Download citation
Download citation
link to html
The title compounds 1-(2-naphthyloxymethylcarbonyl)piperidine, C17H19NO2, (I), and 3-methyl-1-(2-naphthyl­oxy­methyl­carbonyl)­piperidine, C18H21NO2, (II), are potential antiamnesics. In (II), the methyl-substituted piperidine ring is disordered over two conformations. The piperidine ring has a chair conformation in both compounds. In (I), the mol­ecules are linked by weak intermolecular C-H...O interactions to give networks represented by C(4), C(6) and R44(18) graph-set motifs, while in (II), weak intermolecular C-H...O interactions generate R12(5), C(4) and C(7) graph-set motifs. The dihedral angle between the naphthalene moiety and the piperidine ring is 33.83 (7)° in (I), while it is 31.78 (11) and 19.38 (19)° for the major and minor conformations, respectively, in (II).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103012332/sk1646sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103012332/sk1646Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103012332/sk1646IIsup3.hkl
Contains datablock II

CCDC references: 219563; 219564

Comment top

The conformations of molecules with antiamnesic activity have attracted considerable interest (Amato et al., 1991), and the present structure determinations form part of our research program on biologically active 2-(2-naphthyloxy)acetate derivatives, namely N-(2-naphthyloxymethylcarbonyl)piperidine, (I), and 3-Methyl-N-(2-naphthyloxymethylcarbonyl)piperidine, (II). Increasing effort has been devoted to the search for drugs for the prevention or treatment of human cognitive disorders (Angelucci et al., 1993). Cognition enhancers are drugs able to facilitate attentional abilities and the acquisition, storage and retrieval of information and to attenuate the impairment of cognitive functions associated with various neurodegenerative states like Alzheimer's disease (AD; Gualtieri et al., 2002). Development of cognition enhancers is still a difficult task because of the complexity of brain functions. Hence, several classes of memory enhancers are used, which include acetyl cholinesterase inhibitors (Gruzendler & Morris, 2001), acetylcholine precursors, muscarinic receptor agonists and antagonists (Mucke & Castaner, 1998), nicotinic receptor agonists (Vernier et al., 1999), psycho-stimulants, and nootropics (Parnetti et al., 1997). The brains of persons with severe cognition disorder show a consistently depleted cortical and hippocampal cholineacetyl transferase (ChAT) and a decrease in cell density and number in the nucleus basalis of meynert, the major source of cholinergic innervation of the human cortex (Sims et al., 1983; Perry, 1986; Heize et al., 1987). The cholinergic hypothesis of geriatric dysfunction asserts in essence that the deficits in cognitive and memory impairment observed in AD patients are due, at least in part, to deficient cholinergic function (Showell et al., 1991). The cholinergic system has stimulated interest in agents that could enhance central cholinergic transmission. Based on the cholinergic hypothesis, a number of drugs having various mechanistic implications (Moos et al., 1988) have been evaluated against AD. An introspection of the active components of different compounds reveals the correlation of the compounds with the structure of endogenous neurotransmitter acetylcholine and is considered in postulating the design strategy for (I) and (II). The improvement of cholinergic transmission is a rational and well documented approach to the improvement of cognition and memory. Therefore, we report here the preparation and the X-ray crystal structures of (I) and (II). Full details of the synthesis of these compounds and their biological activity will be published elsewhere (Piplani & Jindal, 2003).

Views of the molecules of (I) and (II), with the atomic numbering schemes, are depicted in Figs. 1 and 2, respectively. The corresponding bond lengths and angles in (I) and (II) are nearly the same. In (I), the central unit, C2—O11—C12—C13—N14, is effectively planar, and the overall molecular conformation can be defined in terms of the torsion angles involving this unit. In (II), atoms N14A and N14B deviate by −0.171 (4) and 0.268 (9) Å from the mean plane of the central fragment, respectively. The central unit is almost coplanar with the naphthalene ring in both compounds and adopts an antiperiplanar conformation (Table 3). The piperidine ring in (I) adopts a chair conformation, as shown by the puckering parameters [Q = 0.566 (3) Å, q2 = 0.017 (3) Å, q3 = −0.566 (3) Å, θ = 177.7 (3)° and ϕ2 = 40 (9)°; Cremer & Pople, 1975] for the atom sequence N14—C15—C16—C17—C18—C19.

The 3-methyl piperidine ring in (II) is disordered over two conformations. The major conformation exists in 69.5 (5)% of the molecules. As seen from the puckering parameters, each disordered component has a chair conformation [Q = 0.547 (5) Å, q2 = 0.012 (5) Å, q3 = 0.547 (5) Å, θ = 1.7 (5)° and ϕ2 = 211 (22)° for the atom sequence N14A—C15A—C16A—C17A—C18A—C19A of the major conformation, while the corresponding values are Q = 0.539 (10) Å, q2 = 0.027 (10) Å, q3 = −0.538 (10) Å, θ = 176.9 (11)° and ϕ2 = 283 (23)° for the minor conformation]. The angle between the mean planes through the naphthalene moiety and the piperidine ring is 33.83 (7)° in (I), whereas it is 31.78 (11)° and 19.38 (19)° for the major and minor conformations, respectively, in (II).

The exocyclic C1—C2—O11, C13—N14—C15, C13—N14A—C15A and C13—N14B—C15B bond angles deviate significantly from the normal value of 120° (Tables 1 and 3), which may be due to steric repulsion [H1···H121 = 2.28 (2.36) Å, H1···H122 = 2.28 (2.09) Å and H121···H152 = 2.12 Å (H121···H151 = 2.24 Å; H121···H154 = 2.03 Å), and H122···H152 = 2.26 Å (H122···H151 = 2.14 Å; H122···H154 = 2.45) Å; the values in parentheses correspond to (II)].

As seen from Table 2, in (I), atom C12 acts as a donor in a weak intermolecular C—H···O interaction with the carbonyl O13 atom of an adjacent molecule. This interaction produces a continuous chain that runs parallel to the a axis and has a graph-set motif of C(4) (Bernstein et al., 1995). Atom C15 has a weak intermolecular C—H···O interaction with atom O11 of an adjacent molecule. This interaction links the molecules into another continuous chain, which runs parallel to the c axis and has a graph-set motif of C(6). These two chains combine to form an R44(18)ring.

In (II), atom C1 is involved in a weak intermolecular bifurcated C—H···O interaction with atoms O11 and O13 of the molecule at (-y + 1/2, x, z − 1/4), which leads to an R21(5) motif. Taken individually, these interactions link the molecules into a continuous chain that runs parallel to the c axis and has graph-set motifs of C(4) and C(7) for the interactions involving atoms O11 and O13, respectively.

Experimental top

For the preparation of (I), methyl 2-(2-naphthyloxy)acetate (0.5 g) was reacted with piperidine, and the oily product was treated with ice-cold water. The precipitate thus obtained was filtered off, dried and crystallized from petroleum ether to afford crystals of (I) (yield 0.524 g, 84.14%; m.p. 353–357 K). For the preparation of (II), methyl 2-(2-naphthyloxy)acetate (0.5 g) was reacted with 3-pipecoline, and the oily product was treated with water. The precipitate thus obtained was filtered off, dried and crystallized from acetone to afford crystals of (II) (yield 0.498 g, 76.01%; m.p. 363–365 K).

Refinement top

For (I), all H atoms were placed in idealized positions (C—H = 0.95–0.99 Å) and constrained to ride on their parent atoms, with Uiso(H) values of 1.2Ueq(C). Although the molecule is achiral, the structure possesses a polar axis. Because of the absence of any significant anomalous scatterers in the compound, attempts to confirm the absolute structure by refinement of the Flack (1983) parameter in the presence of 1005 sets of Friedel equivalents led to an inconclusive value (Flack & Bernardinelli, 2000) of 1.8 (14) for this parameter. Therefore, the absolute direction of the polar axis was assigned arbitrarily and the Friedel pairs were merged before the final refinement. Reflection 1 1 0 was partially obscured by the beam stop and was omitted. For (II), the methyl-substituted six-membered ring is disordered over two conformations. Two set of positions were defined for piperidine atoms N14/C15–C19 and for the atoms of the C20 methyl group. Constrained refinement of the site occupation factors for these groups led to a value of 0.695 (5) for the major conformation. Similarity restraints were applied to all 1,2 and 1,3 distances involving disordered atoms so as to maintain similar geometry about the chemically equivalent atoms. The methyl H atoms were constrained to an ideal geometry (C—H = 0.98 Å), with Uiso(H) values of 1.5Ueq(C), but were allowed to rotate freely about the C—C bonds. All remaining H atoms were placed in idealized positions (C—H = 0.95–1.00 Å) and constrained to ride on their parent atoms with Uiso(H) values of 1.2Ueq(C). Again, although the molecule is achiral, the structure possesses a polar axis. Because of the absence of any significant anomalous scatterers in the compound, attempts to confirm the absolute structure by refinement of the Flack (1983) parameter in the presence of 1163 sets of Friedel equivalents led to an inconclusive value (Flack & Bernardinelli, 2000) of 0.9 (11) for this parameter. Therefore, the absolute direction of the polar axis was assigned arbitrarily and the Friedel pairs were merged before the final refinement.

Computing details top

For both compounds, data collection: COLLECT (Nonius, 2000); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids have been drawn at the 50% probability level and H atoms are represented by circles of arbitrary radii.
[Figure 2] Fig. 2. A view of the molecule of (II), showing the atom-labelling scheme. Displacement ellipsoids have been drawn at the 50% probability level. For clarity, all H atoms of the disordered methyl-substituted piperidine ring have been omitted. The other H atoms are represented by circles of arbitrary radii.
(I) N-(2-naphthyloxymethylcarbonyl)piperidine top
Crystal data top
C17H19NO2Dx = 1.270 Mg m3
Mr = 269.33Melting point: 353 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1495 reflections
a = 9.8769 (1) Åθ = 2.0–25.0°
b = 24.8789 (3) ŵ = 0.08 mm1
c = 5.7335 (1) ÅT = 160 K
V = 1408.87 (3) Å3Plate, colourless
Z = 40.28 × 0.13 × 0.05 mm
F(000) = 576
Data collection top
Nonius KappaCCD
diffractometer
1166 reflections with I > 2σ(I)
Radiation source: Nonius FR591 sealed tube generatorRint = 0.056
Horizontally mounted graphite crystal monochromatorθmax = 25.0°, θmin = 2.6°
Detector resolution: 9 pixels mm-1h = 1111
ϕ and ω scans with κ offsetsk = 2929
25142 measured reflectionsl = 66
1373 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0597P)2 + 0.0272P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1372 reflectionsΔρmax = 0.15 e Å3
182 parametersΔρmin = 0.15 e Å3
1 restraintExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.016 (4)
Crystal data top
C17H19NO2V = 1408.87 (3) Å3
Mr = 269.33Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 9.8769 (1) ŵ = 0.08 mm1
b = 24.8789 (3) ÅT = 160 K
c = 5.7335 (1) Å0.28 × 0.13 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
1166 reflections with I > 2σ(I)
25142 measured reflectionsRint = 0.056
1373 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.090H-atom parameters constrained
S = 1.08Δρmax = 0.15 e Å3
1372 reflectionsΔρmin = 0.15 e Å3
182 parameters
Special details top

Experimental. Solvent used: hexane Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.428 (1) Frames collected: 1477 Seconds exposure per frame: 40 Degrees rotation per frame: 0.5 Crystal-Detector distance (mm): 38.0

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O111.07857 (14)0.32819 (5)0.6895 (3)0.0358 (4)
O131.20158 (16)0.23910 (6)0.5695 (3)0.0433 (5)
N141.07416 (18)0.22494 (7)0.2466 (4)0.0358 (5)
C10.8926 (2)0.39248 (8)0.6735 (5)0.0321 (5)
H10.85850.37760.53260.039*
C21.0054 (2)0.37095 (8)0.7745 (4)0.0299 (5)
C31.0567 (2)0.39243 (8)0.9839 (4)0.0325 (6)
H31.13560.37731.05230.039*
C40.9940 (2)0.43484 (9)1.0894 (5)0.0360 (6)
H41.02970.44891.23060.043*
C50.8088 (2)0.50250 (9)1.0940 (5)0.0383 (6)
H50.84160.51691.23660.046*
C60.6976 (2)0.52466 (9)0.9906 (5)0.0417 (6)
H60.65420.55471.06070.050*
C70.6469 (2)0.50332 (9)0.7809 (5)0.0407 (7)
H70.56890.51870.71100.049*
C80.7094 (2)0.46051 (9)0.6771 (5)0.0360 (6)
H80.67410.44640.53560.043*
C90.8260 (2)0.43686 (8)0.7778 (4)0.0307 (5)
C100.8758 (2)0.45826 (8)0.9907 (4)0.0319 (5)
C121.0216 (2)0.30129 (9)0.4936 (4)0.0316 (6)
H1211.01980.32570.35710.038*
H1220.92750.29010.52860.038*
C131.1082 (2)0.25216 (9)0.4403 (4)0.0318 (6)
C150.9647 (2)0.23843 (9)0.0847 (5)0.0411 (6)
H1511.00370.24830.06850.049*
H1520.91430.26990.14490.049*
C160.8685 (2)0.19184 (9)0.0542 (5)0.0433 (7)
H1610.79960.20110.06440.052*
H1620.82130.18470.20330.052*
C170.9450 (2)0.14146 (9)0.0221 (6)0.0444 (6)
H1710.88160.11070.03050.053*
H1720.98400.14710.17930.053*
C181.0572 (2)0.12906 (8)0.1496 (5)0.0388 (6)
H1811.10950.09760.09440.047*
H1821.01750.12000.30320.047*
C191.1509 (2)0.17709 (9)0.1751 (6)0.0394 (6)
H1911.22120.16910.29310.047*
H1921.19670.18420.02470.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0340 (8)0.0330 (8)0.0403 (10)0.0016 (7)0.0069 (8)0.0044 (9)
O130.0346 (9)0.0487 (9)0.0466 (10)0.0107 (7)0.0085 (9)0.0049 (9)
N140.0320 (10)0.0306 (9)0.0448 (14)0.0040 (8)0.0089 (10)0.0038 (10)
C10.0365 (12)0.0288 (11)0.0311 (13)0.0035 (10)0.0044 (12)0.0039 (11)
C20.0304 (11)0.0254 (11)0.0340 (13)0.0024 (9)0.0003 (11)0.0008 (11)
C30.0328 (11)0.0322 (11)0.0325 (14)0.0058 (10)0.0055 (12)0.0055 (12)
C40.0394 (12)0.0387 (13)0.0298 (13)0.0088 (10)0.0040 (12)0.0007 (12)
C50.0460 (13)0.0362 (13)0.0328 (14)0.0062 (11)0.0043 (13)0.0038 (11)
C60.0462 (14)0.0338 (12)0.0450 (16)0.0004 (11)0.0100 (15)0.0062 (13)
C70.0387 (13)0.0380 (14)0.0453 (16)0.0037 (11)0.0000 (13)0.0021 (13)
C80.0395 (13)0.0347 (12)0.0338 (13)0.0004 (10)0.0033 (13)0.0002 (12)
C90.0329 (11)0.0279 (11)0.0314 (13)0.0046 (9)0.0011 (11)0.0015 (11)
C100.0367 (12)0.0301 (11)0.0288 (12)0.0075 (9)0.0018 (11)0.0011 (11)
C120.0319 (11)0.0297 (11)0.0333 (14)0.0002 (9)0.0043 (12)0.0009 (11)
C130.0255 (12)0.0341 (12)0.0357 (14)0.0025 (9)0.0010 (12)0.0021 (12)
C150.0459 (14)0.0352 (13)0.0422 (15)0.0050 (11)0.0135 (13)0.0031 (12)
C160.0365 (13)0.0417 (13)0.0515 (18)0.0033 (11)0.0137 (13)0.0064 (14)
C170.0428 (13)0.0389 (12)0.0517 (16)0.0004 (11)0.0065 (14)0.0093 (13)
C180.0372 (12)0.0334 (12)0.0457 (16)0.0050 (10)0.0013 (13)0.0048 (12)
C190.0310 (11)0.0381 (12)0.0489 (15)0.0054 (10)0.0022 (13)0.0058 (13)
Geometric parameters (Å, º) top
O11—C21.375 (3)C8—C91.416 (3)
O11—C121.424 (3)C8—H80.9500
O13—C131.227 (3)C9—C101.420 (3)
N14—C131.344 (3)C12—C131.523 (3)
N14—C151.464 (3)C12—H1210.9900
N14—C191.470 (3)C12—H1220.9900
C1—C21.366 (3)C15—C161.509 (3)
C1—C91.417 (3)C15—H1510.9900
C1—H10.9500C15—H1520.9900
C2—C31.408 (3)C16—C171.527 (3)
C3—C41.365 (3)C16—H1610.9900
C3—H30.9500C16—H1620.9900
C4—C101.422 (3)C17—C181.514 (3)
C4—H40.9500C17—H1710.9900
C5—C61.365 (3)C17—H1720.9900
C5—C101.414 (3)C18—C191.519 (3)
C5—H50.9500C18—H1810.9900
C6—C71.406 (4)C18—H1820.9900
C6—H60.9500C19—H1910.9900
C7—C81.367 (3)C19—H1920.9900
C7—H70.9500
C2—O11—C12115.84 (16)O11—C12—H122110.0
C13—N14—C15126.38 (19)C13—C12—H122110.0
C13—N14—C19120.65 (19)H121—C12—H122108.4
C15—N14—C19113.0 (2)O13—C13—N14123.6 (2)
C2—C1—C9120.3 (2)O13—C13—C12120.9 (2)
C2—C1—H1119.8N14—C13—C12115.47 (19)
C9—C1—H1119.8N14—C15—C16111.24 (19)
C1—C2—O11125.6 (2)N14—C15—H151109.4
C1—C2—C3120.4 (2)C16—C15—H151109.4
O11—C2—C3114.0 (2)N14—C15—H152109.4
C4—C3—C2120.5 (2)C16—C15—H152109.4
C4—C3—H3119.7H151—C15—H152108.0
C2—C3—H3119.7C15—C16—C17110.6 (2)
C3—C4—C10120.9 (2)C15—C16—H161109.5
C3—C4—H4119.6C17—C16—H161109.5
C10—C4—H4119.6C15—C16—H162109.5
C6—C5—C10120.6 (2)C17—C16—H162109.5
C6—C5—H5119.7H161—C16—H162108.1
C10—C5—H5119.7C18—C17—C16110.0 (2)
C5—C6—C7120.4 (2)C18—C17—H171109.7
C5—C6—H6119.8C16—C17—H171109.7
C7—C6—H6119.8C18—C17—H172109.7
C8—C7—C6120.4 (2)C16—C17—H172109.7
C8—C7—H7119.8H171—C17—H172108.2
C6—C7—H7119.8C17—C18—C19110.39 (19)
C7—C8—C9120.9 (2)C17—C18—H181109.6
C7—C8—H8119.6C19—C18—H181109.6
C9—C8—H8119.6C17—C18—H182109.6
C8—C9—C1121.9 (2)C19—C18—H182109.6
C8—C9—C10118.4 (2)H181—C18—H182108.1
C1—C9—C10119.6 (2)N14—C19—C18110.47 (18)
C5—C10—C9119.3 (2)N14—C19—H191109.6
C5—C10—C4122.4 (2)C18—C19—H191109.6
C9—C10—C4118.2 (2)N14—C19—H192109.6
O11—C12—C13108.29 (17)C18—C19—H192109.6
O11—C12—H121110.0H191—C19—H192108.1
C13—C12—H121110.0
C9—C1—C2—O11179.8 (2)C1—C9—C10—C41.5 (3)
C9—C1—C2—C30.3 (3)C3—C4—C10—C5179.4 (2)
C12—O11—C2—C17.0 (3)C3—C4—C10—C90.9 (3)
C12—O11—C2—C3172.94 (18)C2—O11—C12—C13174.30 (18)
C1—C2—C3—C40.3 (3)C15—N14—C13—O13179.7 (2)
O11—C2—C3—C4179.6 (2)C19—N14—C13—O131.0 (3)
C2—C3—C4—C100.0 (3)C15—N14—C13—C120.7 (3)
C10—C5—C6—C70.8 (3)C19—N14—C13—C12179.4 (2)
C5—C6—C7—C80.7 (3)O11—C12—C13—O135.9 (3)
C6—C7—C8—C90.1 (3)O11—C12—C13—N14174.49 (18)
C7—C8—C9—C1180.0 (2)C13—N14—C15—C16124.6 (2)
C7—C8—C9—C100.7 (3)C19—N14—C15—C1656.7 (3)
C2—C1—C9—C8179.5 (2)N14—C15—C16—C1755.1 (3)
C2—C1—C9—C101.2 (3)C15—C16—C17—C1855.3 (3)
C6—C5—C10—C90.1 (3)C16—C17—C18—C1956.1 (3)
C6—C5—C10—C4178.3 (2)C13—N14—C19—C18124.0 (2)
C8—C9—C10—C50.6 (3)C15—N14—C19—C1857.2 (3)
C1—C9—C10—C5179.9 (2)C17—C18—C19—N1456.6 (3)
C8—C9—C10—C4179.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H122···O13i0.992.363.345 (3)174
C15—H151···O11ii0.992.533.374 (3)142
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x, y, z1.
(II) 3-Methyl-N-(2-naphthyloxymethylcarbonyl)piperidine top
Crystal data top
C18H21NO2Dx = 1.233 Mg m3
Mr = 283.36Melting point: 363 K
Tetragonal, I41cdMo Kα radiation, λ = 0.71073 Å
Hall symbol: I 4bw -2cCell parameters from 1554 reflections
a = 20.9438 (4) Åθ = 2.0–25.0°
c = 13.9169 (2) ŵ = 0.08 mm1
V = 6104.55 (19) Å3T = 160 K
Z = 16Prism, colourless
F(000) = 24320.25 × 0.18 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
1273 reflections with I > 2σ(I)
Radiation source: Nonius FR591 sealed tube generatorRint = 0.052
Horizontally mounted graphite crystal monochromatorθmax = 25.0°, θmin = 2.6°
Detector resolution: 9 pixels mm-1h = 024
ω scans with κ offsetsk = 017
19971 measured reflectionsl = 1616
1414 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0591P)2 + 0.4966P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1414 reflectionsΔρmax = 0.11 e Å3
257 parametersΔρmin = 0.13 e Å3
17 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0041 (7)
Crystal data top
C18H21NO2Z = 16
Mr = 283.36Mo Kα radiation
Tetragonal, I41cdµ = 0.08 mm1
a = 20.9438 (4) ÅT = 160 K
c = 13.9169 (2) Å0.25 × 0.18 × 0.15 mm
V = 6104.55 (19) Å3
Data collection top
Nonius KappaCCD
diffractometer
1273 reflections with I > 2σ(I)
19971 measured reflectionsRint = 0.052
1414 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03117 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.06Δρmax = 0.11 e Å3
1414 reflectionsΔρmin = 0.13 e Å3
257 parameters
Special details top

Experimental. Solvent used: acetone Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.584 (1) Frames collected: 260 Seconds exposure per frame: 70 Degrees rotation per frame: 0.7 Crystal-Detector distance (mm): 28.0

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O110.18286 (7)0.17308 (7)0.44314 (10)0.0372 (4)
O130.10223 (8)0.26653 (8)0.41619 (10)0.0414 (4)
C10.27187 (10)0.10739 (11)0.39169 (14)0.0328 (5)
H10.26860.12250.32750.039*
C20.23054 (10)0.12882 (10)0.45991 (15)0.0316 (5)
C30.23327 (12)0.10555 (11)0.55537 (15)0.0388 (6)
H30.20390.12060.60220.047*
C40.27818 (11)0.06158 (12)0.57959 (17)0.0442 (6)
H40.27970.04600.64370.053*
C50.37022 (12)0.00806 (14)0.53362 (19)0.0509 (7)
H50.37270.02520.59670.061*
C60.41229 (12)0.02835 (14)0.4642 (2)0.0549 (7)
H60.44380.05930.47990.066*
C70.40916 (11)0.00404 (13)0.37116 (19)0.0456 (6)
H70.43880.01820.32400.055*
C80.36369 (11)0.04008 (11)0.34743 (17)0.0385 (5)
H80.36160.05590.28350.046*
C90.31988 (10)0.06230 (10)0.41648 (16)0.0330 (5)
C100.32294 (10)0.03837 (11)0.51144 (17)0.0385 (5)
C120.17721 (11)0.19388 (11)0.34611 (15)0.0346 (5)
H1210.16270.15820.30490.042*
H1220.21910.20890.32210.042*
C130.12887 (12)0.24804 (11)0.34324 (15)0.0375 (6)
N14A0.1274 (2)0.28032 (17)0.2583 (2)0.0376 (10)0.695 (5)
C15A0.15917 (18)0.26187 (18)0.1693 (2)0.0396 (9)0.695 (5)
H1510.18310.22170.17950.048*0.695 (5)
H1520.19000.29540.15040.048*0.695 (5)
C16A0.1105 (2)0.2526 (2)0.0901 (3)0.0450 (12)0.695 (5)
H1610.08380.21490.10520.054*0.695 (5)
H1620.13300.24400.02890.054*0.695 (5)
C17A0.0673 (3)0.3109 (3)0.0774 (3)0.0418 (17)0.695 (5)
H1710.09290.34730.05330.050*0.695 (5)
H1720.03380.30130.02940.050*0.695 (5)
C18A0.03650 (17)0.32863 (19)0.1724 (3)0.0400 (9)0.695 (5)
H1810.00840.29230.19210.048*0.695 (5)
C19A0.0867 (2)0.33705 (18)0.2498 (2)0.0387 (9)0.695 (5)
H1910.11350.37460.23430.046*0.695 (5)
H1920.06540.34520.31210.046*0.695 (5)
C20A0.0053 (3)0.3884 (3)0.1657 (7)0.050 (2)0.695 (5)
H2010.02240.39870.22940.075*0.695 (5)
H2020.04070.38040.12120.075*0.695 (5)
H2030.02030.42420.14210.075*0.695 (5)
N14B0.1034 (4)0.2633 (4)0.2552 (4)0.036 (2)0.305 (5)
C15B0.1191 (4)0.2302 (4)0.1642 (5)0.040 (2)0.305 (5)
H1530.08220.20410.14360.048*0.305 (5)
H1540.15580.20120.17470.048*0.305 (5)
C16B0.1356 (6)0.2778 (5)0.0862 (7)0.055 (3)0.305 (5)
H1630.14290.25480.02500.067*0.305 (5)
H1640.17550.30030.10340.067*0.305 (5)
C17B0.0822 (7)0.3265 (6)0.0725 (7)0.048 (5)0.305 (5)
H1730.09600.35910.02520.057*0.305 (5)
H1740.04400.30480.04650.057*0.305 (5)
C18B0.0652 (4)0.3591 (4)0.1666 (5)0.042 (2)0.305 (5)
H1820.10290.38520.18700.050*0.305 (5)
C19B0.0521 (4)0.3109 (4)0.2446 (6)0.041 (2)0.305 (5)
H1930.04640.33370.30640.049*0.305 (5)
H1940.01160.28860.22990.049*0.305 (5)
C20B0.0082 (8)0.4045 (8)0.1551 (15)0.053 (5)0.305 (5)
H2040.00220.42360.21750.079*0.305 (5)
H2050.02870.38060.13120.079*0.305 (5)
H2060.01920.43840.10940.079*0.305 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0452 (9)0.0402 (8)0.0261 (8)0.0107 (7)0.0037 (6)0.0041 (6)
O130.0502 (10)0.0491 (10)0.0250 (8)0.0110 (8)0.0010 (7)0.0007 (7)
C10.0365 (11)0.0362 (11)0.0257 (11)0.0005 (9)0.0000 (9)0.0046 (9)
C20.0371 (11)0.0320 (11)0.0258 (10)0.0016 (9)0.0029 (9)0.0003 (8)
C30.0472 (14)0.0438 (13)0.0253 (11)0.0053 (11)0.0027 (9)0.0020 (10)
C40.0562 (14)0.0526 (14)0.0240 (10)0.0053 (12)0.0004 (10)0.0061 (10)
C50.0520 (14)0.0621 (16)0.0387 (12)0.0148 (13)0.0055 (11)0.0116 (12)
C60.0483 (14)0.0646 (17)0.0517 (15)0.0181 (13)0.0026 (13)0.0105 (14)
C70.0363 (12)0.0549 (14)0.0457 (13)0.0076 (11)0.0029 (11)0.0047 (12)
C80.0372 (12)0.0466 (13)0.0318 (11)0.0008 (10)0.0027 (9)0.0037 (10)
C90.0343 (11)0.0360 (11)0.0286 (10)0.0021 (9)0.0011 (9)0.0016 (9)
C100.0407 (12)0.0437 (13)0.0311 (11)0.0027 (10)0.0046 (10)0.0027 (10)
C120.0450 (13)0.0374 (11)0.0215 (11)0.0054 (10)0.0005 (8)0.0025 (9)
C130.0486 (14)0.0392 (12)0.0248 (12)0.0071 (10)0.0011 (9)0.0005 (9)
N14A0.048 (2)0.0365 (19)0.0286 (16)0.0103 (17)0.0007 (15)0.0020 (13)
C15A0.049 (2)0.0440 (19)0.0258 (16)0.0069 (17)0.0079 (15)0.0016 (14)
C16A0.061 (3)0.047 (3)0.028 (2)0.003 (2)0.002 (2)0.0025 (19)
C17A0.050 (3)0.045 (3)0.030 (2)0.000 (3)0.0077 (18)0.0035 (19)
C18A0.043 (2)0.035 (2)0.042 (2)0.0011 (17)0.0042 (17)0.0050 (17)
C19A0.047 (2)0.036 (2)0.0333 (17)0.0092 (16)0.0002 (16)0.0008 (14)
C20A0.054 (3)0.050 (4)0.047 (3)0.007 (3)0.009 (2)0.015 (3)
N14B0.036 (5)0.055 (6)0.018 (3)0.013 (4)0.005 (3)0.001 (3)
C15B0.054 (5)0.049 (5)0.019 (4)0.006 (4)0.000 (3)0.007 (4)
C16B0.069 (8)0.063 (7)0.034 (5)0.001 (6)0.011 (5)0.002 (5)
C17B0.071 (9)0.042 (7)0.030 (5)0.015 (6)0.002 (5)0.006 (4)
C18B0.056 (5)0.040 (5)0.030 (4)0.000 (4)0.007 (4)0.003 (4)
C19B0.044 (5)0.044 (5)0.034 (5)0.012 (4)0.000 (4)0.009 (4)
C20B0.057 (9)0.051 (8)0.051 (8)0.014 (8)0.006 (6)0.009 (6)
Geometric parameters (Å, º) top
O11—C21.383 (3)C16A—H1610.9900
O11—C121.424 (2)C16A—H1620.9900
O13—C131.222 (3)C17A—C18A1.518 (5)
C1—C21.361 (3)C17A—H1710.9900
C1—C91.422 (3)C17A—H1720.9900
C1—H10.9500C18A—C19A1.515 (5)
C2—C31.416 (3)C18A—C20A1.530 (5)
C3—C41.359 (3)C18A—H1811.0000
C3—H30.9500C19A—H1910.9900
C4—C101.419 (3)C19A—H1920.9900
C4—H40.9500C20A—H2010.9800
C5—C61.375 (4)C20A—H2020.9800
C5—C101.422 (3)C20A—H2030.9800
C5—H50.9500N14B—C19B1.475 (7)
C6—C71.393 (4)N14B—C15B1.480 (7)
C6—H60.9500C15B—C16B1.514 (8)
C7—C81.367 (3)C15B—H1530.9900
C7—H70.9500C15B—H1540.9900
C8—C91.408 (3)C16B—C17B1.524 (9)
C8—H80.9500C16B—H1630.9900
C9—C101.415 (3)C16B—H1640.9900
C12—C131.521 (3)C17B—C18B1.520 (8)
C12—H1210.9900C17B—H1730.9900
C12—H1220.9900C17B—H1740.9900
C13—N14A1.362 (4)C18B—C19B1.507 (8)
C13—N14B1.374 (5)C18B—C20B1.535 (9)
N14A—C15A1.458 (4)C18B—H1821.0000
N14A—C19A1.468 (4)C19B—H1930.9900
C15A—C16A1.515 (5)C19B—H1940.9900
C15A—H1510.9900C20B—H2040.9800
C15A—H1520.9900C20B—H2050.9800
C16A—C17A1.528 (5)C20B—H2060.9800
C2—O11—C12115.16 (16)C18A—C17A—C16A110.3 (4)
C2—C1—C9119.97 (19)C18A—C17A—H171109.6
C2—C1—H1120.0C16A—C17A—H171109.6
C9—C1—H1120.0C18A—C17A—H172109.6
C1—C2—O11124.26 (18)C16A—C17A—H172109.6
C1—C2—C3121.0 (2)H171—C17A—H172108.1
O11—C2—C3114.71 (18)C19A—C18A—C17A110.7 (3)
C4—C3—C2119.6 (2)C19A—C18A—C20A110.2 (4)
C4—C3—H3120.2C17A—C18A—C20A113.0 (4)
C2—C3—H3120.2C19A—C18A—H181107.6
C3—C4—C10121.6 (2)C17A—C18A—H181107.6
C3—C4—H4119.2C20A—C18A—H181107.6
C10—C4—H4119.2N14A—C19A—C18A111.5 (3)
C6—C5—C10120.3 (2)N14A—C19A—H191109.3
C6—C5—H5119.8C18A—C19A—H191109.3
C10—C5—H5119.8N14A—C19A—H192109.3
C5—C6—C7120.7 (2)C18A—C19A—H192109.3
C5—C6—H6119.7H191—C19A—H192108.0
C7—C6—H6119.7C13—N14B—C19B122.0 (6)
C8—C7—C6120.3 (2)C13—N14B—C15B124.6 (6)
C8—C7—H7119.9C19B—N14B—C15B113.1 (5)
C6—C7—H7119.9N14B—C15B—C16B110.9 (6)
C7—C8—C9120.8 (2)N14B—C15B—H153109.5
C7—C8—H8119.6C16B—C15B—H153109.5
C9—C8—H8119.6N14B—C15B—H154109.5
C8—C9—C10119.40 (19)C16B—C15B—H154109.5
C8—C9—C1121.0 (2)H153—C15B—H154108.1
C10—C9—C1119.60 (19)C15B—C16B—C17B111.3 (8)
C9—C10—C4118.2 (2)C15B—C16B—H163109.4
C9—C10—C5118.5 (2)C17B—C16B—H163109.4
C4—C10—C5123.3 (2)C15B—C16B—H164109.4
O11—C12—C13107.96 (17)C17B—C16B—H164109.4
O11—C12—H121110.1H163—C16B—H164108.0
C13—C12—H121110.1C18B—C17B—C16B111.4 (8)
O11—C12—H122110.1C18B—C17B—H173109.3
C13—C12—H122110.1C16B—C17B—H173109.3
H121—C12—H122108.4C18B—C17B—H174109.4
O13—C13—N14A123.6 (2)C16B—C17B—H174109.3
O13—C13—N14B119.4 (4)H173—C17B—H174108.0
O13—C13—C12121.24 (19)C19B—C18B—C17B111.3 (7)
N14A—C13—C12114.1 (2)C19B—C18B—C20B110.3 (8)
N14B—C13—C12117.1 (3)C17B—C18B—C20B111.8 (9)
C13—N14A—C15A126.5 (3)C19B—C18B—H182107.8
C13—N14A—C19A119.0 (3)C17B—C18B—H182107.8
C15A—N14A—C19A114.3 (3)C20B—C18B—H182107.8
N14A—C15A—C16A110.2 (3)N14B—C19B—C18B113.1 (6)
N14A—C15A—H151109.6N14B—C19B—H193109.0
C16A—C15A—H151109.6C18B—C19B—H193109.0
N14A—C15A—H152109.6N14B—C19B—H194109.0
C16A—C15A—H152109.6C18B—C19B—H194109.0
H151—C15A—H152108.1H193—C19B—H194107.8
C15A—C16A—C17A112.3 (4)C18B—C20B—H204109.5
C15A—C16A—H161109.1C18B—C20B—H205109.5
C17A—C16A—H161109.1H204—C20B—H205109.5
C15A—C16A—H162109.1C18B—C20B—H206109.5
C17A—C16A—H162109.1H204—C20B—H206109.5
H161—C16A—H162107.9H205—C20B—H206109.5
C9—C1—C2—O11179.22 (19)C12—C13—N14A—C15A10.2 (5)
C9—C1—C2—C31.8 (3)O13—C13—N14A—C19A6.4 (5)
C12—O11—C2—C12.7 (3)C12—C13—N14A—C19A174.7 (3)
C12—O11—C2—C3176.35 (19)C13—N14A—C15A—C16A120.1 (5)
C1—C2—C3—C40.6 (4)C19A—N14A—C15A—C16A55.2 (5)
O11—C2—C3—C4179.7 (2)N14A—C15A—C16A—C17A53.7 (5)
C2—C3—C4—C100.3 (4)C15A—C16A—C17A—C18A53.9 (6)
C10—C5—C6—C70.3 (4)C16A—C17A—C18A—C19A53.6 (6)
C5—C6—C7—C80.5 (4)C16A—C17A—C18A—C20A177.7 (5)
C6—C7—C8—C90.8 (4)C13—N14A—C19A—C18A119.2 (4)
C7—C8—C9—C100.2 (3)C15A—N14A—C19A—C18A56.4 (5)
C7—C8—C9—C1179.0 (2)C17A—C18A—C19A—N14A54.5 (5)
C2—C1—C9—C8179.2 (2)C20A—C18A—C19A—N14A179.7 (4)
C2—C1—C9—C102.1 (3)O13—C13—N14B—C19B11.5 (11)
C8—C9—C10—C4180.0 (2)C12—C13—N14B—C19B174.5 (6)
C1—C9—C10—C41.2 (3)O13—C13—N14B—C15B162.0 (7)
C8—C9—C10—C50.6 (3)C12—C13—N14B—C15B0.9 (11)
C1—C9—C10—C5178.2 (2)C13—N14B—C15B—C16B130.8 (10)
C3—C4—C10—C90.0 (3)C19B—N14B—C15B—C16B55.1 (11)
C3—C4—C10—C5179.3 (2)N14B—C15B—C16B—C17B55.1 (12)
C6—C5—C10—C90.8 (4)C15B—C16B—C17B—C18B54.1 (15)
C6—C5—C10—C4179.8 (2)C16B—C17B—C18B—C19B51.8 (13)
C2—O11—C12—C13172.85 (17)C16B—C17B—C18B—C20B175.7 (11)
O11—C12—C13—O130.1 (3)C13—N14B—C19B—C18B131.7 (9)
O11—C12—C13—N14A168.5 (3)C15B—N14B—C19B—C18B54.0 (11)
O11—C12—C13—N14B162.8 (5)C17B—C18B—C19B—N14B51.8 (12)
O13—C13—N14A—C15A178.5 (4)C20B—C18B—C19B—N14B176.4 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O11i0.952.573.386 (2)145
C1—H1···O13i0.952.403.241 (2)147
Symmetry code: (i) y+1/2, x, z1/4.

Experimental details

(I)(II)
Crystal data
Chemical formulaC17H19NO2C18H21NO2
Mr269.33283.36
Crystal system, space groupOrthorhombic, Pna21Tetragonal, I41cd
Temperature (K)160160
a, b, c (Å)9.8769 (1), 24.8789 (3), 5.7335 (1)20.9438 (4), 20.9438 (4), 13.9169 (2)
α, β, γ (°)90, 90, 9090, 90, 90
V3)1408.87 (3)6104.55 (19)
Z416
Radiation typeMo KαMo Kα
µ (mm1)0.080.08
Crystal size (mm)0.28 × 0.13 × 0.050.25 × 0.18 × 0.15
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
25142, 1373, 1166 19971, 1414, 1273
Rint0.0560.052
(sin θ/λ)max1)0.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.090, 1.08 0.031, 0.085, 1.06
No. of reflections13721414
No. of parameters182257
No. of restraints117
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.150.11, 0.13

Computer programs: COLLECT (Nonius, 2000), DENZO–SMN (Otwinowski & Minor, 1997), DENZO–SMN and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 and PLATON (Spek, 2003).

Selected bond and torsion angles (º) for (I) top
C13—N14—C15126.38 (19)O13—C13—N14123.6 (2)
C1—C2—O11125.6 (2)
C2—O11—C12—C13174.30 (18)O11—C12—C13—N14174.49 (18)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C12—H122···O13i0.992.363.345 (3)174
C15—H151···O11ii0.992.533.374 (3)142
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x, y, z1.
Selected bond and torsion angles (º) for (II) top
C1—C2—O11124.26 (18)C13—N14A—C15A126.5 (3)
O13—C13—N14A123.6 (2)C13—N14B—C15B124.6 (6)
O13—C13—N14B119.4 (4)
C2—O11—C12—C13172.85 (17)O11—C12—C13—N14B162.8 (5)
O11—C12—C13—N14A168.5 (3)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O11i0.952.573.386 (2)145
C1—H1···O13i0.952.403.241 (2)147
Symmetry code: (i) y+1/2, x, z1/4.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds