Download citation
Download citation
link to html
The reaction of different substituted [alpha]-cyano­oxiranes with thio­urea resulted in the formation of the 2-amino­thia­zolinone derivative 2-amino-5-(2,5-di­methoxy­phenyl)-1,3-thia­zol-4(5H)-one, C11H12N2O3S, (I), and the 2-amino­thia­zole derivative ethyl 2-amino-5-(2,5-di­methoxy­phenyl)-1,3-thia­zole-4-carboxyl­ate, C14H16N2O4S, (II). The geometries of the two crystallographically independent mol­ecules in (II) are nearly identical but mirror related. The crystal structures of both compounds contain two types of intermolecular hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103015580/sk1642sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103015580/sk1642Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103015580/sk1642IIsup3.hkl
Contains datablock II

CCDC references: 221075; 221076

Comment top

Many naturally occurring and synthetic thiazole derivatives exhibit biological activities, such as antibiotic, anti-inflammatory, anthelmintic or fungicide properties (Metzger, 1984; Crews et al., 1988; Shinagawa et al., 1997; Shivarama Holla et al., 2003). The 1,3-thiazole ring can be prepared using several different methods (Metzger, 1984), although the most widely used approach relies on the synthesis described by Hantzsch (1887), which starts from α-halocarbonyl derivatives. This method can be modified by the replacement of α-halocarbonyl derivatives with 2-cyanooxiranes reacting as synthetic equivalents of the ketene dication (Robert et al., 1995, and references therein). We focus our attention here on the synthesis of thiazole and thiazoline derivatives from 2,2-dicyanooxirane and 2-cyano-2-oxiranecarboxylate derivatives. On addition of thiourea, on one hand, geminal dicyano oxirane derivatives were transformed into 2-aminothiazolinones, and on the other hand, ethyl 2-cyano-2-oxiranecarboxylate yielded 2-aminothiazols. In this paper we present the synthesis and structure of 2-amino-5-(2,5-dimethoxyphenyl)-4,5-dihydro-1,3-thiazol-4-one, (I), and ethyl 2-amino-5-(2,5-dimethoxyphenyl)-1,3-thiazole-4-carboxylate, (II). To the best of our knowledge, this is the first report of the crystal structure of the 2-aminothiazole derivative.

The molecular structure of (I) is shown in Fig. 1. The heterocyclic (thiazole) ring is close to perfectly planar, and the angle between the least-square planes of the phenyl and thiazole rings is 86.46 (4)°. Other geometric parameters are listed in Table 1. The two types of hydrogen-bonding interaction are illustrated in Fig. 2. The first involves N—H···N bonds between the amino group and the endocyclic thiazole N atom of two molecules symmetry-related by an inversion centre. These dimers are further connected into chains along the a axis via N—H···O interactions with adjacent dimeric units. For hydrogen-bonding details see Table 2.

X-ray analysis of (II) reveals that the crystals consist of two crystallographically independent molecules (A and B) related by a local pseudo-inversion centre. The atomic labeling schemes for these two molecules include the letter corresponding to the independent molecule (Fig. 3). The two independent mirror-related molecules have similar conformations (Fig. 4), and there are no significant differences in bond lengths and angles for molecules A and B (Table 3). The angles between the planes of dimethoxyphenyl ring and the thiazole ring are 69.32 (12) and 71.44 (12)° in molecules A and B, respectively. As in (I), two types of intermolecular hydrogen bond are present. Amino groups of both molecules are involved in an interaction with the endocyclic N atom and in the formation of an N—H···O bond with a neighbouring molecule. While in compound (I), the carbonyl O atom of the thiazolinone ring acts as a hydrogen-bond acceptor, in compound (II), one of the methoxy groups on both substituted phenyl rings serves as a hydrogen-bond acceptor. For hydrogen bonding details see Table 4.

Experimental top

For the preparation of (I), a mixture of 3-(2,5-dimethoxyphenyl)-2,2-oxiranedicarbonitrile (0.230 g, 1 mmol) and thiourea (0.076 g, 1 mmol) was dissolved in acetonitrile (5 ml) and stirred at room temperature for 24 h. The product precipitated from the reaction mixture in 68% yield (m.p. 469–471 K). 1H NMR (300 MHz, DMSO, p.p.m.): δ 3.68 (s, 3H), 3.70 (s, 3H), 5.34 (s, 1H), 6.73 (d, 1H), 6.87 (dd, 1H), 6.93 (d, 1H), 8.73 (s, 1H), 8.99 (s, 1H). Analysis found: C 52.08, H 4.36, N 10.96%; calculated for C11H12N2O3S: C 52.37, H 4.79, N 11.10%. Crystals suitable for X-ray diffraction were obtained by recrystallization from ethanol. For the preparation of (II), a mixture of ethyl 2-cyano-3-(2,5-dimethoxyphenyl)-2-oxiranecarboxylate (0.277 g, 1 mmol) and thiourea (0.076 g, 1 mmol) was dissolved in acetonitrile (5 ml) and refluxed for 6 h. Water (50 ml) was added to the reaction mixture and the solution was extracted with ether (3 x 50 ml). The organic layers were combined and dried over sodium sulfate(VI), and the solid residue was recrystallized from ethanol to give (II) in 49% yield (m.p. 404–405 K). 1H NMR (300 MHz, DMSO, p.p.m.): δ 1.03 (t, 3H), 3.66 (s, 3H), 3.71 (s, 3H), 4.01 (q, 2H), 6.79 (d, 1H), 6.89 (dd, 1H), 6.99 (d, 1H), 7.20 (s, 2H).

Refinement top

For (I), all H atoms were located in difference Fourier syntheses and were included in the refinement. For (II), H atoms were placed at calculated positions and treated as riding.

Computing details top

Data collection: Collect (Nonius, 1998) for (I); Collect Software (Nonius,1998) for (II). Cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997) for (I); DENZO and SCALEPACK (Otwinowski & Minor,1997) for (II). Data reduction: DENZO AND SCALEPACK for (I); DENZO AND SCALEPACK (Otwinowski & Minor, 1997) for (II). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia,1997). Software used to prepare material for publication: SHELXL97 and PLATON (Spek, 1998) for (I); SHELXL97 (Sheldrick,1997), PLATON (Spek, 1998) for (II).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The intermolecular hydrogen bonding in (I), showing the formation of a chain of dimeric units that propagates along the a direction.
[Figure 3] Fig. 3. A view of the independent molecules, A and B, of (II), showing the atom-numbering schemes. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 4] Fig. 4. A superposition of the two independent molecules in (II).
(I) 2-amino-5-(2,5-dimethoxyphenyl)-1,3-thiazol-4(5H)-one top
Crystal data top
C11H12N2O3SZ = 2
Mr = 252.29F(000) = 264
Triclinic, P1Dx = 1.493 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9572 (5) ÅCell parameters from all reflections
b = 8.1499 (7) Åθ = 2.9–27.5°
c = 10.4564 (10) ŵ = 0.29 mm1
α = 99.800 (2)°T = 293 K
β = 101.050 (2)°Prism, colourless
γ = 99.540 (2)°0.40 × 0.35 × 0.30 mm
V = 561.21 (8) Å3
Data collection top
Nonius KappaCCD
diffractometer
2349 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.014
Graphite monochromatorθmax = 27.5°, θmin = 2.9°
ϕ and ω scansh = 89
3846 measured reflectionsk = 1010
2490 independent reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: difference Fourier map
wR(F2) = 0.078All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0341P)2 + 0.1774P]
where P = (Fo2 + 2Fc2)/3
2490 reflections(Δ/σ)max = 0.001
202 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C11H12N2O3Sγ = 99.540 (2)°
Mr = 252.29V = 561.21 (8) Å3
Triclinic, P1Z = 2
a = 6.9572 (5) ÅMo Kα radiation
b = 8.1499 (7) ŵ = 0.29 mm1
c = 10.4564 (10) ÅT = 293 K
α = 99.800 (2)°0.40 × 0.35 × 0.30 mm
β = 101.050 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2349 reflections with I > 2σ(I)
3846 measured reflectionsRint = 0.014
2490 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.078All H-atom parameters refined
S = 1.05Δρmax = 0.27 e Å3
2490 reflectionsΔρmin = 0.22 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.55666 (4)0.59805 (4)0.66437 (3)0.03000 (11)
O40.07240 (13)0.62722 (12)0.78502 (9)0.0365 (2)
O120.41528 (15)0.95265 (11)0.77662 (9)0.0393 (2)
O140.05392 (16)0.82197 (14)0.24062 (10)0.0481 (3)
N20.71460 (17)0.55027 (16)0.90370 (11)0.0368 (2)
N30.38166 (15)0.57493 (13)0.86499 (9)0.0296 (2)
C20.55238 (17)0.57240 (14)0.82656 (11)0.0263 (2)
C40.23831 (16)0.60987 (13)0.77023 (11)0.0262 (2)
C50.29562 (16)0.61638 (14)0.63517 (11)0.0249 (2)
C60.25934 (16)0.76502 (14)0.57272 (11)0.0253 (2)
C70.16979 (17)0.73475 (15)0.43822 (12)0.0285 (2)
C80.14498 (18)0.86868 (17)0.37384 (13)0.0343 (3)
C90.2108 (2)1.03383 (17)0.44517 (15)0.0394 (3)
C100.3012 (2)1.06602 (16)0.57982 (15)0.0376 (3)
C110.32656 (17)0.93353 (15)0.64472 (12)0.0303 (2)
C130.4826 (3)1.1233 (2)0.85348 (19)0.0529 (4)
C150.0463 (3)0.9545 (3)0.1677 (2)0.0575 (4)
H70.126 (2)0.6212 (19)0.3880 (15)0.035 (4)*
H50.219 (2)0.5100 (18)0.5741 (14)0.030 (3)*
H13A0.367 (3)1.180 (3)0.854 (2)0.069 (6)*
H2A0.705 (3)0.524 (2)0.9833 (19)0.054 (5)*
H13B0.585 (3)1.185 (3)0.815 (2)0.067 (6)*
H13C0.545 (3)1.112 (3)0.943 (2)0.073 (6)*
H15A0.016 (3)0.894 (3)0.075 (2)0.079 (7)*
H15B0.180 (3)1.022 (2)0.1770 (19)0.060 (5)*
H15C0.039 (3)1.032 (3)0.197 (2)0.075 (6)*
H2B0.824 (3)0.554 (2)0.8758 (17)0.047 (4)*
H100.348 (3)1.181 (2)0.6283 (17)0.050 (4)*
H90.189 (3)1.124 (2)0.4044 (18)0.055 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.03223 (17)0.04005 (18)0.02628 (16)0.01544 (12)0.01433 (11)0.01368 (12)
O40.0290 (4)0.0438 (5)0.0412 (5)0.0088 (4)0.0157 (4)0.0111 (4)
O120.0463 (5)0.0287 (4)0.0359 (5)0.0031 (4)0.0042 (4)0.0016 (4)
O140.0514 (6)0.0577 (6)0.0395 (5)0.0122 (5)0.0050 (4)0.0268 (5)
N20.0310 (5)0.0559 (7)0.0302 (5)0.0133 (5)0.0110 (4)0.0182 (5)
N30.0309 (5)0.0362 (5)0.0250 (5)0.0068 (4)0.0111 (4)0.0102 (4)
C20.0304 (5)0.0259 (5)0.0243 (5)0.0051 (4)0.0094 (4)0.0068 (4)
C40.0281 (5)0.0231 (5)0.0278 (5)0.0026 (4)0.0107 (4)0.0047 (4)
C50.0270 (5)0.0239 (5)0.0245 (5)0.0051 (4)0.0077 (4)0.0047 (4)
C60.0234 (5)0.0250 (5)0.0299 (5)0.0057 (4)0.0094 (4)0.0082 (4)
C70.0250 (5)0.0311 (6)0.0321 (6)0.0065 (4)0.0088 (4)0.0100 (5)
C80.0274 (6)0.0443 (7)0.0382 (6)0.0110 (5)0.0111 (5)0.0198 (5)
C90.0356 (6)0.0367 (7)0.0569 (8)0.0126 (5)0.0178 (6)0.0261 (6)
C100.0350 (6)0.0246 (6)0.0564 (8)0.0061 (5)0.0161 (6)0.0107 (5)
C110.0268 (5)0.0273 (5)0.0373 (6)0.0051 (4)0.0102 (5)0.0057 (5)
C130.0547 (9)0.0348 (7)0.0569 (10)0.0022 (7)0.0079 (8)0.0118 (7)
C150.0536 (10)0.0758 (12)0.0562 (10)0.0195 (9)0.0121 (8)0.0443 (9)
Geometric parameters (Å, º) top
S1—C21.7488 (11)C8—O141.3741 (16)
S1—C51.8185 (11)C8—C91.379 (2)
C2—N21.3134 (16)C9—C101.388 (2)
C2—N31.3270 (15)C9—H90.928 (18)
N3—C41.3671 (15)C10—C111.3871 (17)
C4—O41.2211 (14)C10—H100.956 (18)
C4—C51.5462 (15)C11—O121.3697 (16)
C5—C61.5051 (15)O12—C131.4350 (16)
C5—H50.986 (14)C13—H13A0.99 (2)
N2—H2A0.905 (19)C13—H13B0.99 (2)
N2—H2B0.860 (18)C13—H13C0.98 (2)
C6—C71.3863 (16)O14—C151.4264 (18)
C6—C111.4042 (16)C15—H15A0.99 (2)
C7—C81.3937 (17)C15—H15B0.98 (2)
C7—H70.952 (15)C15—H15C0.99 (2)
C2—S1—C590.41 (5)C9—C8—C7119.40 (12)
N2—C2—N3123.15 (11)C8—C9—C10120.16 (12)
N2—C2—S1119.43 (9)C8—C9—H9120.1 (11)
N3—C2—S1117.41 (9)C10—C9—H9119.7 (11)
C2—N3—C4112.25 (9)C11—C10—C9120.84 (12)
O4—C4—N3124.39 (10)C11—C10—H10119.4 (10)
O4—C4—C5120.63 (10)C9—C10—H10119.7 (10)
N3—C4—C5114.90 (9)O12—C11—C10125.04 (11)
C6—C5—C4117.84 (9)O12—C11—C6115.68 (10)
C6—C5—S1112.49 (7)C10—C11—C6119.28 (12)
C4—C5—S1104.59 (7)C11—O12—C13117.02 (12)
C6—C5—H5109.3 (8)O12—C13—H13A109.6 (12)
C4—C5—H5105.4 (8)O12—C13—H13B108.8 (12)
S1—C5—H5106.4 (8)H13A—C13—H13B111.4 (17)
C2—N2—H2A118.1 (12)O12—C13—H13C105.2 (13)
C2—N2—H2B120.0 (11)H13A—C13—H13C112.2 (17)
H2A—N2—H2B121.8 (16)H13B—C13—H13C109.3 (17)
C7—C6—C11119.27 (11)C8—O14—C15117.14 (13)
C7—C6—C5118.89 (10)O14—C15—H15A104.3 (13)
C11—C6—C5121.68 (10)O14—C15—H15B111.0 (11)
C6—C7—C8121.05 (11)H15A—C15—H15B112.5 (17)
C6—C7—H7120.1 (9)O14—C15—H15C112.4 (13)
C8—C7—H7118.9 (9)H15A—C15—H15C108.3 (18)
O14—C8—C9125.16 (12)H15B—C15—H15C108.4 (17)
O14—C8—C7115.44 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N3i0.905 (19)2.04 (2)2.9281 (15)165.3 (17)
N2—H2B···O4ii0.860 (18)2.176 (19)3.0102 (15)163.1 (16)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z.
(II) ethyl 2-amino-5-(2,5-dimethoxyphenyl)-1,3-thiazole-4-carboxylate top
Crystal data top
C14H16N2O4SF(000) = 648
Mr = 308.35Dx = 1.358 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from all reflections
a = 8.1740 (5) Åθ = 2.8–27.5°
b = 22.8266 (12) ŵ = 0.23 mm1
c = 9.0300 (5) ÅT = 293 K
β = 116.444 (1)°Prismatic, colourless
V = 1508.57 (15) Å30.40 × 0.40 × 0.30 mm
Z = 4
Data collection top
Nonius Kappa CCD
diffractometer
5468 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 27.5°, θmin = 2.8°
ϕ and ω scansh = 1010
6339 measured reflectionsk = 2923
6339 independent reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0772P)2 + 0.6156P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
6339 reflectionsΔρmax = 0.83 e Å3
385 parametersΔρmin = 0.23 e Å3
1 restraintAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (8)
Crystal data top
C14H16N2O4SV = 1508.57 (15) Å3
Mr = 308.35Z = 4
Monoclinic, P21Mo Kα radiation
a = 8.1740 (5) ŵ = 0.23 mm1
b = 22.8266 (12) ÅT = 293 K
c = 9.0300 (5) Å0.40 × 0.40 × 0.30 mm
β = 116.444 (1)°
Data collection top
Nonius Kappa CCD
diffractometer
5468 reflections with I > 2σ(I)
6339 measured reflectionsRint = 0.031
6339 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.139Δρmax = 0.83 e Å3
S = 1.04Δρmin = 0.23 e Å3
6339 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
385 parametersAbsolute structure parameter: 0.02 (8)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A1.13783 (11)0.00152 (3)0.04470 (10)0.04194 (19)
C2A1.0425 (4)0.05598 (14)0.1861 (4)0.0397 (7)
N2A1.1069 (5)0.06959 (15)0.2937 (4)0.0593 (9)
H2A1.06110.09860.36040.071*
H2B1.19440.04940.29640.071*
N3A0.9104 (3)0.08360 (11)0.1714 (3)0.0376 (5)
C4A0.8840 (4)0.06114 (13)0.0416 (3)0.0335 (6)
C5A0.9910 (4)0.01458 (13)0.0420 (3)0.0323 (6)
C6A1.0072 (4)0.01893 (12)0.1880 (3)0.0332 (6)
C7A1.1627 (4)0.01171 (14)0.3369 (4)0.0375 (7)
H7A1.25380.01390.34240.045*
C8A1.1843 (5)0.04215 (16)0.4777 (4)0.0423 (8)
C9A1.0498 (5)0.08051 (17)0.4681 (4)0.0482 (8)
H9A1.06400.10110.56190.058*
C10A0.8941 (5)0.08886 (17)0.3214 (4)0.0450 (8)
H10A0.80510.11530.31630.054*
C11A0.8712 (4)0.05736 (14)0.1807 (4)0.0362 (6)
O12A0.7222 (3)0.06278 (11)0.0288 (3)0.0500 (6)
C13A0.5775 (5)0.0996 (2)0.0164 (5)0.0676 (12)
H13A0.61940.13940.03650.101*
H13B0.47800.09640.09250.101*
H13C0.53700.08800.09680.101*
O14A1.3304 (4)0.03468 (14)0.6318 (3)0.0621 (7)
C15A1.4820 (5)0.0023 (2)0.6411 (5)0.0573 (10)
H15A1.52100.01770.56310.086*
H15B1.58020.00520.75080.086*
H15C1.44780.03810.61560.086*
C17A0.7405 (4)0.08922 (14)0.0075 (4)0.0368 (6)
O18A0.6388 (4)0.12646 (13)0.0924 (4)0.0631 (7)
O19A0.7417 (3)0.06896 (11)0.1308 (3)0.0477 (6)
C20A0.6021 (4)0.09115 (16)0.1732 (4)0.0456 (8)
H20A0.48170.08540.08210.055*
H20B0.61990.13270.19830.055*
C21A0.6204 (6)0.0573 (2)0.3220 (5)0.0619 (10)
H21A0.59060.01690.29240.093*
H21B0.53860.07310.36180.093*
H21C0.74380.06010.40710.093*
S1B0.70083 (11)0.26178 (3)0.38645 (10)0.0451 (2)
C2B0.7944 (4)0.20365 (15)0.5258 (4)0.0420 (7)
N2B0.7292 (5)0.18978 (16)0.6345 (4)0.0608 (9)
H2C0.77240.16000.69870.073*
H2D0.64440.21070.63980.073*
N3B0.9218 (3)0.17508 (11)0.5079 (3)0.0377 (5)
C4B0.9503 (4)0.19837 (13)0.3795 (3)0.0332 (6)
C5B0.8457 (4)0.24461 (13)0.2981 (4)0.0345 (6)
C6B0.8284 (4)0.27817 (12)0.1507 (3)0.0333 (6)
C7B0.6754 (4)0.26925 (14)0.0022 (4)0.0370 (7)
H7B0.58460.24360.00310.044*
C8B0.6571 (4)0.29882 (14)0.1404 (4)0.0381 (7)
C9B0.7933 (5)0.33668 (15)0.1306 (4)0.0452 (7)
H9B0.78210.35630.22490.054*
C10B0.9455 (5)0.34567 (15)0.0174 (4)0.0445 (7)
H10B1.03640.37120.02200.053*
C11B0.9646 (4)0.31690 (15)0.1606 (4)0.0374 (7)
O12B1.1103 (3)0.32378 (11)0.3123 (3)0.0516 (6)
C13B1.2519 (6)0.3615 (3)0.3255 (5)0.0717 (13)
H13D1.30110.34850.25250.108*
H13E1.34640.36130.43730.108*
H13F1.20480.40060.29590.108*
O14B0.5110 (3)0.29203 (12)0.2930 (3)0.0545 (6)
C15B0.3604 (5)0.2577 (2)0.3027 (5)0.0569 (9)
H15D0.39670.21740.28080.085*
H15E0.26070.26120.41150.085*
H15F0.32240.27160.22250.085*
C17B1.0913 (4)0.16904 (14)0.3448 (4)0.0363 (6)
O18B1.1909 (4)0.13113 (12)0.4278 (3)0.0607 (7)
O19B1.0945 (3)0.19020 (11)0.2086 (3)0.0478 (6)
C20B1.2327 (4)0.16804 (16)0.1654 (4)0.0450 (7)
H20C1.21280.12670.13820.054*
H20D1.35300.17290.25730.054*
C21B1.2185 (6)0.20242 (19)0.0186 (5)0.0578 (10)
H21D1.09500.20100.06690.087*
H21E1.29890.18590.02180.087*
H21F1.25250.24240.05060.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0478 (4)0.0416 (4)0.0462 (4)0.0106 (3)0.0298 (3)0.0115 (3)
C2A0.0478 (16)0.0393 (17)0.0368 (15)0.0033 (13)0.0233 (13)0.0075 (12)
N2A0.078 (2)0.062 (2)0.0621 (19)0.0233 (17)0.0528 (18)0.0252 (16)
N3A0.0442 (13)0.0390 (14)0.0361 (12)0.0037 (11)0.0238 (11)0.0067 (10)
C4A0.0351 (14)0.0357 (16)0.0323 (14)0.0016 (11)0.0173 (12)0.0031 (11)
C5A0.0337 (13)0.0339 (16)0.0310 (13)0.0008 (11)0.0159 (11)0.0025 (11)
C6A0.0387 (14)0.0300 (15)0.0362 (14)0.0045 (11)0.0215 (12)0.0042 (11)
C7A0.0387 (14)0.0397 (18)0.0357 (14)0.0000 (13)0.0181 (12)0.0068 (12)
C8A0.0440 (17)0.048 (2)0.0317 (15)0.0021 (14)0.0142 (13)0.0037 (13)
C9A0.0559 (19)0.055 (2)0.0384 (16)0.0025 (16)0.0250 (15)0.0117 (14)
C10A0.0520 (18)0.0430 (19)0.0453 (17)0.0083 (15)0.0264 (15)0.0082 (15)
C11A0.0396 (14)0.0344 (16)0.0373 (15)0.0023 (12)0.0197 (12)0.0027 (12)
O12A0.0461 (12)0.0540 (15)0.0448 (12)0.0159 (11)0.0157 (10)0.0051 (11)
C13A0.050 (2)0.083 (3)0.059 (2)0.025 (2)0.0142 (18)0.015 (2)
O14A0.0570 (15)0.085 (2)0.0337 (12)0.0096 (14)0.0106 (11)0.0116 (12)
C15A0.0442 (18)0.074 (3)0.0437 (18)0.004 (2)0.0106 (15)0.0036 (19)
C17A0.0391 (15)0.0364 (16)0.0392 (15)0.0014 (13)0.0215 (13)0.0041 (12)
O18A0.0668 (16)0.0699 (18)0.0622 (16)0.0328 (14)0.0373 (13)0.0276 (14)
O19A0.0474 (12)0.0585 (15)0.0505 (13)0.0174 (11)0.0338 (11)0.0161 (11)
C20A0.0440 (16)0.048 (2)0.057 (2)0.0036 (14)0.0336 (15)0.0015 (15)
C21A0.073 (2)0.069 (3)0.068 (2)0.001 (2)0.053 (2)0.0051 (19)
S1B0.0524 (4)0.0455 (5)0.0489 (4)0.0143 (3)0.0328 (4)0.0140 (3)
C2B0.0504 (17)0.0447 (18)0.0386 (16)0.0078 (14)0.0266 (14)0.0058 (13)
N2B0.081 (2)0.064 (2)0.0633 (19)0.0268 (17)0.0559 (18)0.0272 (16)
N3B0.0439 (13)0.0398 (14)0.0339 (12)0.0065 (11)0.0214 (11)0.0109 (10)
C4B0.0354 (13)0.0336 (15)0.0318 (14)0.0007 (11)0.0161 (11)0.0045 (11)
C5B0.0356 (14)0.0355 (16)0.0358 (15)0.0008 (11)0.0189 (12)0.0040 (11)
C6B0.0379 (14)0.0328 (16)0.0319 (14)0.0027 (11)0.0181 (12)0.0079 (11)
C7B0.0380 (15)0.0348 (17)0.0397 (16)0.0001 (13)0.0185 (13)0.0041 (13)
C8B0.0440 (15)0.0386 (17)0.0328 (14)0.0054 (13)0.0180 (12)0.0064 (12)
C9B0.0547 (18)0.0429 (18)0.0425 (17)0.0046 (14)0.0258 (15)0.0141 (13)
C10B0.0496 (17)0.0381 (18)0.0490 (18)0.0041 (14)0.0249 (15)0.0101 (14)
C11B0.0392 (15)0.0369 (17)0.0367 (15)0.0009 (13)0.0175 (13)0.0030 (12)
O12B0.0454 (12)0.0596 (16)0.0410 (12)0.0128 (11)0.0111 (10)0.0087 (11)
C13B0.055 (2)0.086 (3)0.059 (2)0.028 (2)0.012 (2)0.006 (2)
O14B0.0513 (13)0.0683 (17)0.0353 (12)0.0068 (12)0.0116 (10)0.0108 (11)
C15B0.0515 (19)0.064 (2)0.0428 (18)0.0089 (18)0.0093 (15)0.0013 (17)
C17B0.0357 (14)0.0396 (17)0.0337 (14)0.0020 (13)0.0154 (12)0.0039 (12)
O18B0.0707 (16)0.0624 (17)0.0612 (16)0.0299 (14)0.0403 (14)0.0250 (14)
O19B0.0511 (13)0.0554 (15)0.0517 (13)0.0164 (11)0.0363 (11)0.0173 (11)
C20B0.0447 (16)0.048 (2)0.0540 (19)0.0034 (14)0.0327 (15)0.0012 (15)
C21B0.067 (2)0.062 (2)0.065 (2)0.0026 (18)0.048 (2)0.0077 (18)
Geometric parameters (Å, º) top
S1A—C5A1.739 (3)S1B—C5B1.742 (3)
S1A—C2A1.753 (3)S1B—C2B1.753 (3)
C2A—N3A1.307 (4)C2B—N3B1.298 (4)
C2A—N2A1.332 (4)C2B—N2B1.347 (4)
N2A—H2A0.8600N2B—H2C0.8600
N2A—H2B0.8600N2B—H2D0.8600
N3A—C4A1.381 (4)N3B—C4B1.386 (4)
C4A—C5A1.370 (4)C4B—C5B1.351 (4)
C4A—C17A1.484 (4)C4B—C17B1.482 (4)
C5A—C6A1.478 (4)C5B—C6B1.487 (4)
C6A—C7A1.388 (4)C6B—C7B1.382 (4)
C6A—C11A1.394 (4)C6B—C11B1.393 (4)
C7A—C8A1.390 (4)C7B—C8B1.401 (4)
C7A—H7A0.9300C7B—H7B0.9300
C8A—C9A1.377 (5)C8B—O14B1.373 (4)
C8A—O14A1.382 (4)C8B—C9B1.381 (5)
C9A—C10A1.382 (5)C9B—C10B1.376 (5)
C9A—H9A0.9300C9B—H9B0.9300
C10A—C11A1.398 (4)C10B—C11B1.395 (4)
C10A—H10A0.9300C10B—H10B0.9300
C11A—O12A1.376 (4)C11B—O12B1.366 (4)
O12A—C13A1.414 (4)O12B—C13B1.405 (5)
C13A—H13A0.9600C13B—H13D0.9600
C13A—H13B0.9600C13B—H13E0.9600
C13A—H13C0.9600C13B—H13F0.9600
O14A—C15A1.413 (5)O14B—C15B1.428 (5)
C15A—H15A0.9600C15B—H15D0.9600
C15A—H15B0.9600C15B—H15E0.9600
C15A—H15C0.9600C15B—H15F0.9600
C17A—O18A1.198 (4)C17B—O18B1.196 (4)
C17A—O19A1.328 (4)C17B—O19B1.332 (4)
O19A—C20A1.447 (4)O19B—C20B1.441 (4)
C20A—C21A1.498 (5)C20B—C21B1.499 (5)
C20A—H20A0.9700C20B—H20C0.9700
C20A—H20B0.9700C20B—H20D0.9700
C21A—H21A0.9600C21B—H21D0.9600
C21A—H21B0.9600C21B—H21E0.9600
C21A—H21C0.9600C21B—H21F0.9600
C5A—S1A—C2A89.86 (14)C5B—S1B—C2B89.43 (14)
N3A—C2A—N2A125.1 (3)N3B—C2B—N2B124.9 (3)
N3A—C2A—S1A114.0 (2)N3B—C2B—S1B114.1 (2)
N2A—C2A—S1A120.9 (3)N2B—C2B—S1B120.9 (3)
C2A—N2A—H2A120.0C2B—N2B—H2C120.0
C2A—N2A—H2B120.0C2B—N2B—H2D120.0
H2A—N2A—H2B120.0H2C—N2B—H2D120.0
C2A—N3A—C4A110.8 (3)C2B—N3B—C4B110.8 (3)
C5A—C4A—N3A116.9 (3)C5B—C4B—N3B117.0 (3)
C5A—C4A—C17A126.2 (3)C5B—C4B—C17B126.9 (3)
N3A—C4A—C17A116.9 (3)N3B—C4B—C17B116.1 (3)
C4A—C5A—C6A132.4 (3)C4B—C5B—C6B132.4 (3)
C4A—C5A—S1A108.3 (2)C4B—C5B—S1B108.7 (2)
C6A—C5A—S1A119.1 (2)C6B—C5B—S1B118.8 (2)
C7A—C6A—C11A119.2 (3)C7B—C6B—C11B120.5 (3)
C7A—C6A—C5A118.8 (3)C7B—C6B—C5B118.5 (3)
C11A—C6A—C5A122.0 (3)C11B—C6B—C5B121.0 (3)
C6A—C7A—C8A121.0 (3)C6B—C7B—C8B120.0 (3)
C6A—C7A—H7A119.5C6B—C7B—H7B120.0
C8A—C7A—H7A119.5C8B—C7B—H7B120.0
C9A—C8A—O14A116.7 (3)O14B—C8B—C9B116.8 (3)
C9A—C8A—C7A119.2 (3)O14B—C8B—C7B123.9 (3)
O14A—C8A—C7A124.1 (3)C9B—C8B—C7B119.3 (3)
C8A—C9A—C10A121.1 (3)C10B—C9B—C8B120.6 (3)
C8A—C9A—H9A119.5C10B—C9B—H9B119.7
C10A—C9A—H9A119.5C8B—C9B—H9B119.7
C9A—C10A—C11A119.6 (3)C9B—C10B—C11B120.6 (3)
C9A—C10A—H10A120.2C9B—C10B—H10B119.7
C11A—C10A—H10A120.2C11B—C10B—H10B119.7
O12A—C11A—C6A115.9 (3)O12B—C11B—C6B116.9 (3)
O12A—C11A—C10A124.1 (3)O12B—C11B—C10B124.3 (3)
C6A—C11A—C10A119.9 (3)C6B—C11B—C10B118.9 (3)
C11A—O12A—C13A118.0 (3)C11B—O12B—C13B118.2 (3)
O12A—C13A—H13A109.5O12B—C13B—H13D109.5
O12A—C13A—H13B109.5O12B—C13B—H13E109.5
H13A—C13A—H13B109.5H13D—C13B—H13E109.5
O12A—C13A—H13C109.5O12B—C13B—H13F109.5
H13A—C13A—H13C109.5H13D—C13B—H13F109.5
H13B—C13A—H13C109.5H13E—C13B—H13F109.5
C8A—O14A—C15A117.8 (3)C8B—O14B—C15B117.7 (3)
O14A—C15A—H15A109.5O14B—C15B—H15D109.5
O14A—C15A—H15B109.5O14B—C15B—H15E109.5
H15A—C15A—H15B109.5H15D—C15B—H15E109.5
O14A—C15A—H15C109.5O14B—C15B—H15F109.5
H15A—C15A—H15C109.5H15D—C15B—H15F109.5
H15B—C15A—H15C109.5H15E—C15B—H15F109.5
O18A—C17A—O19A124.2 (3)O18B—C17B—O19B123.6 (3)
O18A—C17A—C4A124.1 (3)O18B—C17B—C4B124.8 (3)
O19A—C17A—C4A111.7 (3)O19B—C17B—C4B111.6 (2)
C17A—O19A—C20A116.8 (3)C17B—O19B—C20B117.5 (3)
O19A—C20A—C21A106.3 (3)O19B—C20B—C21B107.1 (3)
O19A—C20A—H20A110.5O19B—C20B—H20C110.3
C21A—C20A—H20A110.5C21B—C20B—H20C110.3
O19A—C20A—H20B110.5O19B—C20B—H20D110.3
C21A—C20A—H20B110.5C21B—C20B—H20D110.3
H20A—C20A—H20B108.7H20C—C20B—H20D108.5
C20A—C21A—H21A109.5C20B—C21B—H21D109.5
C20A—C21A—H21B109.5C20B—C21B—H21E109.5
H21A—C21A—H21B109.5H21D—C21B—H21E109.5
C20A—C21A—H21C109.5C20B—C21B—H21F109.5
H21A—C21A—H21C109.5H21D—C21B—H21F109.5
H21B—C21A—H21C109.5H21E—C21B—H21F109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2A···N3Bi0.862.132.980 (4)168
N2A—H2B···O14Ai0.862.453.248 (4)156
N2B—H2C···N3Aii0.862.122.971 (4)168
N2B—H2D···O14Bii0.862.373.178 (4)158
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC11H12N2O3SC14H16N2O4S
Mr252.29308.35
Crystal system, space groupTriclinic, P1Monoclinic, P21
Temperature (K)293293
a, b, c (Å)6.9572 (5), 8.1499 (7), 10.4564 (10)8.1740 (5), 22.8266 (12), 9.0300 (5)
α, β, γ (°)99.800 (2), 101.050 (2), 99.540 (2)90, 116.444 (1), 90
V3)561.21 (8)1508.57 (15)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.290.23
Crystal size (mm)0.40 × 0.35 × 0.300.40 × 0.40 × 0.30
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius Kappa CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3846, 2490, 2349 6339, 6339, 5468
Rint0.0140.031
(sin θ/λ)max1)0.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.078, 1.05 0.053, 0.139, 1.04
No. of reflections24906339
No. of parameters202385
No. of restraints01
H-atom treatmentAll H-atom parameters refinedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.220.83, 0.23
Absolute structure?Flack H D (1983), Acta Cryst. A39, 876-881
Absolute structure parameter?0.02 (8)

Computer programs: Collect (Nonius, 1998), Collect Software (Nonius,1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), DENZO and SCALEPACK (Otwinowski & Minor,1997), DENZO AND SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia,1997), SHELXL97 and PLATON (Spek, 1998), SHELXL97 (Sheldrick,1997), PLATON (Spek, 1998).

Selected geometric parameters (Å, º) for (I) top
S1—C21.7488 (11)C6—C111.4042 (16)
S1—C51.8185 (11)C7—C81.3937 (17)
C2—N21.3134 (16)C8—O141.3741 (16)
C2—N31.3270 (15)C8—C91.379 (2)
N3—C41.3671 (15)C9—C101.388 (2)
C4—O41.2211 (14)C10—C111.3871 (17)
C4—C51.5462 (15)C11—O121.3697 (16)
C5—C61.5051 (15)O12—C131.4350 (16)
C6—C71.3863 (16)O14—C151.4264 (18)
C2—S1—C590.41 (5)C7—C6—C5118.89 (10)
N2—C2—N3123.15 (11)C11—C6—C5121.68 (10)
N2—C2—S1119.43 (9)C6—C7—C8121.05 (11)
N3—C2—S1117.41 (9)O14—C8—C9125.16 (12)
C2—N3—C4112.25 (9)O14—C8—C7115.44 (12)
O4—C4—N3124.39 (10)C9—C8—C7119.40 (12)
O4—C4—C5120.63 (10)C8—C9—C10120.16 (12)
N3—C4—C5114.90 (9)C11—C10—C9120.84 (12)
C6—C5—C4117.84 (9)O12—C11—C10125.04 (11)
C6—C5—S1112.49 (7)O12—C11—C6115.68 (10)
C4—C5—S1104.59 (7)C10—C11—C6119.28 (12)
C7—C6—C11119.27 (11)C11—O12—C13117.02 (12)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N3i0.905 (19)2.04 (2)2.9281 (15)165.3 (17)
N2—H2B···O4ii0.860 (18)2.176 (19)3.0102 (15)163.1 (16)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z.
Selected bond lengths (Å) for (II) top
S1A—C5A1.739 (3)S1B—C5B1.742 (3)
S1A—C2A1.753 (3)S1B—C2B1.753 (3)
C2A—N3A1.307 (4)C2B—N3B1.298 (4)
C2A—N2A1.332 (4)C2B—N2B1.347 (4)
N3A—C4A1.381 (4)N3B—C4B1.386 (4)
C4A—C5A1.370 (4)C4B—C5B1.351 (4)
C4A—C17A1.484 (4)C4B—C17B1.482 (4)
C5A—C6A1.478 (4)C5B—C6B1.487 (4)
C6A—C7A1.388 (4)C6B—C7B1.382 (4)
C6A—C11A1.394 (4)C6B—C11B1.393 (4)
C7A—C8A1.390 (4)C7B—C8B1.401 (4)
C8A—C9A1.377 (5)C8B—O14B1.373 (4)
C8A—O14A1.382 (4)C8B—C9B1.381 (5)
C9A—C10A1.382 (5)C9B—C10B1.376 (5)
C10A—C11A1.398 (4)C10B—C11B1.395 (4)
C11A—O12A1.376 (4)C11B—O12B1.366 (4)
O12A—C13A1.414 (4)O12B—C13B1.405 (5)
O14A—C15A1.413 (5)O14B—C15B1.428 (5)
C17A—O18A1.198 (4)C17B—O18B1.196 (4)
C17A—O19A1.328 (4)C17B—O19B1.332 (4)
O19A—C20A1.447 (4)O19B—C20B1.441 (4)
C20A—C21A1.498 (5)C20B—C21B1.499 (5)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N2A—H2A···N3Bi0.862.132.980 (4)167.8
N2A—H2B···O14Ai0.862.453.248 (4)155.5
N2B—H2C···N3Aii0.862.122.971 (4)168.0
N2B—H2D···O14Bii0.862.373.178 (4)157.6
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds