Download citation
Download citation
link to html
The title polymeric complex, poly­[tetraaquatricadmium(II)-hexa-[mu]-nicotinato], [Cd3(C6H4NO2)6(H2O)4]n, exhibits two types of metal centers, i.e. a seven-coordinated Cd atom and a six-coordinated Cd atom located on an inversion center. The seven-coordinated Cd atoms are linked by [kappa]3N:O,O'-nicotinate bridges into one-dimensional chains that are further linked by [kappa]2N,O-nicotinate-Cd2-[kappa]2N,O-nicotinate bridges into a two-dimensional network which is parallel to the xy plane and which contains large 24- and 36-membered rings.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103016731/sk1659sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103016731/sk1659Isup2.hkl
Contains datablock I

CCDC reference: 221066

Comment top

The m-pyridinecarboxylate (nicotinato group) as a useful bis/tridentate ligand has been used to build coordination polymers for exploring non-linear optical and magnetic materials in recent years (Lin, et al., 2000; Chen et al., 2001; Evans & Lin 2001). In these reported coordination polymers, the metal atoms exhibit different types of coordination geometry, viz. pentagonal bipyramidal in poly[aquacadmium-bis(η-nicotinato] (Clegg et al., 1995), octahedral in poly[manganese-bis(η-nicotinato)] (Wang et al., 2002) and distorted square pyramidal in two three-dimensional coordination polymers built from a nicotinato group and binuclear copper(II)/cadmium(II), namely poly[copper(II)/cadmium(II)–bis(η-nicotinato] (Lu & Babb. 2001; Lu & Kohler, 2002). Only one type of metal center is found in all of the coordination polymers mentioned above.

In this work, we report a new two-dimensional CdII coordination polymer, viz. poly[tricadmium(II)hexa(nicotinato)tetrahydrate], (I), featuring a binuclear CdII unit with both seven- and six-coordination geometries. The seven-coordinated Cd1 atom in (I) shows a very distorted pentagonal bipiramidal coordination environment. Four O atoms of two nicotinato groups [Cd1—O1 = 2.348 (4) Å, Cd1—O2 = 2.539 (5) Å, Cd1—O3e = 2.483 (4) Å and Cd1—O4e = 2.367 (4) Å; symmetry code: (e) x,1 + y,z; Fig. 1] and a nicotinato N atom [Cd1—N2 = 2.396 (4) Å] are located at the equatorial positions, and an O atom from a coordinated water molecule [Cd1—O1w =2.292 (4) Å] and an N atom of another nicotinato group [Cd1—N3a = 2.422 (4) Å; symmetry code: (a) 1 − x,-y,1 − z; Fig. 1] at the apical positions. At the equatorial positions, the coordinating O and N atoms are almost coplanar and atom Cd1 is 0.288 Å above the plane; however, the alignment of the N and O atoms at the apical positions deviates from 180° [N3a—Cd1—O1w = 163.72 (13) °]. On the other hand, the coordination environment of atom Cd2, located on an inversion centre, is distorted octahedral. Atom Cd2 is coordinated by two N atoms from two nicotinato groups [Cd2—N1 = 2.325 (5) Å] and two O atoms from another two nicotinato groups [Cd2—O5 = 2.268 (4) Å] at the equatorial positions, and two water molecules [Cd2—O2w = 2.377 (4) Å] at the apical positions.

The adjacent Cd1 ions are bonded by η-N,O2-nicotinato bridges, thus forming infinite one-dimensional chains. These chains are linked by η-N,O-nicotinato-Cd2—N,O-nicotinato bridges into two-dimensional zigzag sheets. In these two-dimensional sheets, large 36-membered rings with Cd—Cd separations (17.82 Å long and 8.195 Å wide) are formed. Two zigzag sheets are then connected together by common Cd1 atoms via covalent bonds, thus forming double-layered sheets containing 24-membered rings (Fig. 2). The 36- and 24-membered rings in (I) are larger than the 24- and eight-membered rings in the two three-dimensional coordination polymers poly[copper(II)/cadmium(II)—bis(η-nicotinato] (Lu & Babb, 2001; Lu & Kohler, 2002). Finally, the two-dimensional double-layered sheets are further linked by hydrogen bonds between O atoms from both lattice water molecules and the coordinated nicotinato groups [O1w—O4b = 2.751 (5) Å, O1w—O2wc = 2.847 (5) Å, O2w—O2d = 2.712 (6) Å, O2w—O6 = 2.677 (6) Å; symmetry codes: (b) 1/2 − x, 1/2 + y, 3/2 − z; (c) 1/2 + x, −1/2 − y, 1/2 + z; (d) −x, −y, 1 − z] into a three-dimensional network.

Experimental top

An aqueous solution (9 ml) of Cd(NO3)2 (0.5 mmol) and nicotinatic acid (1.0 mmol) was placed in a Parr Teflon-lined stainless steel vessel (23 ml). The pH of solution was adjusted to ca 8.0 by adding an aqueous solution (0.2 M) of sodium hydrate. The vessel was sealed and heated at 423 K for 24 h and then cooled at the rate of 5 K h−1 to 353 K. The vessel was maintained at this temperature for 10 h and then cooled slowly to room temperature. Pale yellow crystals suitable for X-ray diffraction were obtained in 39% yield based on Cd(NO3)2. Analysis calculated for C36H32Cd3N6O16: C 37.87, H 2.82, N 7.36%; found: C 37.93, H 2.91, N 7.19%. IR (cm−1): 3265 (s), 1611 (s), 1566 (s), 1387 (versus), 1050 (m), 842 (m), 765 (m), 699 (m).

Refinement top

The structure was solved by direct methods (Sheldrick, 1990). H atoms of the diamine ligand were placed in calculated positions, with fixed isotropic displacement parameters, and were allowed to ride on their respective parent atoms. Refinements were carried out on a PC-586 computer.

Computing details top

Data collection: SHELXTL-Plus (Siemens, 1990); cell refinement: SHELXTL-Plus; data reduction: SHELXTL-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus; software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The coordination environment in (I), showing displacement ellipsoids at the 30% probability level. [Symmetry codes: (a) 1 − x,-y,1 − z; (e) x,1 + y,z; (f) −x,-1 − y,1 − z.]
[Figure 2] Fig. 2. A view of the three-dimensional framework of (I). The nicotinato groups are represented by Y-shaped sticks for clarity.
poly[hexa(nicotinato)tricadmium(II) tetrahydrate] top
Crystal data top
[Cd3(C6H4NO2)6]·4H2OF(000) = 1124
Mr = 1141.88Dx = 1.955 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 11.825 (11) Åθ = 6.5–15.0°
b = 8.195 (8) ŵ = 1.71 mm1
c = 20.097 (11) ÅT = 293 K
β = 95.160 (3)°Prismatic, yellow
V = 1940 (3) Å30.32 × 0.30 × 0.26 mm
Z = 2
Data collection top
Siemens R3m
diffractometer
4063 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.100
Graphite monochromatorθmax = 28.0°, θmin = 2.0°
ω scansh = 014
Absorption correction: ψ scan
Kopfman & Huber (1968)
k = 010
Tmin = 0.569, Tmax = 0.641l = 2626
4705 measured reflections2 standard reflections every 200 reflections
4489 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0881P)2 + 3.6257P]
where P = (Fo2 + 2Fc2)/3
4489 reflections(Δ/σ)max < 0.001
278 parametersΔρmax = 2.63 e Å3
0 restraintsΔρmin = 1.05 e Å3
Crystal data top
[Cd3(C6H4NO2)6]·4H2OV = 1940 (3) Å3
Mr = 1141.88Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.825 (11) ŵ = 1.71 mm1
b = 8.195 (8) ÅT = 293 K
c = 20.097 (11) Å0.32 × 0.30 × 0.26 mm
β = 95.160 (3)°
Data collection top
Siemens R3m
diffractometer
4063 reflections with I > 2σ(I)
Absorption correction: ψ scan
Kopfman & Huber (1968)
Rint = 0.100
Tmin = 0.569, Tmax = 0.6412 standard reflections every 200 reflections
4705 measured reflections intensity decay: none
4489 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.09Δρmax = 2.63 e Å3
4489 reflectionsΔρmin = 1.05 e Å3
278 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1679 (4)0.0724 (6)0.6292 (2)0.0306 (9)
C20.0598 (4)0.0111 (5)0.6014 (2)0.0300 (9)
C30.0478 (4)0.0485 (6)0.6120 (2)0.0343 (9)
H3A0.05620.14550.63780.080*
C40.1428 (4)0.0366 (6)0.5842 (3)0.0400 (11)
H4A0.21790.00320.58920.080*
C50.1276 (4)0.1777 (6)0.5496 (3)0.0389 (11)
H5A0.19360.23710.53200.080*
C60.0664 (4)0.1530 (6)0.5653 (2)0.0314 (9)
H6A0.14030.19490.55860.080*
C70.4655 (4)0.5022 (5)0.7120 (2)0.0263 (8)
C80.5173 (4)0.3341 (5)0.7123 (2)0.0246 (8)
C90.6347 (4)0.3171 (5)0.7158 (3)0.0339 (10)
H9A0.68230.41210.71820.080*
C100.6824 (4)0.1611 (6)0.7159 (3)0.0388 (11)
H10A0.76320.14640.71840.080*
C110.6088 (4)0.0279 (6)0.7116 (3)0.0362 (10)
H11A0.64100.07970.71280.080*
C120.4513 (4)0.1934 (5)0.7073 (2)0.0271 (8)
H12A0.37020.20500.70440.080*
C130.2366 (4)0.4072 (6)0.4484 (2)0.0337 (9)
C140.3549 (4)0.3374 (6)0.4614 (2)0.0302 (9)
C150.4073 (5)0.3061 (8)0.5252 (3)0.0463 (14)
H15A0.37030.33520.56420.080*
C160.5132 (5)0.2330 (9)0.5315 (3)0.0522 (15)
H16A0.54940.20660.57480.080*
C170.5663 (4)0.1989 (7)0.4745 (3)0.0422 (12)
H17A0.63960.14750.47920.080*
C180.4157 (4)0.3001 (6)0.4075 (2)0.0322 (9)
H18A0.38120.32370.36350.080*
N10.0252 (3)0.2368 (5)0.53934 (19)0.0336 (8)
N20.4957 (3)0.0419 (4)0.70625 (19)0.0291 (7)
N30.5199 (3)0.2336 (5)0.4130 (2)0.0326 (8)
O10.2612 (3)0.0080 (5)0.6190 (2)0.0421 (8)
O20.1620 (4)0.2046 (4)0.6604 (2)0.0442 (9)
O30.5272 (3)0.6213 (4)0.73245 (17)0.0326 (7)
O40.3639 (3)0.5204 (4)0.68776 (18)0.0360 (7)
O50.1881 (3)0.4455 (5)0.49988 (19)0.0439 (9)
O60.1960 (3)0.4193 (6)0.38985 (19)0.0539 (11)
O1W0.3290 (3)0.1524 (4)0.79111 (17)0.0378 (7)
H1WA0.26790.09750.79020.080*
O2W0.0293 (3)0.4604 (4)0.38254 (16)0.0358 (7)
H2WA0.03400.44220.36700.080*
Cd10.37632 (2)0.19157 (3)0.684140 (15)0.02498 (14)
Cd20.00000.50000.50000.03082 (16)
H1WB0.38990.10360.81200.050*
H2WB0.05660.36870.37580.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.030 (2)0.033 (2)0.0270 (19)0.0054 (17)0.0051 (16)0.0024 (16)
C20.028 (2)0.034 (2)0.028 (2)0.0049 (16)0.0019 (16)0.0030 (16)
C30.030 (2)0.036 (2)0.036 (2)0.0025 (18)0.0012 (17)0.0017 (19)
C40.026 (2)0.038 (2)0.055 (3)0.0032 (19)0.003 (2)0.000 (2)
C50.025 (2)0.042 (3)0.048 (3)0.0043 (18)0.0080 (19)0.001 (2)
C60.026 (2)0.032 (2)0.036 (2)0.0047 (17)0.0000 (16)0.0001 (17)
C70.030 (2)0.0231 (19)0.0262 (19)0.0014 (15)0.0041 (15)0.0024 (14)
C80.028 (2)0.0217 (18)0.0240 (18)0.0029 (14)0.0000 (14)0.0017 (14)
C90.030 (2)0.023 (2)0.047 (3)0.0015 (16)0.0040 (19)0.0026 (17)
C100.023 (2)0.033 (2)0.059 (3)0.0046 (17)0.007 (2)0.000 (2)
C110.033 (3)0.027 (2)0.047 (3)0.0044 (17)0.0050 (19)0.0006 (19)
C120.025 (2)0.025 (2)0.031 (2)0.0023 (14)0.0016 (16)0.0014 (15)
C130.027 (2)0.038 (2)0.037 (2)0.0057 (18)0.0086 (17)0.0076 (18)
C140.022 (2)0.036 (2)0.032 (2)0.0030 (16)0.0030 (16)0.0022 (17)
C150.036 (3)0.075 (4)0.028 (2)0.019 (2)0.0040 (19)0.001 (2)
C160.043 (3)0.079 (4)0.033 (3)0.021 (3)0.002 (2)0.003 (3)
C170.027 (2)0.059 (3)0.040 (3)0.010 (2)0.0015 (19)0.003 (2)
C180.025 (2)0.041 (2)0.031 (2)0.0056 (17)0.0043 (17)0.0027 (17)
N10.028 (2)0.037 (2)0.0334 (19)0.0077 (16)0.0056 (15)0.0004 (16)
N20.0296 (19)0.0221 (16)0.0355 (19)0.0003 (14)0.0017 (14)0.0008 (14)
N30.027 (2)0.036 (2)0.035 (2)0.0039 (15)0.0025 (15)0.0023 (16)
O10.0241 (18)0.046 (2)0.056 (2)0.0075 (14)0.0014 (15)0.0055 (16)
O20.040 (2)0.0383 (19)0.042 (2)0.0062 (15)0.0108 (16)0.0085 (15)
O30.0338 (17)0.0222 (14)0.0415 (17)0.0001 (12)0.0014 (13)0.0029 (13)
O40.0242 (17)0.0295 (16)0.054 (2)0.0050 (12)0.0020 (14)0.0044 (14)
O50.0328 (19)0.055 (2)0.045 (2)0.0132 (16)0.0120 (15)0.0102 (17)
O60.0331 (19)0.088 (3)0.0399 (19)0.019 (2)0.0004 (15)0.006 (2)
O1W0.0301 (18)0.0461 (19)0.0370 (17)0.0012 (14)0.0030 (13)0.0076 (15)
O2W0.0339 (18)0.0389 (18)0.0336 (16)0.0038 (14)0.0030 (13)0.0006 (14)
Cd10.0222 (2)0.02167 (19)0.0309 (2)0.00281 (10)0.00137 (12)0.00113 (10)
Cd20.0275 (3)0.0360 (3)0.0293 (2)0.01027 (17)0.00437 (17)0.00663 (17)
Geometric parameters (Å, º) top
C1—O11.255 (6)C15—H15A0.9599
C1—O21.257 (6)C16—C171.383 (8)
C1—C21.512 (6)C16—H16A0.9600
C2—C61.375 (6)C17—N31.337 (7)
C2—C31.397 (7)C17—H17A0.9600
C3—C41.395 (7)C18—N31.342 (6)
C3—H3A0.9599C18—H18A0.9600
C4—C51.368 (7)N1—Cd22.325 (5)
C4—H4A0.9599N2—Cd12.396 (4)
C5—N11.338 (7)N3—Cd1i2.422 (4)
C5—H5A0.9600O1—Cd12.348 (4)
C6—N11.348 (6)O2—Cd12.539 (5)
C6—H6A0.9600O3—Cd1ii2.483 (4)
C7—O41.264 (6)O4—Cd1ii2.367 (4)
C7—O31.265 (5)O5—Cd22.269 (4)
C7—C81.507 (6)O6—O2W2.677 (6)
C8—C91.390 (7)O1W—Cd12.292 (4)
C8—C121.391 (6)O1W—O4iii2.751 (5)
C9—C101.397 (6)O1W—O2Wiv2.847 (5)
C9—H9A0.9600O1W—H1WA0.8500
C10—C111.394 (7)O1W—H1WB0.8946
C10—H10A0.9600O2W—Cd22.377 (4)
C11—N21.337 (6)O2W—O2v2.712 (6)
C11—H11A0.9600O2W—H2WA0.8500
C12—N21.349 (5)O2W—H2WB0.8240
C12—H12A0.9600Cd1—O4vi2.367 (4)
C13—O61.234 (6)Cd1—N3i2.422 (4)
C13—O51.267 (6)Cd1—O3vi2.483 (4)
C13—C141.512 (6)Cd2—O5vii2.269 (4)
C14—C181.387 (6)Cd2—N1vii2.325 (5)
C14—C151.397 (7)Cd2—O2Wvii2.377 (4)
C15—C161.384 (8)
O1—C1—O2122.2 (4)C17—N3—Cd1i121.2 (3)
O1—C1—C2118.4 (4)C18—N3—Cd1i121.3 (3)
O2—C1—C2119.4 (4)C1—O1—Cd196.5 (3)
C6—C2—C3118.1 (4)C1—O2—Cd187.6 (3)
C6—C2—C1119.3 (4)C7—O3—Cd1ii88.6 (3)
C3—C2—C1122.5 (4)C7—O4—Cd1ii94.0 (3)
C4—C3—C2118.4 (5)C13—O5—Cd2124.4 (3)
C4—C3—H3A120.8C13—O6—O2W111.2 (3)
C2—C3—H3A120.8Cd1—O1W—O4iii119.52 (16)
C5—C4—C3119.2 (5)Cd1—O1W—O2Wiv120.24 (16)
C5—C4—H4A120.3O4iii—O1W—O2Wiv93.66 (15)
C3—C4—H4A120.4Cd1—O1W—H1WA109.4
N1—C5—C4123.1 (5)O2Wiv—O1W—H1WA99.9
N1—C5—H5A118.5Cd1—O1W—H1WB104.4
C4—C5—H5A118.4O4iii—O1W—H1WB109.9
N1—C6—C2123.6 (4)H1WA—O1W—H1WB114.9
N1—C6—H6A118.2Cd2—O2W—O684.67 (13)
C2—C6—H6A118.2Cd2—O2W—O2v116.74 (16)
O4—C7—O3122.3 (4)O6—O2W—O2v117.69 (19)
O4—C7—C8118.7 (4)Cd2—O2W—H2WA109.5
O3—C7—C8118.8 (4)O2v—O2W—H2WA104.6
C9—C8—C12118.2 (4)Cd2—O2W—H2WB107.9
C9—C8—C7119.7 (4)O6—O2W—H2WB105.5
C12—C8—C7122.1 (4)H2WA—O2W—H2WB97.2
C8—C9—C10119.5 (4)O1W—Cd1—O1104.77 (14)
C8—C9—H9A120.0O1W—Cd1—O4vi95.16 (13)
C10—C9—H9A120.4O1—Cd1—O4vi128.46 (13)
C11—C10—C9117.8 (4)O1W—Cd1—N284.47 (13)
C11—C10—H10A121.2O1—Cd1—N283.92 (14)
C9—C10—H10A121.0O4vi—Cd1—N2145.90 (12)
N2—C11—C10123.5 (4)O1W—Cd1—N3i163.72 (13)
N2—C11—H11A118.2O1—Cd1—N3i87.28 (14)
C10—C11—H11A118.3O4vi—Cd1—N3i85.41 (13)
N2—C12—C8123.1 (4)N2—Cd1—N3i86.00 (14)
N2—C12—H12A118.6O1W—Cd1—O3vi86.97 (13)
C8—C12—H12A118.3O1—Cd1—O3vi166.95 (12)
O6—C13—O5126.4 (4)O4vi—Cd1—O3vi54.29 (11)
O6—C13—C14118.0 (4)N2—Cd1—O3vi91.71 (13)
O5—C13—C14115.6 (4)N3i—Cd1—O3vi80.14 (13)
C18—C14—C15117.2 (4)O1W—Cd1—O281.87 (13)
C18—C14—C13119.0 (4)O1—Cd1—O253.33 (13)
C15—C14—C13123.7 (4)O4vi—Cd1—O284.28 (11)
C16—C15—C14119.0 (5)N2—Cd1—O2129.07 (13)
C16—C15—H15A120.6N3i—Cd1—O2114.34 (14)
C14—C15—H15A120.4O3vi—Cd1—O2135.87 (11)
C17—C16—C15119.2 (5)O5—Cd2—O5vii180.0
C17—C16—H16A120.5O5—Cd2—N188.46 (14)
C15—C16—H16A120.4O5vii—Cd2—N191.54 (14)
N3—C17—C16122.9 (5)O5—Cd2—N1vii91.54 (14)
N3—C17—H17A118.5O5vii—Cd2—N1vii88.46 (14)
C16—C17—H17A118.6N1—Cd2—N1vii180.0
N3—C18—C14124.2 (4)O5—Cd2—O2W91.58 (13)
N3—C18—H18A117.9O5vii—Cd2—O2W88.42 (13)
C14—C18—H18A117.9N1—Cd2—O2W101.49 (13)
C5—N1—C6117.6 (4)N1vii—Cd2—O2W78.51 (13)
C5—N1—Cd2122.3 (3)O5—Cd2—O2Wvii88.42 (13)
C6—N1—Cd2118.8 (3)O5vii—Cd2—O2Wvii91.58 (13)
C11—N2—C12117.8 (4)N1—Cd2—O2Wvii78.51 (13)
C11—N2—Cd1121.0 (3)N1vii—Cd2—O2Wvii101.49 (13)
C12—N2—Cd1120.9 (3)O2W—Cd2—O2Wvii180.0
C17—N3—C18117.3 (4)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y1, z; (iii) x+1/2, y+1/2, z+3/2; (iv) x+1/2, y1/2, z+1/2; (v) x, y, z+1; (vi) x, y+1, z; (vii) x, y1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4iii0.851.922.751 (5)165
O2W—H2WA···O60.851.942.677 (6)145
O1W—H1WB···O2Wiv0.892.012.847 (5)154.4
O2W—H2WB···O2v0.821.932.712 (6)158.0
Symmetry codes: (iii) x+1/2, y+1/2, z+3/2; (iv) x+1/2, y1/2, z+1/2; (v) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Cd3(C6H4NO2)6]·4H2O
Mr1141.88
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.825 (11), 8.195 (8), 20.097 (11)
β (°) 95.160 (3)
V3)1940 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.71
Crystal size (mm)0.32 × 0.30 × 0.26
Data collection
DiffractometerSiemens R3m
diffractometer
Absorption correctionψ scan
Kopfman & Huber (1968)
Tmin, Tmax0.569, 0.641
No. of measured, independent and
observed [I > 2σ(I)] reflections
4705, 4489, 4063
Rint0.100
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.135, 1.09
No. of reflections4489
No. of parameters278
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.63, 1.05

Computer programs: SHELXTL-Plus (Siemens, 1990), SHELXTL-Plus, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
N1—Cd22.325 (5)O1W—Cd12.292 (4)
N2—Cd12.396 (4)O2W—Cd22.377 (4)
O1—Cd12.348 (4)Cd1—O4i2.367 (4)
O2—Cd12.539 (5)Cd1—N3ii2.422 (4)
O5—Cd22.269 (4)Cd1—O3i2.483 (4)
O1W—Cd1—O1104.77 (14)O1W—Cd1—O281.87 (13)
O1W—Cd1—O4i95.16 (13)O1—Cd1—O253.33 (13)
O1—Cd1—O4i128.46 (13)O4i—Cd1—O284.28 (11)
O1W—Cd1—N284.47 (13)N2—Cd1—O2129.07 (13)
O1—Cd1—N283.92 (14)N3ii—Cd1—O2114.34 (14)
O4i—Cd1—N2145.90 (12)O3i—Cd1—O2135.87 (11)
O1W—Cd1—N3ii163.72 (13)O5—Cd2—O5iii180.0
O1—Cd1—N3ii87.28 (14)O5—Cd2—N188.46 (14)
O4i—Cd1—N3ii85.41 (13)O5iii—Cd2—N191.54 (14)
N2—Cd1—N3ii86.00 (14)N1—Cd2—N1iii180.0
O1W—Cd1—O3i86.97 (13)O5—Cd2—O2W91.58 (13)
O1—Cd1—O3i166.95 (12)O5iii—Cd2—O2W88.42 (13)
O4i—Cd1—O3i54.29 (11)N1—Cd2—O2W101.49 (13)
N2—Cd1—O3i91.71 (13)N1iii—Cd2—O2W78.51 (13)
N3ii—Cd1—O3i80.14 (13)O2W—Cd2—O2Wiii180.0
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1; (iii) x, y1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4iv0.851.922.751 (5)165.4
O2W—H2WA···O60.851.942.677 (6)144.6
O1W—H1WB···O2Wv0.892.012.847 (5)154.4
O2W—H2WB···O2vi0.821.932.712 (6)158.0
Symmetry codes: (iv) x+1/2, y+1/2, z+3/2; (v) x+1/2, y1/2, z+1/2; (vi) x, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds