.522 (5)
C7—C141.536 (5)C57—C641.529 (5)
C7—H7A0.9800C57—H57A0.9800
C8—C91.377 (6)C58—C631.368 (5)
C8—C131.387 (5)C58—C591.395 (5)
C9—C101.405 (7)C59—C601.378 (6)
C9—H9A0.9300C59—H59A0.9300
C10—C111.378 (8)C60—C611.328 (8)
C10—H10A0.9300C60—H60A0.9300
C11—C121.363 (8)C61—C621.417 (8)
C11—H11A0.9300C61—H61A0.9300
C12—C131.365 (8)C62—C631.420 (8)
C12—H12A0.9300C62—H62A0.9300
C13—H13A0.9300C63—H63A0.9300
C14—H14A0.9600C64—H64A0.9600
C14—H14B0.9600C64—H64B0.9600
C14—H14C0.9600C64—H64C0.9600
C15—C161.514 (5)C65—C661.524 (5)
C15—C221.533 (5)C65—C721.528 (5)
C15—H15A0.9800C65—H65A0.9800
C16—C211.381 (5)C66—C671.383 (5)
C16—C171.388 (5)C66—C711.385 (5)
C17—C181.372 (7)C67—C681.400 (7)
C17—H17A0.9300C67—H67A0.9300
C18—C191.342 (7)C68—C691.379 (7)
C18—H18A0.9300C68—H68A0.9300
C19—C201.374 (7)C69—C701.338 (7)
C19—H19A0.9300C69—H69A0.9300
C20—C211.405 (7)C70—C711.390 (7)
C20—H20A0.9300C70—H70A0.9300
C21—H21B0.9300C71—H71B0.9300
C22—H22B0.9600C72—H72B0.9600
C22—H22C0.9600C72—H72C0.9600
C22—H22D0.9600C72—H72D0.9600
C23—C241.494 (4)C73—C741.511 (4)
C23—H2310.9800C73—H7310.9800
C23—H2320.9800C73—H7320.9800
C24—C291.382 (5)C74—C791.380 (6)
C24—C251.390 (5)C74—C751.387 (6)
C25—C261.369 (6)C75—C761.394 (6)
C25—H25A0.9300C75—H75A0.9300
C26—C271.363 (8)C76—C771.375 (9)
C26—H26A0.9300C76—H76A0.9300
C27—C281.340 (8)C77—C781.353 (8)
C27—H27A0.9300C77—H77A0.9300
C28—C291.422 (6)C78—C791.423 (6)
C28—H28A0.9300C78—H78A0.9300
C29—H29A0.9300C79—H79A0.9300
O1—P1—N1116.53 (12)O51—P51—N51117.07 (13)
O1—P1—N2117.52 (12)O51—P51—N52116.53 (13)
N1—P1—N296.51 (12)N51—P51—N5296.44 (12)
O1—P1—C23108.18 (14)O51—P51—C73108.41 (15)
N1—P1—C23111.47 (14)N51—P51—C73110.89 (14)
N2—P1—C23105.89 (13)N52—P51—C73106.73 (14)
C7—N1—C1121.4 (2)C57—N51—C51122.6 (2)
C7—N1—P1129.76 (19)C57—N51—P51128.8 (2)
C1—N1—P1108.86 (17)C51—N51—P51108.58 (18)
C2—N2—C15121.0 (2)C52—N52—C65121.5 (2)
C2—N2—P1110.93 (18)C52—N52—P51111.10 (17)
C15—N2—P1118.42 (18)C65—N52—P51119.03 (19)
C23—O21—H21103.0C73—O71—H7197.5
C23—O22—H22101.8C73—O72—H72104.0
N1—C1—C6119.9 (3)N51—C51—C52106.6 (2)
N1—C1—C2106.2 (2)N51—C51—C56119.7 (3)
C6—C1—C2111.2 (3)C52—C51—C56110.6 (3)
N1—C1—H1B106.2N51—C51—H51B106.4
C6—C1—H1B106.2C52—C51—H51B106.4
C2—C1—H1B106.2C56—C51—H51B106.4
N2—C2—C3118.5 (3)N52—C52—C53118.9 (3)
N2—C2—C1105.9 (2)N52—C52—C51105.8 (2)
C3—C2—C1110.1 (2)C53—C52—C51111.1 (2)
N2—C2—H2A107.3N52—C52—H52A106.8
C3—C2—H2A107.3C53—C52—H52A106.8
C1—C2—H2A107.3C51—C52—H52A106.8
C2—C3—C4109.5 (3)C52—C53—C54108.8 (3)
C2—C3—H3A109.8C52—C53—H53A109.9
C4—C3—H3A109.8C54—C53—H53A109.9
C2—C3—H3B109.8C52—C53—H53B109.9
C4—C3—H3B109.8C54—C53—H53B109.9
H3A—C3—H3B108.2H53A—C53—H53B108.3
C5—C4—C3114.3 (3)C55—C54—C53114.3 (3)
C5—C4—H4A108.7C55—C54—H54A108.7
C3—C4—H4A108.7C53—C54—H54A108.7
C5—C4—H4B108.7C55—C54—H54B108.7
C3—C4—H4B108.7C53—C54—H54B108.7
H4A—C4—H4B107.6H54A—C54—H54B107.6
C4—C5—C6114.4 (3)C54—C55—C56113.7 (3)
C4—C5—H5A108.7C54—C55—H55A108.8
C6—C5—H5A108.7C56—C55—H55A108.8
C4—C5—H5B108.7C54—C55—H55B108.8
C6—C5—H5B108.7C56—C55—H55B108.8
H5A—C5—H5B107.6H55A—C55—H55B107.7
C1—C6—C5107.6 (3)C51—C56—C55107.7 (3)
C1—C6—H6A110.2C51—C56—H56A110.2
C5—C6—H6A110.2C55—C56—H56A110.2
C1—C6—H6B110.2C51—C56—H56B110.2
C5—C6—H6B110.2C55—C56—H56B110.2
H6A—C6—H6B108.5H56A—C56—H56B108.5
N1—C7—C8112.5 (3)N51—C57—C58112.2 (3)
N1—C7—C14112.0 (3)N51—C57—C64112.7 (3)
C8—C7—C14110.7 (3)C58—C57—C64109.4 (3)
N1—C7—H7A107.1N51—C57—H57A107.4
C8—C7—H7A107.1C58—C57—H57A107.4
C14—C7—H7A107.1C64—C57—H57A107.4
C9—C8—C13118.5 (4)C63—C58—C59118.4 (4)
C9—C8—C7120.9 (3)C63—C58—C57120.3 (4)
C13—C8—C7120.6 (4)C59—C58—C57121.3 (3)
C8—C9—C10120.2 (5)C60—C59—C58121.9 (4)
C8—C9—H9A119.9C60—C59—H59A119.1
C10—C9—H9A119.9C58—C59—H59A119.1
C11—C10—C9120.2 (6)C61—C60—C59120.1 (5)
C11—C10—H10A119.9C61—C60—H60A119.9
C9—C10—H10A119.9C59—C60—H60A119.9
C12—C11—C10118.7 (5)C60—C61—C62120.9 (5)
C12—C11—H11A120.6C60—C61—H61A119.5
C10—C11—H11A120.6C62—C61—H61A119.5
C11—C12—C13121.8 (5)C61—C62—C63118.3 (5)
C11—C12—H12A119.1C61—C62—H62A120.9
C13—C12—H12A119.1C63—C62—H62A120.9
C12—C13—C8120.6 (5)C58—C63—C62120.3 (5)
C12—C13—H13A119.7C58—C63—H63A119.9
C8—C13—H13A119.7C62—C63—H63A119.9
C7—C14—H14A109.5C57—C64—H64A109.5
C7—C14—H14B109.5C57—C64—H64B109.5
H14A—C14—H14B109.5H64A—C64—H64B109.5
C7—C14—H14C109.5C57—C64—H64C109.5
H14A—C14—H14C109.5H64A—C64—H64C109.5
H14B—C14—H14C109.5H64B—C64—H64C109.5
N2—C15—C16110.9 (3)N52—C65—C66111.4 (2)
N2—C15—C22111.4 (3)N52—C65—C72110.5 (3)
C16—C15—C22115.2 (3)C66—C65—C72115.4 (3)
N2—C15—H15A106.2N52—C65—H65A106.3
C16—C15—H15A106.2C66—C65—H65A106.3
C22—C15—H15A106.2C72—C65—H65A106.3
C21—C16—C17117.9 (4)C67—C66—C71117.8 (4)
C21—C16—C15123.3 (3)C67—C66—C65119.1 (3)
C17—C16—C15118.8 (3)C71—C66—C65123.1 (3)
C18—C17—C16121.8 (4)C66—C67—C68120.5 (4)
C18—C17—H17A119.1C66—C67—H67A119.8
C16—C17—H17A119.1C68—C67—H67A119.8
C19—C18—C17120.3 (4)C69—C68—C67119.1 (5)
C19—C18—H18A119.9C69—C68—H68A120.4
C17—C18—H18A119.9C67—C68—H68A120.4
C18—C19—C20120.1 (5)C70—C69—C68121.7 (5)
C18—C19—H19A119.9C70—C69—H69A119.2
C20—C19—H19A119.9C68—C69—H69A119.2
C19—C20—C21120.3 (4)C69—C70—C71119.1 (5)
C19—C20—H20A119.9C69—C70—H70A120.5
C21—C20—H20A119.9C71—C70—H70A120.5
C16—C21—C20119.6 (4)C66—C71—C70121.9 (5)
C16—C21—H21B120.2C66—C71—H71B119.1
C20—C21—H21B120.2C70—C71—H71B119.1
C15—C22—H22B109.5C65—C72—H72B109.5
C15—C22—H22C109.5C65—C72—H72C109.5
H22B—C22—H22C109.5H72B—C72—H72C109.5
C15—C22—H22D109.5C65—C72—H72D109.5
H22B—C22—H22D109.5H72B—C72—H72D109.5
H22C—C22—H22D109.5H72C—C72—H72D109.5
O21—C23—O22107.6 (4)O72—C73—O71106.2 (6)
O21—C23—C24110.2 (3)O72—C73—C74109.9 (6)
O22—C23—C24111.6 (4)O71—C73—C74111.0 (3)
O21—C23—P1106.5 (2)O72—C73—P51110.0 (6)
O22—C23—P1106.8 (4)O71—C73—P51105.6 (2)
C24—C23—P1113.9 (2)C74—C73—P51113.8 (2)
O21—C23—H231108.7O71—C73—H731108.8
C24—C23—H231108.7C74—C73—H731108.8
P1—C23—H231108.7P51—C73—H731108.8
O22—C23—H232108.1O72—C73—H732107.6
C24—C23—H232108.1C74—C73—H732107.6
P1—C23—H232108.1P51—C73—H732107.6
H231—C23—H232109.2H731—C73—H732110.2
C29—C24—C25118.9 (3)C79—C74—C75119.1 (4)
C29—C24—C23120.7 (3)C79—C74—C73120.4 (3)
C25—C24—C23120.4 (3)C75—C74—C73120.4 (4)
C26—C25—C24121.1 (5)C74—C75—C76121.1 (5)
C26—C25—H25A119.5C74—C75—H75A119.5
C24—C25—H25A119.5C76—C75—H75A119.5
C27—C26—C25120.3 (5)C77—C76—C75119.5 (5)
C27—C26—H26A119.9C77—C76—H76A120.3
C25—C26—H26A119.9C75—C76—H76A120.3
C28—C27—C26120.2 (5)C78—C77—C76120.5 (5)
C28—C27—H27A119.9C78—C77—H77A119.8
C26—C27—H27A119.9C76—C77—H77A119.8
C27—C28—C29121.3 (5)C77—C78—C79120.7 (5)
C27—C28—H28A119.4C77—C78—H78A119.6
C29—C28—H28A119.4C79—C78—H78A119.6
C24—C29—C28118.3 (5)C74—C79—C78119.1 (5)
C24—C29—H29A120.9C74—C79—H79A120.4
C28—C29—H29A120.9C78—C79—H79A120.4
O1—P1—N1—C736.0 (3)O51—P51—N51—C5735.3 (3)
N2—P1—N1—C7161.2 (3)N52—P51—N51—C57159.5 (3)
C23—P1—N1—C788.9 (3)C73—P51—N51—C5789.8 (3)
O1—P1—N1—C1143.7 (2)O51—P51—N51—C51143.8 (2)
N2—P1—N1—C118.5 (2)N52—P51—N51—C5119.6 (2)
C23—P1—N1—C191.5 (2)C73—P51—N51—C5191.1 (2)
O1—P1—N2—C2122.0 (2)O51—P51—N52—C52123.7 (2)
N1—P1—N2—C22.5 (2)N51—P51—N52—C521.0 (2)
C23—P1—N2—C2117.1 (2)C73—P51—N52—C52115.1 (2)
O1—P1—N2—C1524.5 (3)O51—P51—N52—C6525.0 (3)
N1—P1—N2—C15149.0 (2)N51—P51—N52—C65149.6 (2)
C23—P1—N2—C1596.5 (2)C73—P51—N52—C6596.3 (2)
C7—N1—C1—C619.5 (4)C57—N51—C51—C52145.4 (3)
P1—N1—C1—C6160.3 (2)P51—N51—C51—C5233.8 (3)
C7—N1—C1—C2146.4 (3)C57—N51—C51—C5619.1 (5)
P1—N1—C1—C233.3 (3)P51—N51—C51—C56160.1 (3)
C15—N2—C2—C368.4 (4)C65—N52—C52—C5366.1 (4)
P1—N2—C2—C3146.2 (2)P51—N52—C52—C53146.1 (3)
C15—N2—C2—C1167.4 (2)C65—N52—C52—C51168.2 (3)
P1—N2—C2—C122.0 (3)P51—N52—C52—C5120.5 (3)
N1—C1—C2—N234.2 (3)N51—C51—C52—N5233.6 (3)
C6—C1—C2—N2166.2 (2)C56—C51—C52—N52165.2 (3)
N1—C1—C2—C3163.4 (3)N51—C51—C52—C53163.9 (3)
C6—C1—C2—C364.5 (4)C56—C51—C52—C5364.5 (4)
N2—C2—C3—C4178.2 (3)N52—C52—C53—C54179.8 (3)
C1—C2—C3—C456.1 (4)C51—C52—C53—C5457.1 (4)
C2—C3—C4—C548.9 (4)C52—C53—C54—C5550.2 (4)
C3—C4—C5—C648.5 (5)C53—C54—C55—C5649.7 (5)
N1—C1—C6—C5175.3 (3)N51—C51—C56—C55176.3 (3)
C2—C1—C6—C560.1 (4)C52—C51—C56—C5559.3 (4)
C4—C5—C6—C152.1 (4)C54—C55—C56—C5152.3 (4)
C1—N1—C7—C880.6 (4)C51—N51—C57—C5882.3 (4)
P1—N1—C7—C899.1 (3)P51—N51—C57—C5896.7 (3)
C1—N1—C7—C14154.0 (3)C51—N51—C57—C64153.5 (3)
P1—N1—C7—C1426.4 (4)P51—N51—C57—C6427.4 (4)
N1—C7—C8—C950.9 (4)N51—C57—C58—C63137.8 (3)
C14—C7—C8—C975.3 (4)C64—C57—C58—C6396.3 (4)
N1—C7—C8—C13131.5 (3)N51—C57—C58—C5943.6 (4)
C14—C7—C8—C13102.4 (4)C64—C57—C58—C5982.3 (4)
C13—C8—C9—C100.1 (6)C63—C58—C59—C600.3 (6)
C7—C8—C9—C10177.8 (3)C57—C58—C59—C60178.3 (4)
C8—C9—C10—C111.3 (7)C58—C59—C60—C611.0 (7)
C9—C10—C11—C121.9 (7)C59—C60—C61—C621.8 (8)
C10—C11—C12—C131.2 (8)C60—C61—C62—C631.3 (8)
C11—C12—C13—C80.0 (7)C59—C58—C63—C620.8 (6)
C9—C8—C13—C120.6 (6)C57—C58—C63—C62177.9 (4)
C7—C8—C13—C12177.1 (3)C61—C62—C63—C580.0 (7)
C2—N2—C15—C1640.1 (3)C52—N52—C65—C6629.5 (4)
P1—N2—C15—C16102.9 (3)P51—N52—C65—C66115.8 (3)
C2—N2—C15—C2289.7 (4)C52—N52—C65—C72100.2 (4)
P1—N2—C15—C22127.3 (3)P51—N52—C65—C72114.6 (3)
N2—C15—C16—C21106.4 (3)N52—C65—C66—C6770.6 (4)
C22—C15—C16—C2121.3 (4)C72—C65—C66—C67162.4 (3)
N2—C15—C16—C1771.3 (3)N52—C65—C66—C71110.0 (3)
C22—C15—C16—C17161.0 (3)C72—C65—C66—C7117.0 (5)
C21—C16—C17—C180.3 (5)C71—C66—C67—C681.0 (5)
C15—C16—C17—C18177.5 (3)C65—C66—C67—C68179.5 (3)
C16—C17—C18—C190.6 (6)C66—C67—C68—C690.8 (6)
C17—C18—C19—C201.7 (7)C67—C68—C69—C700.2 (7)
C18—C19—C20—C212.0 (6)C68—C69—C70—C710.0 (7)
C17—C16—C21—C200.0 (5)C67—C66—C71—C700.8 (5)
C15—C16—C21—C20177.6 (3)C65—C66—C71—C70179.8 (3)
C19—C20—C21—C161.1 (6)C69—C70—C71—C660.2 (6)
O1—P1—C23—O2159.6 (2)O51—P51—C73—O7251.7 (6)
N1—P1—C23—O21171.04 (19)N51—P51—C73—O7278.1 (6)
N2—P1—C23—O2167.2 (2)N52—P51—C73—O72178.0 (6)
O1—P1—C23—O2255.2 (4)O51—P51—C73—O7162.4 (2)
N1—P1—C23—O2274.2 (3)N51—P51—C73—O71167.7 (2)
N2—P1—C23—O22178.0 (3)N52—P51—C73—O7163.8 (2)
O1—P1—C23—C24178.8 (2)O51—P51—C73—C74175.6 (2)
N1—P1—C23—C2449.4 (3)N51—P51—C73—C7445.7 (3)
N2—P1—C23—C2454.4 (3)N52—P51—C73—C7458.2 (3)
O21—C23—C24—C2923.2 (5)O72—C73—C74—C79146.0 (7)
O22—C23—C24—C29142.6 (5)O71—C73—C74—C7928.8 (4)
P1—C23—C24—C2996.4 (4)P51—C73—C74—C7990.1 (4)
O21—C23—C24—C25158.0 (3)O72—C73—C74—C7534.6 (7)
O22—C23—C24—C2538.6 (5)O71—C73—C74—C75151.8 (3)
P1—C23—C24—C2582.4 (4)P51—C73—C74—C7589.3 (4)
C29—C24—C25—C260.1 (6)C79—C74—C75—C760.2 (6)
C23—C24—C25—C26178.9 (4)C73—C74—C75—C76179.6 (4)
C24—C25—C26—C270.7 (8)C74—C75—C76—C770.9 (8)
C25—C26—C27—C281.1 (9)C75—C76—C77—C781.4 (9)
C26—C27—C28—C290.8 (10)C76—C77—C78—C790.7 (9)
C25—C24—C29—C280.4 (6)C75—C74—C79—C780.9 (6)
C23—C24—C29—C28179.2 (4)C73—C74—C79—C78179.7 (4)
C27—C28—C29—C240.1 (8)C77—C78—C79—C740.5 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O21—H21···O510.851.892.718 (4)165
O22—H22···O510.931.712.587 (7)156
O71—H71···O10.971.722.688 (4)176
O72—H72···O10.721.902.608 (12)167

Experimental details

Crystal data
Chemical formulaC29H35N2O2P
Mr474.56
Crystal system, space groupMonoclinic, P21
Temperature (K)300
a, b, c (Å)9.6413 (11), 17.3888 (11), 15.8778 (11)
β (°) 95.373 (8)
V3)2650.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.60 × 0.55 × 0.45
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionψ scan
ψ scans (XSCANS; Siemens, 1996)
Tmin, Tmax0.926, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
15139, 7715, 5554
Rint0.028
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.129, 1.03
No. of reflections7715
No. of parameters633
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.21
Absolute structureFlack (1983), 446 Friedel pairs
Absolute structure parameter0.02 (8)

Computer programs: XSCANS (Siemens, 1996), XSCANS, SHELXTL-Plus (Sheldrick, 1998), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997).

Selected geometric parameters (Å, º) top
P1—O11.4823 (18)C23—C241.494 (4)
P1—N11.644 (2)P51—O511.4833 (19)
P1—N21.663 (2)P51—N511.648 (2)
P1—C231.844 (3)P51—N521.658 (2)
O21—C231.443 (4)P51—C731.847 (4)
O21—H210.8475O71—C731.426 (4)
O22—C231.444 (7)O72—C731.412 (12)
O22—H220.9332C73—C741.511 (4)
O1—P1—N1116.53 (12)O51—P51—N51117.07 (13)
O1—P1—N2117.52 (12)O51—P51—N52116.53 (13)
N1—P1—N296.51 (12)N51—P51—N5296.44 (12)
O1—P1—C23108.18 (14)O51—P51—C73108.41 (15)
N1—P1—C23111.47 (14)N51—P51—C73110.89 (14)
N2—P1—C23105.89 (13)N52—P51—C73106.73 (14)
O21—C23—O22107.6 (4)O72—C73—O71106.2 (6)
O21—C23—C24110.2 (3)O72—C73—C74109.9 (6)
O22—C23—C24111.6 (4)O71—C73—C74111.0 (3)
O21—C23—P1106.5 (2)O72—C73—P51110.0 (6)
O22—C23—P1106.8 (4)O71—C73—P51105.6 (2)
C24—C23—P1113.9 (2)C74—C73—P51113.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O21—H21···O510.851.892.718 (4)165
O22—H22···O510.931.712.587 (7)156
O71—H71···O10.971.722.688 (4)176
O72—H72···O10.721.902.608 (12)167
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds