Download citation
Download citation
link to html
In the title compound, 2C8H12N+·2C4H3N4O4-·C8H11N, the anions are linked by paired N-H...N hydrogen bonds [H...N = 2.07 and 2.11 Å, N...N = 2.942 (3) and 2.978 (3) Å and N-H...N = 173 and 170°] and by paired N-H...O hydrogen bonds [H...O = 1.98 and 2.05 Å, N...O = 2.855 (3) and 2.917 (3) Å, and N-H...O = 173 and 167°] into chains of rings. These chains are linked into sheets by further N-H...O hydrogen bonds in which all of the donors are provided by the cations [H...O = 1.83-2.17 Å, N...O = 2.747 (3)-2.965 (3) Å and N-H...O = 141-168°]. The neutral amine molecule is pendent from the sheet and is linked to it by a single N-H...N hydrogen bond [H...N = 2.00 Å, N...N = 2.901 (3) Å and N-H...N = 175°].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103006383/sk1630sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103006383/sk1630Isup2.hkl
Contains datablock I

CCDC reference: 214164

Comment top

Alkoxy-5-nitrosopyrimidines have proven to be highly activated towards aminolysis of their alkoxy groups, and the aminolysis can be performed at room temperature in a wide variety of solvents, including water (Melguizo et al., 2002). This unusual behaviour has been attributed to the strong electron-withdrawing effect exerted by the 5-nitroso group on pyrimidine atoms C2, C4 and C6. We have therefore sought to establish whether related electron-withdrawing substituents, in particular the nitro group, engender similar activation towards nucleophilic displacement of alkoxy groups by amines. For this purpose, 6-amino-2-methoxy-5-nitropyrimidine-4(3H)-one was prepared and treated with a range of primary amines. However, in the case of (R)-1-phenylethylamine, the reaction resulted in hydrolysis instead of aminolysis. This can be interpreted as a nucleophilic displacement of the 2-methoxy group by hydroxide, which favourably competed with the aminolysis due to the steric bulk of the amine. A similar example of hydrolysis effectively competing with aminolysis was observed when a 5-nitrosopyrimidine analogue was treated with piperidine (Melguizo et al., 2002).

The constitution of the title compound, (I), is that of an amine-solvated salt 2[PhCH(CH3)NH3]+·2(C4H3N4O4)·PhCH(CH3)NH2, in which all five components of the asymmetric unit lie in general positions. Although the two cations and the single neutral amine component all have an R configuration, the substructure generated by the anions alone is very close to being centrosymmetric, although a detailed examination of the hydrogen bonds shows deviations of even this substructure from exact centrosymmetry.

The bond distances in the two independent anions are very similar (Table 1) and both show evidence for considerable electronic polarization. In particular, the Cn4—Nn4 (n = 1 or 2) distances are much shorter than those typically found for Ar–NH2 units (mean value = 1.355 Å and lower quartile value = 1.340 Å; Allen et al., 1987), the Cn5—Nn5 distances are likewise very much shorter than is normal for Ar—NO2 distances (mean value = 1.468 Å and lower quartile value = 1.460 Å), while the N—O distances are significantly longer than those typically found in nitro groups (mean value = 1.218 Å and upper quartile value = 1.226 Å); in addition, the Nn5—On51 distances are both longer than the Nn5—On52 distances. These observations taken together indicate form (A) as the dominant contributor to the overall molecular–electronic structure of the anions, with a lesser contribution from form (B).

The ionic components form hydrogen-bonded sheets within which the two anions form a one-dimensional substructure in the form of a chain of rings; the chains are linked by the cations, each of which acts a threefold hydrogen-bond donor. However, the neutral amine acts only as a hydrogen-bond acceptor, not as a donor, and it is thus simply pendent from the sheet.

Within the asymmetric unit, atoms N14 and N24 act as hydrogen-bond donors, via H14A and H24A, to N23 and N13, respectively, so generating an R22(8) motif built from paired N—H···N hydrogen bonds (Table 2 and Fig. 1). In addition, atom N11 in the type 1 anion at (x, y, z) acts as hydrogen-bond donor to O26 in the type 2 anion at (1 + x, −1 + y, z), while N21 in the type 2 anion at (x, y, z) acts as donor to O16 in the type 1 anion at (−1 + x, 1 + y, z). These two hydrogen bonds thus generate a second R22(8) motif, this time based on paired N—H···O hydrogen bonds, and propagation of these four inter-anion hydrogen bonds generates a C22(10) C22(10)[R22(8)][R22(8)] chain of rings (Bernstein et al., 1995), running parallel to the [110] direction (Fig. 2).

The anion chains are linked into sheets by the cations and two one-dimensional substructures can readily be identified. Ammonium atoms N312 and N412 act as hydrogen-bond donors, via H31B and H41B, to O22 and O12, respectively, within the asymmetric unit. Atom N312 at (x, y, z) acts as donor, via H31A, to both O26 and O252 at (1 + x, y, z) in a planar three-centre N—H···(O2) hydrogen bond, which generates a local R21(6) motif; and N412 at (x, y, z) acts as hydrogen-bond donor, via H41A, to O16 at (−1 + x, y, z). Propagation of these hydrogen bonds then leads to a rather complex molecular ladder running parallel to the [100] direction (Fig. 3). The uprights of this ladder comprise two independent and antiparallel C22(8) chains, with the anion dimers forming the rungs; overall this ladder encloses five different rings, two of S(6) type, an R22(8) ring linking the two independent anions, the R21(6) ring noted above, and a large R66(24) ring between the rungs.

Finally, N312 at (x, y, z) acts as hydrogen-bond donor, via H31C, to O12 at (x, 1 + y, z); propagation of this hydrogen bond, together with the paired N—H···N hydrogen bonds between the anions, generates a C33(12)[R22(8)] chain of rings running parallel to the [010] direction (Fig. 4). The combination of [100], [010] and [110] chains generates a (001) sheet, but there are no direction-specific interactions between adjacent sheets.

The neutral amine, whose presence may be simply a consequence of filling otherwise void spaces, is linked to the ionic sheets by a single N—H···N hydrogen bond; atom N412 acts as donor, via H41C, to N512. The hydrogen bonds formed by the two cations are thus different, as N312 acts as donor only to O acceptors (Table 2). Atom N512 does not act as a donor, either in conventional hard (Desiraju & Steiner, 1999) hydrogen bonds or in N—H···π(arene) interactions.

Experimental top

6-Amino-2-methoxy-5-nitropyrimidine-4(3H)-one was obtained by the general oxidation procedure described in Taylor & McKillop (1965), consisting of the treatment of a solution of 6-amino-2-methoxy-5-nitrosopyrimidine-4(3H)-one in aqueous trifluoroacetic acid with 33% hydrogen peroxide at room temperature. The nitropyrimidine was then treated with a fivefold molar excess of enantiopure (R)-1-phenylethylamine in acetonitrile–water (1:1 v/v), and the resulting mixture was heated until the reactants had completely dissolved. Slow evaporation of the resulting solution yielded crystals of (I) suitable for single-crystal X-ray diffraction.

Refinement top

Crystals of (I) are triclinic. The space group P1 was selected, because the chiral amine component was known to be enantiopure. H atoms bonded to C atoms and those bonded to the N atoms in the anions were treated as riding atoms, with N—H distances of 0.88 Å, and C—H distances of 0.95 (aromatic), 0.98 (CH3) or 1.00 Å (aliphatic CH). H atoms bonded to N in the amine components were all located from difference maps, and then allowed to ride on the parent N atoms at the distances deduced from the maps; the resulting distances were in the range 0.85–0.97 Å, with a mean of 0.88 Å, in the cations, and 1.00 and 1.02 Å in the neutral amine. In the absence of any significant anomalous scattering, the Flack (1983) parameter was indeterminate (Flack & Bernardinelli, 2000); hence, the Friedel equivalents were merged before the final refinements and the absolute structure was set by reference to the known R configuration of the amine component.

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The independent components of (I), showing (a) the anionic components and (b) the neutral amine. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Stereoview of part of the crystal structure of (I), showing the formation of a chain of rings along [110] built from anions only.
[Figure 3] Fig. 3. Stereoview of part of the crystal structure of (I), showing the formation of a molecular ladder along [100] built from the ionic components only. For the sake of clarity, H atoms bonded to C atoms have been omitted.
[Figure 4] Fig. 4. Stereoview of part of the crystal structure of (I), showing the formation of a chain along [010]. For the sake of clarity, only the ionic components involved in the chain are shown and H atoms bonded to C atoms have been omitted.
(R)-1-Phenylethylammonium 6-amino-5-nitropyrimidine-2,4(1H,3H)-dionate (R)-1-phenylethylamine hemisolvate top
Crystal data top
2C8H12N+·2C4H3N4O4·C8H11NZ = 1
Mr = 707.76F(000) = 374
Triclinic, P1Dx = 1.350 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8183 (3) ÅCell parameters from 3910 reflections
b = 9.6999 (4) Åθ = 3.0–27.5°
c = 10.4089 (5) ŵ = 0.10 mm1
α = 86.787 (2)°T = 120 K
β = 86.377 (2)°Prism, colourless
γ = 78.798 (3)°0.4 × 0.3 × 0.18 mm
V = 870.76 (6) Å3
Data collection top
Nonius KappaCCD
diffractometer
3910 independent reflections
Radiation source: Rotating Anode3636 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
h = 1111
Tmin = 0.958, Tmax = 0.984k = 1212
13083 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.08P)2 + 0.1087P]
where P = (Fo2 + 2Fc2)/3
3910 reflections(Δ/σ)max < 0.001
463 parametersΔρmax = 0.33 e Å3
3 restraintsΔρmin = 0.31 e Å3
Crystal data top
2C8H12N+·2C4H3N4O4·C8H11Nγ = 78.798 (3)°
Mr = 707.76V = 870.76 (6) Å3
Triclinic, P1Z = 1
a = 8.8183 (3) ÅMo Kα radiation
b = 9.6999 (4) ŵ = 0.10 mm1
c = 10.4089 (5) ÅT = 120 K
α = 86.787 (2)°0.4 × 0.3 × 0.18 mm
β = 86.377 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3910 independent reflections
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
3636 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.984Rint = 0.064
13083 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0443 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.01Δρmax = 0.33 e Å3
3910 reflectionsΔρmin = 0.31 e Å3
463 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.8394 (2)0.1460 (2)0.5120 (2)0.0198 (4)
C120.6896 (3)0.2113 (2)0.4878 (2)0.0183 (5)
O120.60045 (19)0.13937 (18)0.44733 (17)0.0225 (4)
N130.6415 (2)0.3479 (2)0.5069 (2)0.0200 (4)
C140.7371 (3)0.4211 (2)0.5579 (2)0.0196 (5)
N140.6796 (3)0.5568 (2)0.5702 (2)0.0264 (5)
C150.8860 (3)0.3529 (3)0.5996 (2)0.0192 (5)
N150.9745 (2)0.4235 (2)0.6694 (2)0.0233 (5)
O1510.9390 (2)0.55406 (19)0.6776 (2)0.0317 (4)
O1521.0851 (2)0.3564 (2)0.7280 (2)0.0403 (5)
C160.9447 (3)0.2088 (2)0.5683 (2)0.0192 (5)
O161.07575 (19)0.13884 (18)0.58458 (18)0.0231 (4)
N210.1577 (2)0.8457 (2)0.5144 (2)0.0200 (4)
C220.3119 (3)0.7844 (3)0.5221 (2)0.0193 (5)
O220.40227 (19)0.85464 (18)0.56142 (17)0.0234 (4)
N230.3612 (2)0.6508 (2)0.4888 (2)0.0213 (4)
C240.2628 (3)0.5787 (2)0.4422 (2)0.0203 (5)
N240.3206 (3)0.4453 (2)0.4219 (2)0.0261 (5)
C250.1063 (3)0.6462 (2)0.4172 (2)0.0183 (5)
N250.0098 (2)0.5788 (2)0.3514 (2)0.0221 (4)
O2510.0533 (2)0.45158 (19)0.3257 (2)0.0344 (5)
O2520.1165 (2)0.6434 (2)0.3157 (2)0.0343 (5)
C260.0502 (3)0.7863 (2)0.4601 (2)0.0186 (5)
O260.08412 (19)0.85527 (18)0.45535 (18)0.0237 (4)
C310.4024 (3)0.9093 (3)0.2282 (2)0.0211 (5)
C3110.5724 (3)0.8446 (3)0.2376 (2)0.0236 (5)
N3120.6264 (2)0.8695 (2)0.3660 (2)0.0202 (4)
C3130.6740 (3)0.9044 (4)0.1335 (3)0.0390 (7)
C320.3034 (3)0.8285 (3)0.1839 (2)0.0239 (5)
C330.1483 (3)0.8862 (3)0.1682 (3)0.0268 (5)
C340.0900 (3)1.0244 (3)0.1977 (3)0.0284 (6)
C350.1872 (3)1.1052 (3)0.2428 (3)0.0282 (6)
C360.3425 (3)1.0477 (3)0.2577 (3)0.0255 (5)
C410.5879 (3)0.0365 (3)0.7932 (2)0.0216 (5)
C4110.4146 (3)0.0622 (2)0.7764 (2)0.0219 (5)
N4120.3729 (2)0.1723 (2)0.6710 (2)0.0216 (4)
C4130.3167 (3)0.1064 (3)0.8975 (3)0.0268 (5)
C420.6575 (3)0.1391 (3)0.8412 (3)0.0248 (5)
C430.8154 (3)0.1119 (3)0.8608 (3)0.0267 (5)
C440.9046 (3)0.0189 (3)0.8331 (3)0.0282 (6)
C450.8362 (3)0.1200 (3)0.7843 (3)0.0281 (6)
C460.6783 (3)0.0918 (3)0.7636 (3)0.0257 (5)
C510.4676 (3)0.4884 (3)0.9643 (3)0.0289 (5)
C5110.3300 (3)0.5144 (3)0.8801 (3)0.0321 (6)
N5120.3769 (3)0.4522 (2)0.7537 (2)0.0290 (5)
C5130.2617 (5)0.6715 (4)0.8625 (4)0.0546 (10)
C520.4635 (4)0.4145 (3)1.0819 (3)0.0369 (7)
C530.5902 (4)0.3896 (4)1.1581 (3)0.0456 (8)
C540.7219 (4)0.4399 (4)1.1187 (4)0.0508 (9)
C550.7291 (5)0.5125 (4)1.0016 (4)0.0548 (9)
C560.6015 (4)0.5376 (4)0.9254 (3)0.0437 (8)
H110.86970.05820.49010.024*
H14A0.58580.59260.54580.032*
H14B0.73530.61110.60270.032*
H210.12640.92900.54660.024*
H24A0.41720.40970.43890.031*
H24B0.26250.39180.39140.031*
H3110.58600.74080.22800.028*
H31A0.71780.82670.37790.024*
H31B0.55620.84000.43360.024*
H31C0.62150.95970.36980.024*
H31D0.65561.00710.13740.058*
H31E0.64870.87920.04870.058*
H31F0.78320.86550.14750.058*
H320.34230.73330.16420.029*
H330.08220.83050.13700.032*
H340.01611.06360.18720.034*
H350.14751.20010.26350.034*
H360.40841.10380.28840.031*
H4110.38820.02730.74960.026*
H41A0.27930.17030.65530.026*
H41B0.43360.15160.60410.026*
H41C0.36760.26120.69520.026*
H41D0.34320.19230.92740.040*
H41E0.33660.03120.96460.040*
H41F0.20690.12420.87860.040*
H420.59660.22830.86060.030*
H430.86210.18250.89300.032*
H441.01210.03850.84770.034*
H450.89700.20910.76480.034*
H460.63250.16140.72890.031*
H5110.24830.46640.92290.039*
H51A0.47220.49260.72190.035*
H51B0.28750.49630.70700.035*
H51D0.34210.72120.82550.082*
H51E0.22300.70920.94630.082*
H51F0.17630.68470.80440.082*
H520.37250.38061.11070.044*
H530.58610.33741.23780.055*
H540.80760.42471.17220.061*
H550.82080.54540.97290.066*
H560.60630.58930.84540.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0141 (9)0.0155 (9)0.0294 (11)0.0005 (7)0.0059 (8)0.0039 (8)
C120.0136 (11)0.0216 (12)0.0193 (11)0.0016 (9)0.0039 (9)0.0000 (9)
O120.0173 (8)0.0199 (8)0.0308 (9)0.0024 (7)0.0061 (7)0.0039 (7)
N130.0162 (10)0.0179 (10)0.0260 (10)0.0016 (8)0.0063 (8)0.0002 (8)
C140.0159 (11)0.0191 (11)0.0236 (11)0.0028 (9)0.0033 (9)0.0006 (9)
N140.0208 (10)0.0183 (10)0.0396 (12)0.0001 (8)0.0088 (9)0.0014 (9)
C150.0147 (11)0.0198 (11)0.0243 (11)0.0049 (9)0.0052 (9)0.0010 (9)
N150.0171 (11)0.0221 (11)0.0318 (11)0.0040 (8)0.0043 (8)0.0049 (9)
O1510.0311 (11)0.0202 (9)0.0461 (11)0.0070 (8)0.0116 (9)0.0044 (8)
O1520.0277 (10)0.0331 (11)0.0598 (14)0.0055 (8)0.0252 (10)0.0145 (10)
C160.0167 (11)0.0208 (12)0.0199 (11)0.0029 (9)0.0025 (9)0.0002 (9)
O160.0143 (8)0.0203 (8)0.0347 (10)0.0001 (6)0.0063 (7)0.0053 (7)
N210.0153 (9)0.0182 (10)0.0258 (10)0.0000 (7)0.0038 (8)0.0040 (8)
C220.0148 (11)0.0214 (11)0.0210 (11)0.0013 (9)0.0041 (9)0.0006 (9)
O220.0172 (9)0.0244 (9)0.0299 (9)0.0037 (7)0.0070 (7)0.0052 (7)
N230.0159 (10)0.0217 (10)0.0253 (10)0.0000 (8)0.0053 (8)0.0018 (8)
C240.0182 (12)0.0200 (12)0.0225 (11)0.0026 (9)0.0049 (9)0.0003 (9)
N240.0192 (10)0.0194 (10)0.0390 (12)0.0020 (8)0.0111 (9)0.0059 (9)
C250.0160 (11)0.0163 (11)0.0222 (11)0.0011 (9)0.0036 (9)0.0012 (9)
N250.0181 (10)0.0197 (10)0.0289 (11)0.0031 (8)0.0045 (8)0.0033 (8)
O2510.0280 (10)0.0194 (9)0.0567 (13)0.0003 (8)0.0149 (9)0.0110 (9)
O2520.0208 (9)0.0291 (10)0.0533 (13)0.0028 (7)0.0177 (9)0.0125 (9)
C260.0164 (11)0.0195 (11)0.0198 (10)0.0029 (9)0.0039 (9)0.0006 (8)
O260.0141 (8)0.0227 (8)0.0336 (9)0.0014 (6)0.0072 (7)0.0062 (7)
C310.0182 (11)0.0240 (12)0.0205 (11)0.0017 (9)0.0039 (9)0.0012 (9)
C3110.0167 (11)0.0286 (12)0.0261 (12)0.0027 (9)0.0058 (9)0.0052 (10)
N3120.0129 (9)0.0193 (9)0.0282 (10)0.0006 (7)0.0065 (8)0.0024 (8)
C3130.0243 (13)0.0571 (19)0.0317 (15)0.0017 (13)0.0007 (11)0.0074 (13)
C320.0231 (12)0.0258 (13)0.0233 (12)0.0054 (10)0.0039 (9)0.0008 (9)
C330.0215 (13)0.0355 (14)0.0254 (12)0.0090 (10)0.0053 (10)0.0005 (10)
C340.0178 (12)0.0371 (15)0.0282 (13)0.0004 (11)0.0047 (10)0.0022 (11)
C350.0252 (13)0.0260 (13)0.0318 (13)0.0020 (10)0.0070 (11)0.0043 (10)
C360.0202 (12)0.0268 (13)0.0303 (13)0.0043 (10)0.0087 (10)0.0028 (10)
C410.0213 (12)0.0223 (12)0.0211 (11)0.0032 (9)0.0047 (9)0.0014 (9)
C4110.0197 (11)0.0205 (11)0.0270 (12)0.0067 (9)0.0057 (9)0.0003 (9)
N4120.0173 (10)0.0240 (10)0.0235 (10)0.0033 (8)0.0037 (8)0.0010 (8)
C4130.0218 (12)0.0307 (13)0.0282 (13)0.0062 (10)0.0012 (10)0.0012 (10)
C420.0239 (12)0.0193 (11)0.0305 (13)0.0014 (9)0.0039 (10)0.0016 (9)
C430.0253 (13)0.0258 (13)0.0313 (13)0.0093 (10)0.0069 (10)0.0004 (10)
C440.0206 (12)0.0320 (14)0.0321 (14)0.0047 (10)0.0071 (10)0.0026 (11)
C450.0239 (13)0.0245 (13)0.0341 (14)0.0011 (10)0.0041 (11)0.0028 (10)
C460.0253 (13)0.0242 (13)0.0287 (13)0.0057 (10)0.0058 (10)0.0026 (10)
C510.0359 (14)0.0224 (12)0.0282 (12)0.0013 (10)0.0103 (10)0.0044 (10)
C5110.0321 (14)0.0331 (14)0.0309 (13)0.0020 (11)0.0083 (11)0.0067 (11)
N5120.0353 (12)0.0268 (11)0.0263 (11)0.0074 (9)0.0087 (9)0.0010 (8)
C5130.063 (2)0.0396 (18)0.056 (2)0.0152 (16)0.0283 (18)0.0168 (16)
C520.0408 (16)0.0421 (17)0.0271 (14)0.0051 (13)0.0046 (12)0.0025 (12)
C530.053 (2)0.0518 (19)0.0288 (15)0.0037 (15)0.0138 (14)0.0039 (13)
C540.052 (2)0.050 (2)0.051 (2)0.0006 (16)0.0305 (17)0.0132 (16)
C550.047 (2)0.057 (2)0.069 (2)0.0251 (17)0.0240 (18)0.0024 (18)
C560.051 (2)0.0427 (18)0.0443 (18)0.0236 (15)0.0167 (15)0.0063 (14)
Geometric parameters (Å, º) top
N11—C121.381 (3)C34—C351.387 (4)
C12—N131.333 (3)C34—H340.95
N13—C141.352 (3)C35—C361.390 (4)
C14—C151.433 (3)C35—H350.95
C15—C161.441 (3)C36—H360.95
C16—N111.380 (3)C41—C461.380 (4)
C12—O121.253 (3)C41—C421.397 (4)
C14—N141.326 (3)C41—C4111.519 (3)
C15—N151.393 (3)C411—N4121.499 (3)
N15—O1511.250 (3)C411—C4131.515 (4)
N15—O1521.237 (3)C411—H4111.00
C16—O161.238 (3)N412—H41A0.86
N11—H110.88N412—H41B0.86
N14—H14A0.88N412—H41C0.90
N14—H14B0.88C413—H41D0.98
N21—C221.379 (3)C413—H41E0.98
C22—N231.342 (3)C413—H41F0.98
N23—C241.343 (3)C42—C431.392 (4)
C24—C251.441 (3)C42—H420.95
C25—C261.439 (3)C43—C441.391 (4)
C26—N211.366 (3)C43—H430.95
C22—O221.245 (3)C44—C451.381 (4)
C24—N241.319 (3)C44—H440.95
C25—N251.400 (3)C45—C461.394 (4)
N25—O2511.258 (3)C45—H450.95
N25—O2521.235 (3)C46—H460.95
C26—O261.244 (3)C51—C521.385 (4)
N21—H210.88C51—C561.387 (4)
N24—H24A0.88C51—C5111.515 (4)
N24—H24B0.88C511—N5121.480 (4)
C31—C361.388 (4)C511—C5131.531 (4)
C31—C321.395 (3)C511—H5111.00
C31—C3111.515 (3)N512—H51A1.02
C311—N3121.495 (3)N512—H51B0.97
C311—C3131.524 (4)C513—H51D0.98
C311—H3111.00C513—H51E0.98
N312—H31A0.85C513—H51F0.98
N312—H31B0.97C52—C531.386 (4)
N312—H31C0.87C52—H520.95
C313—H31D0.98C53—C541.376 (6)
C313—H31E0.98C53—H530.95
C313—H31F0.98C54—C551.378 (6)
C32—C331.389 (4)C54—H540.95
C32—H320.95C55—C561.392 (5)
C33—C341.384 (4)C55—H550.95
C33—H330.95C56—H560.95
C16—N11—C12124.6 (2)C34—C35—H35120.0
C16—N11—H11117.7C36—C35—H35120.0
C12—N11—H11117.7C31—C36—C35120.8 (2)
O12—C12—N13120.9 (2)C31—C36—H36119.6
O12—C12—N11118.6 (2)C35—C36—H36119.6
N13—C12—N11120.6 (2)C46—C41—C42119.1 (2)
C12—N13—C14119.6 (2)C46—C41—C411119.7 (2)
N14—C14—N13114.9 (2)C42—C41—C411121.2 (2)
N14—C14—C15123.8 (2)N412—C411—C413108.9 (2)
N13—C14—C15121.3 (2)N412—C411—C41109.74 (19)
C14—N14—H14A120.0C413—C411—C41114.1 (2)
C14—N14—H14B120.0N412—C411—H411108.0
H14A—N14—H14B120.0C413—C411—H411108.0
N15—C15—C14121.2 (2)C41—C411—H411108.0
N15—C15—C16119.7 (2)C411—N412—H41A105.6
C14—C15—C16119.1 (2)C411—N412—H41B109.4
O152—N15—O151119.6 (2)H41A—N412—H41B110.7
O152—N15—C15120.0 (2)C411—N412—H41C114.0
O151—N15—C15120.4 (2)H41A—N412—H41C103.4
O16—C16—N11118.3 (2)H41B—N412—H41C113.4
O16—C16—C15127.7 (2)C411—C413—H41D109.5
N11—C16—C15114.0 (2)C411—C413—H41E109.5
C26—N21—C22124.7 (2)H41D—C413—H41E109.5
C26—N21—H21117.7C411—C413—H41F109.5
C22—N21—H21117.7H41D—C413—H41F109.5
O22—C22—N23121.4 (2)H41E—C413—H41F109.5
O22—C22—N21118.8 (2)C43—C42—C41120.5 (2)
N23—C22—N21119.8 (2)C43—C42—H42119.7
C22—N23—C24120.4 (2)C41—C42—H42119.7
N24—C24—N23115.2 (2)C44—C43—C42119.8 (2)
N24—C24—C25124.0 (2)C44—C43—H43120.1
N23—C24—C25120.8 (2)C42—C43—H43120.1
C24—N24—H24A120.0C45—C44—C43119.7 (2)
C24—N24—H24B120.0C45—C44—H44120.1
H24A—N24—H24B120.0C43—C44—H44120.1
N25—C25—C26120.0 (2)C44—C45—C46120.3 (2)
N25—C25—C24121.3 (2)C44—C45—H45119.8
C26—C25—C24118.7 (2)C46—C45—H45119.8
O252—N25—O251119.4 (2)C41—C46—C45120.6 (2)
O252—N25—C25120.9 (2)C41—C46—H46119.7
O251—N25—C25119.7 (2)C45—C46—H46119.7
O26—C26—N21118.1 (2)C52—C51—C56118.2 (3)
O26—C26—C25127.0 (2)C52—C51—C511121.0 (3)
N21—C26—C25114.9 (2)C56—C51—C511120.8 (3)
C36—C31—C32118.6 (2)N512—C511—C51109.6 (2)
C36—C31—C311122.4 (2)N512—C511—C513110.5 (2)
C32—C31—C311118.9 (2)C51—C511—C513111.7 (2)
N312—C311—C31110.36 (19)N512—C511—H511108.3
N312—C311—C313108.3 (2)C51—C511—H511108.3
C31—C311—C313112.3 (2)C513—C511—H511108.3
N312—C311—H311108.6C511—N512—H51A104.7
C31—C311—H311108.6C511—N512—H51B98.9
C313—C311—H311108.6H51A—N512—H51B110.8
C311—N312—H31A112.8C511—C513—H51D109.5
C311—N312—H31B109.1C511—C513—H51E109.5
H31A—N312—H31B109.5H51D—C513—H51E109.5
C311—N312—H31C107.2C511—C513—H51F109.5
H31A—N312—H31C109.5H51D—C513—H51F109.5
H31B—N312—H31C108.5H51E—C513—H51F109.5
C311—C313—H31D109.5C51—C52—C53120.9 (3)
C311—C313—H31E109.5C51—C52—H52119.6
H31D—C313—H31E109.5C53—C52—H52119.6
C311—C313—H31F109.5C54—C53—C52120.3 (3)
H31D—C313—H31F109.5C54—C53—H53119.8
H31E—C313—H31F109.5C52—C53—H53119.8
C33—C32—C31120.6 (2)C53—C54—C55119.8 (3)
C33—C32—H32119.7C53—C54—H54120.1
C31—C32—H32119.7C55—C54—H54120.1
C34—C33—C32120.2 (2)C54—C55—C56119.7 (3)
C34—C33—H33119.9C54—C55—H55120.1
C32—C33—H33119.9C56—C55—H55120.1
C33—C34—C35119.7 (2)C51—C56—C55121.1 (3)
C33—C34—H34120.2C51—C56—H56119.5
C35—C34—H34120.2C55—C56—H56119.5
C34—C35—C36120.1 (2)
C16—N11—C12—O12173.5 (2)N25—C25—C26—N21175.2 (2)
C16—N11—C12—N136.7 (4)C24—C25—C26—N214.1 (3)
O12—C12—N13—C14176.1 (2)C36—C31—C311—N31250.8 (3)
N11—C12—N13—C144.1 (3)C32—C31—C311—N312131.7 (2)
C12—N13—C14—N14178.5 (2)C36—C31—C311—C31370.1 (3)
C12—N13—C14—C154.0 (3)C32—C31—C311—C313107.4 (3)
N14—C14—C15—N157.0 (4)C36—C31—C32—C330.7 (4)
N13—C14—C15—N15170.3 (2)C311—C31—C32—C33176.9 (2)
N14—C14—C15—C16172.9 (2)C31—C32—C33—C340.6 (4)
N13—C14—C15—C169.8 (3)C32—C33—C34—C350.2 (4)
C14—C15—N15—O15112.7 (4)C33—C34—C35—C360.2 (4)
C14—C15—N15—O152164.3 (2)C32—C31—C36—C350.3 (4)
C16—C15—N15—O15215.8 (3)C311—C31—C36—C35177.3 (2)
C16—C15—N15—O151167.2 (2)C34—C35—C36—C310.2 (4)
C12—N11—C16—O16179.9 (2)C46—C41—C411—N412113.5 (2)
C12—N11—C16—C150.7 (3)C42—C41—C411—N41268.1 (3)
N15—C15—C16—O167.9 (4)C46—C41—C411—C413124.0 (2)
C14—C15—C16—O16171.9 (2)C42—C41—C411—C41354.4 (3)
N15—C15—C16—N11173.0 (2)C46—C41—C42—C431.0 (4)
C14—C15—C16—N117.1 (3)C411—C41—C42—C43177.4 (2)
C26—N21—C22—O22172.5 (2)C41—C42—C43—C440.4 (4)
C26—N21—C22—N238.1 (4)C42—C43—C44—C451.1 (4)
O22—C22—N23—C24177.5 (2)C43—C44—C45—C460.5 (4)
N21—C22—N23—C243.2 (3)C42—C41—C46—C451.6 (4)
C22—N23—C24—N24175.0 (2)C411—C41—C46—C45176.8 (2)
C22—N23—C24—C255.0 (4)C44—C45—C46—C410.9 (4)
N24—C24—C25—N259.4 (4)C52—C51—C511—N512120.8 (3)
N23—C24—C25—N25170.5 (2)C56—C51—C511—N51259.0 (4)
N24—C24—C25—C26171.3 (2)C52—C51—C511—C513116.4 (3)
N23—C24—C25—C268.8 (3)C56—C51—C511—C51363.8 (4)
C24—C25—N25—O2518.0 (4)C56—C51—C52—C530.5 (4)
C24—C25—N25—O252170.5 (2)C511—C51—C52—C53179.3 (3)
C26—C25—N25—O2528.8 (3)C51—C52—C53—C541.0 (5)
C26—C25—N25—O251172.8 (2)C52—C53—C54—C551.6 (5)
C22—N21—C26—O26177.5 (2)C53—C54—C55—C561.7 (6)
C22—N21—C26—C254.1 (4)C52—C51—C56—C550.6 (5)
N25—C25—C26—O266.6 (4)C511—C51—C56—C55179.2 (3)
C24—C25—C26—O26174.1 (2)C54—C55—C56—C511.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14B···O1510.881.972.604 (3)128
N24—H24B···O2510.881.972.607 (3)128
N14—H14A···N230.882.072.942 (3)173
N24—H24A···N130.882.112.978 (3)170
N11—H11···O26i0.881.982.855 (3)173
N21—H21···O16ii0.882.052.917 (3)167
N312—H31A···O26iii0.852.042.747 (3)141
N312—H31A···O252iii0.852.172.876 (3)141
N312—H31B···O220.971.832.763 (3)159
N312—H31C···O12iv0.871.932.759 (3)158
N412—H41A···O16v0.862.062.906 (3)168
N412—H41B···O120.862.122.965 (3)168
N412—H41C···N5120.902.002.901 (3)175
Symmetry codes: (i) x+1, y1, z; (ii) x1, y+1, z; (iii) x+1, y, z; (iv) x, y+1, z; (v) x1, y, z.

Experimental details

Crystal data
Chemical formula2C8H12N+·2C4H3N4O4·C8H11N
Mr707.76
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)8.8183 (3), 9.6999 (4), 10.4089 (5)
α, β, γ (°)86.787 (2), 86.377 (2), 78.798 (3)
V3)870.76 (6)
Z1
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.4 × 0.3 × 0.18
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
Tmin, Tmax0.958, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
13083, 3910, 3636
Rint0.064
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.115, 1.01
No. of reflections3910
No. of parameters463
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.31

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO–SMN (Otwinowski & Minor, 1997), DENZO–SMN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) top
N11—C121.381 (3)N21—C221.379 (3)
C12—N131.333 (3)C22—N231.342 (3)
N13—C141.352 (3)N23—C241.343 (3)
C14—C151.433 (3)C24—C251.441 (3)
C15—C161.441 (3)C25—C261.439 (3)
C16—N111.380 (3)C26—N211.366 (3)
C12—O121.253 (3)C22—O221.245 (3)
C14—N141.326 (3)C24—N241.319 (3)
C15—N151.393 (3)C25—N251.400 (3)
N15—O1511.250 (3)N25—O2511.258 (3)
N15—O1521.237 (3)N25—O2521.235 (3)
C16—O161.238 (3)C26—O261.244 (3)
C14—C15—N15—O15112.7 (4)C24—C25—N25—O2518.0 (4)
C14—C15—N15—O152164.3 (2)C24—C25—N25—O252170.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14B···O1510.881.972.604 (3)128
N24—H24B···O2510.881.972.607 (3)128
N14—H14A···N230.882.072.942 (3)173
N24—H24A···N130.882.112.978 (3)170
N11—H11···O26i0.881.982.855 (3)173
N21—H21···O16ii0.882.052.917 (3)167
N312—H31A···O26iii0.852.042.747 (3)141
N312—H31A···O252iii0.852.172.876 (3)141
N312—H31B···O220.971.832.763 (3)159
N312—H31C···O12iv0.871.932.759 (3)158
N412—H41A···O16v0.862.062.906 (3)168
N412—H41B···O120.862.122.965 (3)168
N412—H41C···N5120.902.002.901 (3)175
Symmetry codes: (i) x+1, y1, z; (ii) x1, y+1, z; (iii) x+1, y, z; (iv) x, y+1, z; (v) x1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds