Download citation
Download citation
link to html
The title compounds, 4-(2-naphthyl­oxy­methyl­carbonyl)­morpholine, C16H17NO3, (I), and 4-methyl-1-(2-naphthyl­oxy­methyl­carbonyl)­piper­azine, C17H20N2O2, (II), are potential antiamnesics. The morpholine ring in (I) and the piperazine ring in (II) adopt chair conformations. In (I), the mol­ecules are linked by weak intermolecular C-H...O interactions into chains that have a graph-set motif of C(10), while in (II), the mol­ecules are linked by weak intermolecular C-H...O interactions that generate two C(7) graph-set motifs. The dihedral angle between the naphthalene moiety and the best plane through the morpholine ring is 20.62 (4)° in (I), while the naphthalene moiety is oriented nearly perpendicular to the mean plane of the piperazine ring in (II).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103013258/sk1649sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103013258/sk1649Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103013258/sk1649IIsup3.hkl
Contains datablock II

CCDC references: 219583; 219584

Comment top

The conformation of molecules with antiamnesic activity has attracted considerable interest (Amato et al., 1991), and the present structure determinations are part of our research program on biologically active 2-(2-Naphthyloxy)acetate derivatives. We report here the preparation and the X-ray crystal structure of 4-(2-Naphthyloxymethylcarbonyl)morpholine, (I), and 1-(2-Naphthyloxymethylcarbonyl)-4-methylpiperazine, (II), both of which are important in the treatment of human cognitive disorders (Thamotharan et al., 2003, and references therein).

Views of the molecules of (I) and (II), with the atomic numbering schemes, are shown in Figs. 1 and 2, respectively. The corresponding bond lengths and angles in (I) and (II) are essentially equivalent and are comparable to those in the related structures N-(2-naphthyloxymethylcarbonyl)piperidine and 3-Methyl-N-(2-naphthyloxymethylcarbonyl)piperidine (Thamotharan et al., 2003). In the molecule of (I), the central C2—O11—C12—C13—N14 fragment is planar, with a maximum deviation of 0.023 (1) Å for atom C13. In contrast, only the O11—C12—C13—N14 segment is planar in compound (II). Atom C2 is twisted about the O11—C12 bond so that it lies almost perpendicular to the O11/C12/C13/N14 plane (Table 3). In (I), the central unit is almost coplanar with the naphthalene moiety, the angle between the planes being 3.67 (7)°, while the dihedral angle between the central unit and the naphthalene moiety in (II) is 76.94 (15)°. The central unit is twisted 27.79 (14)° out of the mean plane of the piperazine ring in (II), whereas it is twisted 21.73 (6)° out of the best plane passing through the morpholine ring in (I). The C2—O11—C12—C13 and O11—C12—C13—N14 torsion angles show that the central unit has an antiperiplanar conformation in (I), while the corresponding torsion angles in (II) represent synclinal and antiperiplanar conformations, respectively.

The morpholine ring in (I) has a chair conformation [Cremer & Pople (1975) puckering parameters Q = 0.550 (1) Å, q2 = 0.045 (1) Å, q3 = 0.548 (1) Å, θ = 4.7 (1)° and ϕ2 = 345.8 (19)° for the atom sequence O17—C16—C15—N14—C19—C18]. The dihedral angle between the naphthalene moiety and the morpholine ring is 20.62 (4)°. In (II), the puckering parameters of the piperazine ring [Q = 0.5585 (3) Å, q2 = 0.016 (3) Å, q3 = 0.558 (3) Å, θ = 0.7 (3)° and ϕ2 = 131 (10)° for the atom sequence N14—C15—C16—N17—C18—C19] are indicative of a chair conformation, and the methyl substituent at atom N17 is in an equatorial position. The sum of the angles around N17 is 331°, showing an essentially pyramidal geometry at atom N17. In contrast, atom N14 in (I) and (II) exhibits little pyramidal geometry becasue of the amide-type cojugation with carbonyl atom O13. The sum of the angles around atom N14 in (I) and (II) is 360° (Table 1 & 3). The naphthalene moiety is oriented nearly perpendicular to the mean plane of the piperazine ring.

The exocyclic C1—C2—O11 and C13—N14—C15 bond angles deviate significantly from the normal value of 120° (Tables 1 and 3) and this may be a result of steric repulsion [H1···H121 = 2.21 (2.10) Å, H121···H151 = 2.25 Å (H121···H152 = 2.26 Å) and H122···H151 = 2.17 Å (H122···H152 = 2.11 Å); the values in parentheses correspond to (II)].

As can be seen from Table 2 for (I), atom C1 acts as a donor for a weak intermolecular C—H···O interaction with atom O17 of an adjacent molecule. This interaction links the molecules into chains, which run parallel to the c axis and have a graph-set motif of C(10) (Bernstein et al., 1995).

In (II), atom C1 acts as a donor for a weak intermolecular C—H···O interaction with carbonyl atom O13 of an adjacent molecule (Table 4). This interaction produces a continuous chain that runs parallel to the c axis and has a graph-set motif of C(7). In addition, atom C5 is involved in an intermolecular C—H···O interaction with atom O11 of a different molecule. This interaction links the molecules into a continuous chain, that runs parallel to the a axis and has a graph-set motif of C(7) (Bernstein et al., 1995).

Experimental top

For the preparation of (I), methyl 2-(2-naphthyloxy)acetate (0.5 g) was reacted with morpholine. The oily product obtained was treated with water, and the resulting precipitate was filtered off, dried and crystallized from acetone to afford crystals of (I) (yield 0.532 g, 84.8%; m.p. 416–418 K). For the preparation of (II), methyl 2-(2-naphthyloxy)acetate (0.5 g) was reacted with N-methylpiperazine. The oily product obtained was treated with water, and the resulting precipitate was filtered off, dried and crystallized from ethanol to afford crystals of (II) (yield 0.514 g, 78.17%; m.p. 383–385 K).

Refinement top

For compound (I), all H atoms were placed in idealized positions (C—H = 0.95–0.99 Å) and constrained to ride on their parent atoms, with Uiso(H) values of 1.2Ueq(C). For compound (II), methyl H atoms were constrained to an ideal geometry (C—H = 0.98 Å), with Uiso(H) values of 1.5Ueq(C), but were allowed to rotate freely about the C—C bond. All remaining H atoms were placed in idealized positions (C—H = 0.95–0.99 Å) and constrained to ride on their parent atoms with Uiso(H) values of 1.2Ueq(C). Although the molecule is achiral, the structure possesses a polar axis. Because of the absence of any significant anomalous scatterers in the compound, attempts to confirm the absolute structure by refinement of the Flack parameter (Flack, 1983) in the presence of 1099 sets of Friedel equivalents led to an inconclusive value (Flack & Bernardinelli, 2000) of −0.1 (15) for this parameter. Therefore, the absolute direction of the polar axis was assigned arbitrarily and the Friedel pairs were merged before the final refinement. Reflection 110 was partially obscured by the beam stop and was omitted.

Computing details top

For both compounds, data collection: COLLECT (Nonius, 2000); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PARST97 (Nardelli, 1995) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level, and H atoms are represented by circles of arbitrary radii.
[Figure 2] Fig. 2. A view of the molecule of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary radii.
(I) 4-(2-Naphthyloxymethylcarbonyl)morpholine top
Crystal data top
C16H17NO3F(000) = 576
Mr = 271.31Dx = 1.378 Mg m3
Monoclinic, P21/nMelting point: 416 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 10.5594 (2) ÅCell parameters from 4035 reflections
b = 9.2956 (2) Åθ = 2.0–30.0°
c = 14.1012 (3) ŵ = 0.10 mm1
β = 109.0917 (9)°T = 160 K
V = 1307.98 (5) Å3Prism, colourless
Z = 40.28 × 0.25 × 0.23 mm
Data collection top
Nonius KappaCCD
diffractometer
2574 reflections with I > 2σ(I)
Radiation source: Nonius FR591 sealed tube generatorRint = 0.060
Horizontally mounted graphite crystal monochromatorθmax = 30.0°, θmin = 2.1°
Detector resolution: 9 pixels mm-1h = 014
ϕ and ω scans with κ offsetsk = 013
37467 measured reflectionsl = 1918
3815 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.089P)2 + 0.0564P]
where P = (Fo2 + 2Fc2)/3
3815 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C16H17NO3V = 1307.98 (5) Å3
Mr = 271.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.5594 (2) ŵ = 0.10 mm1
b = 9.2956 (2) ÅT = 160 K
c = 14.1012 (3) Å0.28 × 0.25 × 0.23 mm
β = 109.0917 (9)°
Data collection top
Nonius KappaCCD
diffractometer
2574 reflections with I > 2σ(I)
37467 measured reflectionsRint = 0.060
3815 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.03Δρmax = 0.36 e Å3
3815 reflectionsΔρmin = 0.26 e Å3
181 parameters
Special details top

Experimental. Solvent used: acetone Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.507 (2) Frames collected: 355 Seconds exposure per frame: 20 Degrees rotation per frame: 2.0 Crystal-Detector distance (mm): 28.0

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O110.32333 (9)0.03996 (9)0.58744 (6)0.0279 (2)
O130.49043 (10)0.24018 (11)0.57496 (7)0.0360 (3)
O170.40547 (10)0.38343 (11)0.22620 (7)0.0359 (3)
N140.43256 (11)0.23332 (11)0.40585 (8)0.0276 (3)
C10.13279 (12)0.12066 (13)0.51817 (9)0.0243 (3)
H10.12410.09590.45100.029*
C20.23104 (12)0.05858 (13)0.59661 (9)0.0241 (3)
C30.24569 (13)0.09515 (14)0.69741 (9)0.0272 (3)
H30.31420.05130.75100.033*
C40.16191 (13)0.19275 (14)0.71757 (9)0.0263 (3)
H40.17320.21710.78530.032*
C50.03142 (13)0.35885 (14)0.65827 (10)0.0277 (3)
H50.02360.38210.72560.033*
C60.12947 (13)0.42270 (14)0.58034 (10)0.0296 (3)
H60.18840.49080.59390.035*
C70.14292 (13)0.38752 (14)0.48035 (10)0.0295 (3)
H70.21080.43240.42690.035*
C80.05911 (13)0.28928 (14)0.45942 (10)0.0274 (3)
H80.07020.26580.39160.033*
C90.04402 (12)0.22226 (13)0.53796 (9)0.0230 (3)
C100.05781 (12)0.25888 (13)0.63888 (9)0.0232 (3)
C120.31701 (12)0.07438 (13)0.48810 (9)0.0251 (3)
H1210.22660.11050.44950.030*
H1220.33560.01220.45390.030*
C130.42171 (12)0.18958 (13)0.49442 (9)0.0247 (3)
C150.36503 (14)0.16693 (14)0.30831 (9)0.0320 (3)
H1510.29260.10290.31340.038*
H1520.42980.10790.28790.038*
C160.30662 (14)0.28181 (15)0.23035 (10)0.0308 (3)
H1610.26750.23600.16370.037*
H1620.23370.33230.24650.037*
C180.46241 (14)0.45207 (15)0.32142 (10)0.0324 (3)
H1810.39100.50310.33930.039*
H1820.52910.52420.31690.039*
C190.52943 (13)0.34431 (14)0.40266 (10)0.0298 (3)
H1910.60650.29960.38870.036*
H1920.56320.39360.46840.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0318 (5)0.0310 (5)0.0193 (4)0.0051 (4)0.0060 (3)0.0010 (4)
O130.0376 (6)0.0438 (6)0.0228 (5)0.0110 (4)0.0049 (4)0.0043 (4)
O170.0471 (6)0.0369 (5)0.0235 (5)0.0126 (4)0.0115 (4)0.0011 (4)
N140.0336 (6)0.0264 (6)0.0206 (5)0.0061 (5)0.0058 (4)0.0011 (4)
C10.0279 (6)0.0265 (6)0.0181 (6)0.0044 (5)0.0071 (5)0.0018 (5)
C20.0260 (6)0.0231 (6)0.0229 (6)0.0022 (5)0.0076 (5)0.0010 (5)
C30.0294 (7)0.0299 (7)0.0197 (6)0.0008 (5)0.0045 (5)0.0017 (5)
C40.0313 (7)0.0298 (7)0.0176 (6)0.0040 (5)0.0075 (5)0.0017 (5)
C50.0303 (7)0.0298 (7)0.0240 (6)0.0049 (5)0.0103 (5)0.0046 (5)
C60.0287 (7)0.0290 (7)0.0308 (7)0.0004 (5)0.0096 (5)0.0035 (5)
C70.0272 (6)0.0307 (7)0.0271 (7)0.0006 (5)0.0043 (5)0.0019 (5)
C80.0289 (6)0.0307 (7)0.0213 (6)0.0020 (5)0.0062 (5)0.0003 (5)
C90.0241 (6)0.0240 (6)0.0196 (6)0.0054 (5)0.0054 (4)0.0004 (5)
C100.0259 (6)0.0244 (6)0.0187 (6)0.0049 (5)0.0064 (5)0.0013 (5)
C120.0290 (6)0.0251 (6)0.0194 (6)0.0003 (5)0.0057 (5)0.0015 (5)
C130.0258 (6)0.0242 (6)0.0226 (6)0.0034 (5)0.0059 (5)0.0003 (5)
C150.0443 (8)0.0281 (7)0.0214 (6)0.0076 (6)0.0076 (5)0.0043 (5)
C160.0352 (7)0.0324 (7)0.0232 (6)0.0058 (6)0.0075 (5)0.0017 (5)
C180.0385 (7)0.0309 (7)0.0264 (6)0.0098 (6)0.0086 (5)0.0031 (5)
C190.0279 (7)0.0324 (7)0.0283 (7)0.0050 (5)0.0081 (5)0.0016 (5)
Geometric parameters (Å, º) top
O17—C161.4230 (16)C6—H60.9500
O17—C181.4294 (16)C7—C81.3693 (18)
O11—C21.3740 (15)C7—H70.9500
O11—C121.4170 (14)C8—C91.4183 (18)
O13—C131.2242 (15)C8—H80.9500
N14—C131.3534 (16)C9—C101.4237 (17)
N14—C151.4628 (16)C12—C131.5207 (17)
N14—C191.4638 (16)C12—H1210.9900
C1—C21.3719 (17)C12—H1220.9900
C1—C91.4211 (17)C15—C161.5118 (19)
C1—H10.9500C15—H1510.9900
C2—C31.4198 (17)C15—H1520.9900
C3—C41.3606 (18)C16—H1610.9900
C3—H30.9500C16—H1620.9900
C4—C101.4211 (17)C18—C191.5121 (19)
C4—H40.9500C18—H1810.9900
C5—C61.3739 (18)C18—H1820.9900
C5—C101.4122 (18)C19—H1910.9900
C5—H50.9500C19—H1920.9900
C6—C71.4086 (18)
C16—O17—C18110.28 (10)C4—C10—C9118.50 (11)
C2—O11—C12115.98 (9)O11—C12—C13107.63 (9)
C13—N14—C15125.35 (11)O11—C12—H121110.2
C13—N14—C19120.73 (10)C13—C12—H121110.2
C15—N14—C19113.52 (10)O11—C12—H122110.2
C2—C1—C9119.64 (11)C13—C12—H122110.2
C2—C1—H1120.2H121—C12—H122108.5
C9—C1—H1120.2O13—C13—N14122.50 (12)
C1—C2—O11125.24 (11)O13—C13—C12121.59 (11)
C1—C2—C3120.83 (12)N14—C13—C12115.90 (10)
O11—C2—C3113.92 (10)N14—C15—C16110.07 (11)
C4—C3—C2120.23 (11)N14—C15—H151109.6
C4—C3—H3119.9C16—C15—H151109.6
C2—C3—H3119.9N14—C15—H152109.6
C3—C4—C10121.00 (11)C16—C15—H152109.6
C3—C4—H4119.5H151—C15—H152108.2
C10—C4—H4119.5O17—C16—C15111.62 (11)
C6—C5—C10120.36 (12)O17—C16—H161109.3
C6—C5—H5119.8C15—C16—H161109.3
C10—C5—H5119.8O17—C16—H162109.3
C5—C6—C7120.21 (12)C15—C16—H162109.3
C5—C6—H6119.9H161—C16—H162108.0
C7—C6—H6119.9O17—C18—C19111.39 (11)
C8—C7—C6120.66 (12)O17—C18—H181109.3
C8—C7—H7119.7C19—C18—H181109.3
C6—C7—H7119.7O17—C18—H182109.3
C7—C8—C9120.66 (12)C19—C18—H182109.3
C7—C8—H8119.7H181—C18—H182108.0
C9—C8—H8119.7N14—C19—C18109.36 (10)
C8—C9—C1121.73 (11)N14—C19—H191109.8
C8—C9—C10118.48 (12)C18—C19—H191109.8
C1—C9—C10119.79 (11)N14—C19—H192109.8
C5—C10—C4121.88 (11)C18—C19—H192109.8
C5—C10—C9119.62 (11)H191—C19—H192108.2
C9—C1—C2—O11179.52 (10)C1—C9—C10—C5179.39 (11)
C9—C1—C2—C30.36 (19)C8—C9—C10—C4179.43 (11)
C12—O11—C2—C12.29 (17)C1—C9—C10—C40.53 (17)
C12—O11—C2—C3176.92 (10)C2—O11—C12—C13177.19 (10)
C1—C2—C3—C40.04 (19)C15—N14—C13—O13172.73 (12)
O11—C2—C3—C4179.29 (11)C19—N14—C13—O130.45 (19)
C2—C3—C4—C100.58 (19)C15—N14—C13—C128.07 (18)
C10—C5—C6—C70.83 (19)C19—N14—C13—C12179.65 (10)
C5—C6—C7—C80.2 (2)O11—C12—C13—O132.51 (17)
C6—C7—C8—C90.79 (19)O11—C12—C13—N14178.29 (10)
C7—C8—C9—C1179.60 (11)C13—N14—C15—C16135.57 (13)
C7—C8—C9—C100.35 (18)C19—N14—C15—C1651.66 (15)
C2—C1—C9—C8179.98 (11)C18—O17—C16—C1559.57 (14)
C2—C1—C9—C100.06 (18)N14—C15—C16—O1754.55 (15)
C6—C5—C10—C4178.84 (12)C16—O17—C18—C1960.55 (14)
C6—C5—C10—C91.24 (18)C13—N14—C19—C18134.54 (13)
C3—C4—C10—C5179.06 (12)C15—N14—C19—C1852.33 (15)
C3—C4—C10—C90.86 (18)O17—C18—C19—N1456.08 (15)
C8—C9—C10—C50.65 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O17i0.952.423.3359 (15)161
Symmetry code: (i) x+1/2, y1/2, z+1/2.
(II) 1-(2-Naphthyloxymethylcarbonyl)-4-methylpiperazine top
Crystal data top
C17H20N2O2Dx = 1.268 Mg m3
Mr = 284.35Melting point: 383 K
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 1547 reflections
a = 13.7560 (3) Åθ = 2.0–25.0°
b = 12.7389 (2) ŵ = 0.08 mm1
c = 8.5031 (2) ÅT = 160 K
V = 1490.05 (5) Å3Plate, colourless
Z = 40.23 × 0.13 × 0.07 mm
F(000) = 608
Data collection top
Nonius KappaCCD
diffractometer
1169 reflections with I > 2σ(I)
Radiation source: Nonius FR591 sealed tube generatorRint = 0.079
Horizontally mounted graphite crystal monochromatorθmax = 25.0°, θmin = 3.0°
Detector resolution: 9 pixels mm-1h = 1616
ω scans with κ offsetsk = 1515
17668 measured reflectionsl = 1010
1414 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0575P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1414 reflectionsΔρmax = 0.18 e Å3
192 parametersΔρmin = 0.16 e Å3
1 restraintExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.014 (3)
Crystal data top
C17H20N2O2V = 1490.05 (5) Å3
Mr = 284.35Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 13.7560 (3) ŵ = 0.08 mm1
b = 12.7389 (2) ÅT = 160 K
c = 8.5031 (2) Å0.23 × 0.13 × 0.07 mm
Data collection top
Nonius KappaCCD
diffractometer
1169 reflections with I > 2σ(I)
17668 measured reflectionsRint = 0.079
1414 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.095H-atom parameters constrained
S = 1.06Δρmax = 0.18 e Å3
1414 reflectionsΔρmin = 0.16 e Å3
192 parameters
Special details top

Experimental. Solvent used: EtOH Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.404 (2) Frames collected: 329 Seconds exposure per frame: 60 Degrees rotation per frame: 1.0 Crystal-Detector distance (mm): 28.0

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O110.25055 (15)0.39224 (13)0.8553 (2)0.0350 (5)
O130.22566 (14)0.18626 (13)0.9209 (2)0.0380 (5)
N140.11364 (16)0.16057 (17)0.7278 (3)0.0320 (6)
N170.06198 (16)0.05552 (19)0.6436 (3)0.0350 (6)
C10.3922 (2)0.3208 (2)0.7204 (3)0.0301 (7)
H10.35360.27620.65620.036*
C20.3491 (2)0.38717 (19)0.8255 (3)0.0294 (7)
C30.4050 (2)0.4571 (2)0.9184 (3)0.0351 (7)
H30.37380.50550.98670.042*
C40.5042 (2)0.4543 (2)0.9090 (4)0.0349 (7)
H40.54160.49990.97340.042*
C50.6550 (2)0.3793 (2)0.7946 (4)0.0412 (8)
H50.69400.42200.86090.049*
C60.6981 (2)0.3127 (2)0.6894 (4)0.0481 (9)
H60.76700.30980.68260.058*
C70.6414 (2)0.2488 (3)0.5914 (4)0.0490 (9)
H70.67210.20330.51810.059*
C80.5425 (2)0.2515 (2)0.6006 (4)0.0391 (7)
H80.50510.20740.53380.047*
C90.4944 (2)0.3188 (2)0.7080 (3)0.0303 (6)
C100.5521 (2)0.3847 (2)0.8052 (4)0.0343 (7)
C120.18678 (19)0.3337 (2)0.7559 (4)0.0337 (7)
H1210.21160.33580.64660.040*
H1220.12160.36680.75670.040*
C130.17791 (19)0.2196 (2)0.8090 (3)0.0298 (6)
C150.0576 (2)0.1944 (2)0.5913 (3)0.0372 (7)
H1510.08230.15900.49570.045*
H1520.06490.27110.57680.045*
C160.0486 (2)0.1676 (2)0.6151 (4)0.0369 (7)
H1610.07430.20780.70570.044*
H1620.08600.18840.52060.044*
C180.0054 (2)0.0230 (2)0.7801 (4)0.0352 (7)
H1810.01290.05360.79560.042*
H1820.03080.05880.87500.042*
C190.1014 (2)0.0488 (2)0.7611 (4)0.0351 (7)
H1910.13670.03050.85870.042*
H1920.12900.00690.67390.042*
C200.1646 (2)0.0311 (3)0.6685 (4)0.0451 (8)
H2010.17250.04470.68240.068*
H2020.20240.05420.57700.068*
H2030.18790.06770.76270.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0359 (11)0.0336 (10)0.0355 (10)0.0012 (9)0.0020 (9)0.0044 (9)
O130.0375 (12)0.0397 (10)0.0367 (12)0.0002 (9)0.0051 (11)0.0040 (10)
N140.0307 (13)0.0337 (12)0.0314 (14)0.0041 (10)0.0018 (12)0.0044 (10)
N170.0275 (13)0.0400 (13)0.0374 (14)0.0044 (10)0.0026 (11)0.0015 (11)
C10.0335 (15)0.0297 (14)0.0272 (16)0.0040 (12)0.0029 (13)0.0006 (12)
C20.0307 (16)0.0264 (13)0.0312 (16)0.0007 (12)0.0014 (13)0.0036 (12)
C30.0428 (18)0.0285 (14)0.0340 (15)0.0016 (12)0.0000 (15)0.0009 (13)
C40.0409 (18)0.0296 (14)0.0342 (16)0.0076 (12)0.0044 (15)0.0016 (13)
C50.0368 (17)0.0337 (15)0.053 (2)0.0035 (13)0.0071 (17)0.0102 (15)
C60.0319 (17)0.0461 (17)0.066 (2)0.0075 (15)0.0012 (18)0.0067 (17)
C70.0450 (19)0.0457 (18)0.056 (2)0.0106 (16)0.0072 (18)0.0012 (16)
C80.0397 (18)0.0375 (15)0.0402 (16)0.0030 (13)0.0017 (16)0.0040 (14)
C90.0363 (16)0.0267 (13)0.0280 (14)0.0004 (12)0.0024 (13)0.0044 (11)
C100.0385 (17)0.0274 (14)0.0370 (16)0.0044 (12)0.0058 (15)0.0061 (13)
C120.0294 (15)0.0363 (15)0.0354 (16)0.0008 (12)0.0022 (15)0.0005 (13)
C130.0248 (14)0.0347 (14)0.0298 (15)0.0024 (12)0.0034 (13)0.0020 (12)
C150.0381 (17)0.0424 (17)0.0311 (16)0.0059 (12)0.0050 (14)0.0050 (14)
C160.0341 (17)0.0399 (16)0.0368 (16)0.0011 (12)0.0041 (15)0.0032 (14)
C180.0361 (16)0.0325 (14)0.0371 (17)0.0009 (12)0.0029 (14)0.0001 (13)
C190.0334 (16)0.0304 (14)0.0414 (17)0.0006 (12)0.0041 (15)0.0021 (14)
C200.0347 (16)0.0509 (18)0.050 (2)0.0072 (15)0.0050 (16)0.0074 (15)
Geometric parameters (Å, º) top
O11—C21.380 (3)C7—C81.363 (4)
O11—C121.428 (3)C7—H70.9500
O13—C131.232 (3)C8—C91.417 (4)
N14—C131.350 (3)C8—H80.9500
N14—C151.458 (4)C9—C101.421 (4)
N14—C191.461 (3)C12—C131.528 (4)
N17—C181.458 (4)C12—H1210.9900
N17—C161.460 (4)C12—H1220.9900
N17—C201.461 (4)C15—C161.515 (4)
C1—C21.366 (4)C15—H1510.9900
C1—C91.410 (4)C15—H1520.9900
C1—H10.9500C16—H1610.9900
C2—C31.417 (4)C16—H1620.9900
C3—C41.367 (4)C18—C191.513 (4)
C3—H30.9500C18—H1810.9900
C4—C101.413 (4)C18—H1820.9900
C4—H40.9500C19—H1910.9900
C5—C61.368 (4)C19—H1920.9900
C5—C101.420 (4)C20—H2010.9800
C5—H50.9500C20—H2020.9800
C6—C71.402 (5)C20—H2030.9800
C6—H60.9500
C2—O11—C12118.1 (2)O11—C12—H121109.3
C13—N14—C15126.0 (2)C13—C12—H121109.3
C13—N14—C19121.2 (2)O11—C12—H122109.3
C15—N14—C19112.4 (2)C13—C12—H122109.3
C18—N17—C16110.0 (2)H121—C12—H122107.9
C18—N17—C20109.9 (2)O13—C13—N14123.5 (3)
C16—N17—C20110.7 (2)O13—C13—C12120.9 (2)
C2—C1—C9119.5 (2)N14—C13—C12115.5 (2)
C2—C1—H1120.2N14—C15—C16109.7 (2)
C9—C1—H1120.2N14—C15—H151109.7
C1—C2—O11125.1 (2)C16—C15—H151109.7
C1—C2—C3121.2 (3)N14—C15—H152109.7
O11—C2—C3113.7 (2)C16—C15—H152109.7
C4—C3—C2119.6 (3)H151—C15—H152108.2
C4—C3—H3120.2N17—C16—C15111.4 (2)
C2—C3—H3120.2N17—C16—H161109.4
C3—C4—C10121.2 (3)C15—C16—H161109.4
C3—C4—H4119.4N17—C16—H162109.4
C10—C4—H4119.4C15—C16—H162109.4
C6—C5—C10120.3 (3)H161—C16—H162108.0
C6—C5—H5119.8N17—C18—C19111.8 (2)
C10—C5—H5119.8N17—C18—H181109.3
C5—C6—C7120.4 (3)C19—C18—H181109.3
C5—C6—H6119.8N17—C18—H182109.3
C7—C6—H6119.8C19—C18—H182109.3
C8—C7—C6120.5 (3)H181—C18—H182107.9
C8—C7—H7119.8N14—C19—C18110.2 (2)
C6—C7—H7119.8N14—C19—H191109.6
C7—C8—C9121.2 (3)C18—C19—H191109.6
C7—C8—H8119.4N14—C19—H192109.6
C9—C8—H8119.4C18—C19—H192109.6
C1—C9—C8121.7 (2)H191—C19—H192108.1
C1—C9—C10120.2 (3)N17—C20—H201109.5
C8—C9—C10118.1 (2)N17—C20—H202109.5
C4—C10—C5122.3 (3)H201—C20—H202109.5
C4—C10—C9118.3 (3)N17—C20—H203109.5
C5—C10—C9119.4 (3)H201—C20—H203109.5
O11—C12—C13111.8 (2)H202—C20—H203109.5
C9—C1—C2—O11176.1 (2)C1—C9—C10—C5178.0 (3)
C9—C1—C2—C32.3 (4)C8—C9—C10—C51.5 (4)
C12—O11—C2—C18.4 (4)C2—O11—C12—C1384.0 (3)
C12—O11—C2—C3173.1 (2)C15—N14—C13—O13177.8 (3)
C1—C2—C3—C43.5 (4)C19—N14—C13—O134.5 (4)
O11—C2—C3—C4175.1 (2)C15—N14—C13—C123.7 (4)
C2—C3—C4—C101.7 (4)C19—N14—C13—C12177.0 (2)
C10—C5—C6—C70.3 (5)O11—C12—C13—O133.0 (4)
C5—C6—C7—C80.5 (5)O11—C12—C13—N14175.6 (2)
C6—C7—C8—C90.3 (5)C13—N14—C15—C16130.2 (3)
C2—C1—C9—C8179.9 (3)C19—N14—C15—C1656.1 (3)
C2—C1—C9—C100.7 (4)C18—N17—C16—C1557.5 (3)
C7—C8—C9—C1178.8 (3)C20—N17—C16—C15179.2 (3)
C7—C8—C9—C100.7 (4)N14—C15—C16—N1757.0 (3)
C3—C4—C10—C5179.2 (3)C16—N17—C18—C1956.6 (3)
C3—C4—C10—C91.3 (4)C20—N17—C18—C19178.8 (2)
C6—C5—C10—C4178.2 (3)C13—N14—C19—C18130.7 (3)
C6—C5—C10—C91.3 (4)C15—N14—C19—C1855.2 (3)
C1—C9—C10—C42.5 (4)N17—C18—C19—N1455.2 (3)
C8—C9—C10—C4178.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O13i0.952.553.471 (3)163
C5—H5···O11ii0.952.493.236 (3)135
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1/2, y+1, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC16H17NO3C17H20N2O2
Mr271.31284.35
Crystal system, space groupMonoclinic, P21/nOrthorhombic, Pca21
Temperature (K)160160
a, b, c (Å)10.5594 (2), 9.2956 (2), 14.1012 (3)13.7560 (3), 12.7389 (2), 8.5031 (2)
α, β, γ (°)90, 109.0917 (9), 9090, 90, 90
V3)1307.98 (5)1490.05 (5)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.100.08
Crystal size (mm)0.28 × 0.25 × 0.230.23 × 0.13 × 0.07
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
37467, 3815, 2574 17668, 1414, 1169
Rint0.0600.079
(sin θ/λ)max1)0.7030.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.148, 1.03 0.039, 0.095, 1.06
No. of reflections38151414
No. of parameters181192
No. of restraints01
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.260.18, 0.16

Computer programs: COLLECT (Nonius, 2000), DENZO–SMN (Otwinowski & Minor, 1997), DENZO–SMN and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), PARST97 (Nardelli, 1995) and PLATON (Spek, 2003).

Selected bond and torsion angles (º) for (I) top
C13—N14—C15125.35 (11)C15—N14—C19113.52 (10)
C13—N14—C19120.73 (10)C1—C2—O11125.24 (11)
C2—O11—C12—C13177.19 (10)O11—C12—C13—N14178.29 (10)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O17i0.952.423.3359 (15)161
Symmetry code: (i) x+1/2, y1/2, z+1/2.
Selected bond and torsion angles (º) for (II) top
C13—N14—C15126.0 (2)C18—N17—C20109.9 (2)
C13—N14—C19121.2 (2)C16—N17—C20110.7 (2)
C15—N14—C19112.4 (2)C1—C2—O11125.1 (2)
C18—N17—C16110.0 (2)
C2—O11—C12—C1384.0 (3)O11—C12—C13—N14175.6 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O13i0.952.553.471 (3)163
C5—H5···O11ii0.952.493.236 (3)135
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1/2, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds