Download citation
Download citation
link to html
Molecules of 2-iodo­benz­aldehyde 4-nitro­phenyl­hydrazone, C13H10IN3O2, are effectively planar and are linked by an N-H...O hydrogen bond [H...O = 2.04 Å, N...O = 2.905 (6) Å and N-H...O = 166°] and a two-centre iodo-nitro interaction [I...O = 3.361 (4) Å] into a chain of edge-fused R_3^3(18) rings. There are no direction-specific interactions between adjacent chains. Molecules of 2-iodo­benz­aldehyde 2,4-di­nitro­phenyl­hydrazone, C13H9IN4O4, are disordered over two orientations with occupancies of 0.681 (5) and 0.319 (5). In the major orientation, there are no direction-specific intermolecular interactions, while for the minor form, a single C-H...O hydrogen bond generates centrosymmetric dimers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103001379/sk1609sup1.cif
Contains datablocks global, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103001379/sk1609IIsup2.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103001379/sk1609IIIsup3.hkl
Contains datablock III

CCDC references: 208004; 208005

Comment top

As part of a general study of the interplay of hydrogen bonds, iodo···nitro interactions and aromatic π···π stacking interactions in aromatic systems containing both iodo and nitro substituents, we have recently reported the molecular and supramolecular structures of a range of diaryl species (I) (see scheme) containing a variety of spacer units X, namely arenesulfonamides (Ia) and (Ib) (Kelly et al., 2002), Schiff-base imines (Ic) (Wardell et al., 2002) and (Id) (Glidewell, Howie et al., 2002), and benzylanilines (Ie) (Glidewell, Low et al., 2002). Here we report the structure of two analogous compounds containing the —CHN—NH— linker unit, 2-iodobenzaldehyde 4-nitrophenylhydrazone (II) and 2-iodobenzaldehyde 2,4-dinitrophenylhydrazone (III), which prove to exhibit radically different patterns of supramolecular aggregation.

Molecules of (II) are essentially planar (Fig. 1), as demonstrated by the torsional angles (Table 1) that define the orientations of the rings relative to the central linked unit, of the nitro group relative to the adjacent ring. The only significant deviation from complete planarity is the 5.9 (3)° twist of the nitro group out of the plane of the aryl ring C11–C16.

The molecules are linked into molecular ladders by the combination of a single N—H···O hydrogen bond (Table 2) and a single two-centre iodo···nitro interaction. Atom I22 in the molecule at (x, y, z) forms an iodo···nitro interaction with atom O42 in the molecule at (x, 2 + y, 1 + z) [I···Oii 3.361 (4) Å, C—I···Oii 146.5 (2)°, I···Oii—Nii 146.9 (3)°; symmetry code ii = (x, 2 + y, 1 + z)], so generating by translation a C(12) chain (Starbuck et al., 1999) running parallel to the [021] direction. At the same time, the amino N1 at (x, y, z) acts as hydrogen-bond donor to O41 at (1.5 − x, 1 + y, 0.5 + z), while N1 at (1.5 − x, 1 + y, 0.5 + z) in turn acts as donor to O41 at (x, 2 + y, 1 + z), so producing a C(8) chain, parallel to [021], generated by the c-glide plane at x = 0.75. The combination of these two motifs generates a molecular ladder (Fig. 2) in which two C(12) iodo···nitro chains act as the uprights while the N—H···O hydrogen bonds act as the rungs. Alternatively, this sub-structure may be described as a chain of edge-fused R33(18) rings.

The [021] ladder lies in the domain 0.47 < x < 1.03. Related to this ladder by the action of the 21 screw axes is a second chain, running parallel to [0–21] and lying in the domain −0.03 < x < 0.53. There are no direction-specific interactions between adjacent chains. In particular, there are no C—H···O or C—H···π(arene) hydrogen bonds and no aromatic π···π stacking interactions.

Molecules of (III) exhibit orientational disorder (Figs. 3 and 4), with two orientations, having occupancies 0.681 (5) and 0.319 (5), respectively, related to one another approximately via a rotation about the line N1···I22. In both orientations, the molecules are nearly planar, as typified by the torsional angles for the major form (Table 3). In contrast to the supramolecular aggregation in (II), there are neither intermolecular N—H···O hydrogen bonds nor iodo···nitro interactions in (III). In each orientation there is an intramolecular N—H···O hydrogen bond (Table 4), but for most of the intermolecular C—H···O contacts the H···O distances are not significantly shorter than the sum of the van der Waals radii, and so these bonds are not structurally significant. The sole exception occurs for the minor orientation, where centrosymmetrically related molecules are linked into a dimer, via an R22(10) motif (Fig. 5). For the major orientation, however, the structure must be regarded as comprising isolated molecules

The occurrence of an iodo···nitro interaction in (II) may be compared with the absence of such an interaction not only in (III) but also in those analogues of types (Ic) and (Id) where the iodo substituent is in a 2-position (Wardell et al., 2002; Glidewell, Howie et al., 2002). Similarly, the absence of aromatic π···π stacking interactions from the structures of (II) and (III) may be compared with the case of 4-nitrobenzylidene-2'-iodoaniline, which is of the type (Id) but has the same disposition of substituents as (II). In 4-nitrobenzylidene-2'-iodoaniline, such interactions link hydrogen-bonded chains into sheets. Clearly, the qualitative prediction of which of the possible weak supramolecular interactions will be significant in compounds of these general types is far from straightforward.

Experimental top

For each of (II) and (III), a finely powdered mixture of the aldehyde and the appropriate phenylhydrazine (1:1 molar ratio) was gently heated on a hot-plate until effervescence ceased. The mixtures were cooled and crystallized from ethanol.

Refinement top

Compound (II) is orthorhombic and the systematic absences permitted Pca21 and Pcam (= Pbcm) as possible space groups. Pca21 was chosen and confirmed by the analysis. Compound (III) is triclinic: space group P-1 was selected and confirmed by the structure analysis. In (III), the sites N1 and I22 are common to both orientations. In the minor orientation of (III), the nitrated ring C911–C916 was treated as a rigid hexagon and all non-H atoms in the minor orientation were refined isotropically. DFIX constraints were applied to the nitro group centred on N914. All H atoms were treated as riding atoms with distances C—H = 0.95 Å and N—H = 0.88 Å.

Computing details top

For both compounds, data collection: KappaCCD Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (II) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (II) showing the formation of a molecular ladder along [021]. For the sake of clarity, H atoms bonded to C are omitted. The atoms marked with an asterisk (*), hash (#), dollar sign ($) or ampersand (&) are at the symmetry positions (1.5 − x, 1 + y, 0.5 + z), (x, 2 + y, 1 + z), (1.5 − x, 3 + y, 1.5 + z) and (1.5 − x, −1 + y, −0.5 + z), respectively.
[Figure 3] Fig. 3. The two molecular orientations in (III) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4] Fig. 4. Part of the crystal structure of (III) showing the overlap of the major (full lines) and minor (broken lines) orientations. For the sake of clarity, H atoms are omitted.
[Figure 5] Fig. 5. Part of the crystal structure of (III) showing the centrosymmetric R22(10) dimer formed by the minor form. The atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 2 − z).
(II) 2-Iodobenzaldehyse-4-nitrophenylhydrazone top
Crystal data top
C13H10IN3O2F(000) = 712
Mr = 367.14Dx = 1.900 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2800 reflections
a = 24.0858 (11) Åθ = 3.4–27.4°
b = 5.0699 (2) ŵ = 2.50 mm1
c = 10.5080 (4) ÅT = 120 K
V = 1283.16 (9) Å3Plate, red
Z = 40.32 × 0.08 × 0.06 mm
Data collection top
KappaCCD
diffractometer
2800 independent reflections
Radiation source: Rotating Anode2082 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ϕ scans, and ω scans with κ offsetsθmax = 27.4°, θmin = 3.4°
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
h = 3127
Tmin = 0.502, Tmax = 0.865k = 66
8490 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0298P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
2800 reflectionsΔρmax = 1.20 e Å3
160 parametersΔρmin = 0.47 e Å3
1 restraintAbsolute structure: Flack (1983), 1259 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (4)
Crystal data top
C13H10IN3O2V = 1283.16 (9) Å3
Mr = 367.14Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 24.0858 (11) ŵ = 2.50 mm1
b = 5.0699 (2) ÅT = 120 K
c = 10.5080 (4) Å0.32 × 0.08 × 0.06 mm
Data collection top
KappaCCD
diffractometer
2800 independent reflections
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
2082 reflections with I > 2σ(I)
Tmin = 0.502, Tmax = 0.865Rint = 0.063
8490 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.080Δρmax = 1.20 e Å3
S = 1.02Δρmin = 0.47 e Å3
2800 reflectionsAbsolute structure: Flack (1983), 1259 Friedel pairs
160 parametersAbsolute structure parameter: 0.08 (4)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I220.876111 (14)0.80511 (6)0.99980 (7)0.02451 (12)
O410.75761 (18)0.9173 (10)0.3440 (4)0.0298 (10)
O420.8286 (2)0.7960 (8)0.2309 (4)0.0342 (11)
N10.8383 (2)0.0228 (9)0.6790 (5)0.0238 (12)
N20.88431 (19)0.1797 (8)0.6758 (5)0.0181 (11)
N40.7976 (2)0.7716 (10)0.3259 (5)0.0252 (12)
C110.8295 (2)0.1731 (11)0.5902 (5)0.0169 (13)
C120.7819 (3)0.3277 (11)0.6028 (6)0.0203 (14)
C130.7719 (2)0.5242 (10)0.5156 (7)0.0217 (14)
C140.8089 (2)0.5666 (12)0.4170 (5)0.0190 (12)
C150.8567 (2)0.4147 (13)0.4038 (5)0.0211 (13)
C160.8674 (2)0.2158 (9)0.4942 (19)0.0216 (14)
C210.9338 (2)0.5366 (11)0.7712 (5)0.0209 (13)
C220.9396 (2)0.7336 (11)0.8643 (6)0.0206 (13)
C230.9849 (2)0.8953 (13)0.8680 (6)0.0217 (9)
C241.0273 (2)0.8620 (11)0.7729 (6)0.0217 (9)
C251.0228 (3)0.6848 (11)0.6870 (6)0.0259 (10)
C260.9777 (2)0.5148 (11)0.6803 (6)0.0259 (10)
C270.8866 (2)0.3589 (12)0.7629 (6)0.0224 (15)
H10.81360.04730.73950.029*
H20.85700.37480.82240.027*
H120.75670.29750.67080.024*
H130.73960.63070.52290.026*
H150.88160.44450.33520.025*
H160.90030.11260.48900.026*
H230.98831.02690.93180.026*
H241.05900.97320.77400.026*
H251.05140.66890.62530.031*
H260.97610.38430.61550.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I220.02463 (18)0.02820 (19)0.02070 (17)0.00047 (14)0.0017 (3)0.0016 (4)
O410.030 (3)0.027 (2)0.032 (3)0.010 (2)0.006 (2)0.003 (2)
O420.036 (3)0.045 (3)0.021 (2)0.004 (2)0.002 (2)0.012 (2)
N10.026 (3)0.029 (3)0.016 (2)0.000 (2)0.005 (2)0.003 (2)
N20.021 (3)0.014 (3)0.020 (3)0.000 (2)0.001 (2)0.003 (2)
N40.023 (3)0.027 (3)0.025 (3)0.007 (2)0.010 (2)0.001 (2)
C110.016 (3)0.017 (3)0.017 (3)0.000 (2)0.006 (2)0.006 (3)
C120.019 (3)0.022 (4)0.019 (3)0.002 (3)0.005 (3)0.003 (3)
C130.017 (3)0.023 (3)0.026 (4)0.0011 (19)0.006 (3)0.004 (4)
C140.022 (3)0.016 (3)0.018 (3)0.001 (3)0.005 (3)0.003 (3)
C150.022 (3)0.028 (3)0.013 (3)0.005 (3)0.001 (3)0.003 (3)
C160.016 (3)0.025 (2)0.023 (4)0.002 (2)0.008 (5)0.006 (6)
C210.022 (3)0.018 (3)0.023 (3)0.003 (2)0.005 (3)0.003 (3)
C220.019 (3)0.018 (3)0.024 (3)0.007 (2)0.000 (3)0.002 (3)
C230.013 (2)0.019 (2)0.034 (2)0.0023 (17)0.0059 (18)0.008 (2)
C240.013 (2)0.019 (2)0.034 (2)0.0023 (17)0.0059 (18)0.008 (2)
C250.021 (2)0.030 (3)0.027 (2)0.0056 (17)0.002 (2)0.012 (2)
C260.021 (2)0.030 (3)0.027 (2)0.0056 (17)0.002 (2)0.012 (2)
C270.021 (3)0.023 (3)0.023 (3)0.003 (2)0.003 (3)0.002 (3)
Geometric parameters (Å, º) top
C11—C161.377 (16)N1—H10.88
C11—N11.380 (7)N2—C271.291 (8)
C11—C121.396 (8)C27—C211.454 (8)
C12—C131.375 (8)C27—H20.95
C12—H120.95C21—C221.405 (8)
C13—C141.384 (8)C21—C261.430 (8)
C13—H130.95C22—C231.364 (8)
C14—C151.391 (8)C22—I222.121 (6)
C14—N41.440 (8)C23—C241.439 (8)
N4—O411.229 (7)C23—H230.95
N4—O421.252 (7)C24—C251.278 (8)
C15—C161.409 (16)C24—H240.95
C15—H150.95C25—C261.387 (8)
C16—H160.95C25—H250.95
N1—N21.364 (6)C26—H260.95
C16—C11—N1120.4 (6)C11—N1—H1119.0
C16—C11—C12121.7 (6)C27—N2—N1115.3 (5)
N1—C11—C12117.8 (5)N2—C27—C21120.8 (5)
C13—C12—C11119.2 (5)N2—C27—H2119.6
C13—C12—H12120.4C21—C27—H2119.6
C11—C12—H12120.4C22—C21—C26116.5 (5)
C12—C13—C14119.9 (5)C22—C21—C27124.0 (5)
C12—C13—H13120.0C26—C21—C27119.4 (5)
C14—C13—H13120.0C23—C22—C21121.7 (6)
C13—C14—C15121.5 (6)C23—C22—I22117.0 (4)
C13—C14—N4119.2 (5)C21—C22—I22121.2 (4)
C15—C14—N4119.3 (5)C22—C23—C24118.5 (5)
O41—N4—O42122.1 (5)C22—C23—H23120.7
O41—N4—C14118.6 (5)C24—C23—H23120.7
O42—N4—C14119.3 (5)C25—C24—C23120.8 (6)
C14—C15—C16118.7 (7)C25—C24—H24119.6
C14—C15—H15120.7C23—C24—H24119.6
C16—C15—H15120.7C24—C25—C26122.6 (6)
C11—C16—C15119.0 (5)C24—C25—H25118.7
C11—C16—H16120.5C26—C25—H25118.7
C15—C16—H16120.5C25—C26—C21119.8 (6)
N2—N1—C11121.9 (5)C25—C26—H26120.1
N2—N1—H1119.0C21—C26—H26120.1
C16—C11—C12—C131.4 (10)C15—C14—N4—O41174.6 (5)
N1—C11—C12—C13179.9 (5)C13—C14—N4—O42174.1 (5)
C11—C12—C13—C140.1 (8)C15—C14—N4—O425.6 (8)
C12—C13—C14—C150.2 (9)N2—C27—C21—C261.0 (8)
C12—C13—C14—N4179.5 (5)C26—C21—C22—C230.1 (8)
C13—C14—C15—C160.7 (10)C27—C21—C22—C23179.9 (6)
N4—C14—C15—C16179.6 (7)C26—C21—C22—I22176.7 (4)
N1—C11—C16—C15179.0 (7)C27—C21—C22—I223.3 (8)
C12—C11—C16—C152.3 (13)C21—C22—C23—C240.4 (8)
C14—C15—C16—C111.9 (13)I22—C22—C23—C24176.5 (4)
C16—C11—N1—N20.2 (9)C22—C23—C24—C250.1 (8)
C11—N1—N2—C27178.4 (5)C23—C24—C25—C260.4 (9)
N1—N2—C27—C21179.1 (5)C24—C25—C26—C210.7 (9)
C12—C11—N1—N2178.6 (5)C22—C21—C26—C250.4 (8)
C22—C21—C27—N2179.0 (5)C27—C21—C26—C25179.6 (5)
C13—C14—N4—O415.8 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O41i0.882.042.905 (6)166
Symmetry code: (i) x+3/2, y+1, z+1/2.
(III) 2-Iodobenzaldehyde 2,4-dinitrophenylhydrazone top
Crystal data top
C13H9IN4O4Z = 2
Mr = 412.14F(000) = 400
Triclinic, P1Dx = 1.978 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8890 (5) ÅCell parameters from 2924 reflections
b = 8.1405 (6) Åθ = 1.7–27.4°
c = 12.176 (1) ŵ = 2.34 mm1
α = 83.876 (4)°T = 120 K
β = 83.679 (4)°Plate, orange
γ = 63.151 (3)°0.08 × 0.06 × 0.01 mm
V = 691.98 (9) Å3
Data collection top
KappaCCD
diffractometer
2924 independent reflections
Radiation source: Rotating Anode2187 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ϕ scans, and ω scans with κ offsetsθmax = 27.4°, θmin = 1.7°
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
h = 109
Tmin = 0.835, Tmax = 0.977k = 1010
7346 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0694P)2 + 0.0755P]
where P = (Fo2 + 2Fc2)/3
2924 reflections(Δ/σ)max < 0.001
243 parametersΔρmax = 0.84 e Å3
3 restraintsΔρmin = 1.88 e Å3
Crystal data top
C13H9IN4O4γ = 63.151 (3)°
Mr = 412.14V = 691.98 (9) Å3
Triclinic, P1Z = 2
a = 7.8890 (5) ÅMo Kα radiation
b = 8.1405 (6) ŵ = 2.34 mm1
c = 12.176 (1) ÅT = 120 K
α = 83.876 (4)°0.08 × 0.06 × 0.01 mm
β = 83.679 (4)°
Data collection top
KappaCCD
diffractometer
2924 independent reflections
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
2187 reflections with I > 2σ(I)
Tmin = 0.835, Tmax = 0.977Rint = 0.054
7346 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0473 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.07Δρmax = 0.84 e Å3
2924 reflectionsΔρmin = 1.88 e Å3
243 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I220.53164 (6)0.06529 (5)0.14789 (3)0.0433 (2)
C110.292 (2)0.375 (2)0.6377 (12)0.035 (4)0.681 (5)
C120.1102 (18)0.4286 (18)0.6936 (10)0.023 (2)0.681 (5)
C130.0548 (19)0.511 (2)0.7893 (12)0.033 (3)0.681 (5)
C140.178 (2)0.547 (2)0.8405 (10)0.028 (3)0.681 (5)
N140.121 (3)0.636 (2)0.9453 (11)0.038 (3)0.681 (5)
O410.0497 (15)0.700 (2)0.9755 (14)0.048 (4)0.681 (5)
O420.2389 (15)0.6504 (14)0.9943 (8)0.064 (3)0.681 (5)
C150.3615 (18)0.5001 (16)0.7941 (10)0.033 (3)0.681 (5)
C160.4195 (17)0.4165 (16)0.6933 (9)0.023 (2)0.681 (5)
N120.0359 (11)0.4134 (10)0.6527 (6)0.0397 (18)0.681 (5)
O1210.0011 (10)0.3349 (8)0.5662 (5)0.0441 (16)0.681 (5)
O1220.1960 (11)0.4781 (11)0.7002 (7)0.064 (2)0.681 (5)
C210.7318 (13)0.1108 (11)0.3385 (7)0.035 (2)0.681 (5)
C220.7557 (13)0.0478 (10)0.2313 (7)0.036 (2)0.681 (5)
C230.9306 (14)0.0210 (12)0.1744 (8)0.040 (2)0.681 (5)
C241.086 (3)0.033 (2)0.2216 (14)0.041 (2)0.681 (5)
C251.0691 (18)0.0367 (12)0.3246 (8)0.041 (2)0.681 (5)
C260.8912 (14)0.1087 (12)0.3821 (8)0.045 (2)0.681 (5)
C270.5497 (14)0.1763 (10)0.4046 (8)0.0410 (15)0.681 (5)
N20.5290 (11)0.2364 (9)0.4988 (6)0.0410 (15)0.681 (5)
N10.3590 (8)0.2881 (7)0.5470 (4)0.0373 (12)
C9110.322 (3)0.364 (4)0.6535 (17)0.017 (8)*0.319 (5)
C9120.456 (2)0.386 (3)0.7081 (14)0.025 (7)*0.319 (5)
C9130.403 (2)0.468 (3)0.8086 (14)0.014 (5)*0.319 (5)
C9140.217 (3)0.529 (4)0.8545 (16)0.015 (8)*0.319 (5)
C9150.084 (2)0.507 (4)0.7999 (19)0.025 (7)*0.319 (5)
C9160.136 (3)0.424 (4)0.699 (2)0.034 (9)*0.319 (5)
N9120.6091 (18)0.4068 (16)0.6531 (10)0.021 (3)*0.319 (5)
O9210.6751 (16)0.3353 (15)0.5614 (9)0.028 (3)*0.319 (5)
O9220.6951 (18)0.4628 (14)0.7071 (9)0.024 (3)*0.319 (5)
N920.260 (2)0.2378 (18)0.4910 (12)0.028 (3)*0.319 (5)
C9270.338 (2)0.167 (2)0.3986 (13)0.027 (4)*0.319 (5)
C9210.235 (2)0.102 (2)0.3353 (13)0.023 (3)*0.319 (5)
C9220.307 (3)0.039 (2)0.2290 (14)0.031 (4)*0.319 (5)
C9230.214 (2)0.036 (2)0.1712 (13)0.023 (3)*0.319 (5)
C9240.049 (5)0.038 (5)0.215 (3)0.026 (6)*0.319 (5)
C9250.022 (3)0.028 (2)0.3234 (16)0.023 (4)*0.319 (5)
C9260.064 (2)0.102 (2)0.3799 (15)0.024 (3)*0.319 (5)
N9140.168 (3)0.617 (6)0.956 (2)0.033 (10)*0.319 (5)
O9410.002 (5)0.689 (6)0.990 (4)0.036 (4)*0.319 (5)
O9420.291 (3)0.616 (3)1.0139 (16)0.036 (4)*0.319 (5)
H130.07080.54490.82150.040*0.681 (5)
H150.44720.52470.83070.040*0.681 (5)
H160.54440.38630.66100.028*0.681 (5)
H230.94440.06030.10190.048*0.681 (5)
H241.20770.09050.18360.049*0.681 (5)
H251.17650.03490.35430.049*0.681 (5)
H260.87670.15740.45190.054*0.681 (5)
H270.44410.17340.37560.049*0.681 (5)
H10.28050.26140.51510.045*0.681 (5)
H910.46910.27270.51310.045*0.319 (5)
H9130.49450.48290.84590.017*0.319 (5)
H9150.04330.54820.83130.030*0.319 (5)
H9160.04480.40940.66210.041*0.319 (5)
H9270.46010.15660.37190.032*0.319 (5)
H9230.26760.08490.10130.027*0.319 (5)
H9240.01720.08290.17560.032*0.319 (5)
H9250.13360.02130.35660.027*0.319 (5)
H9260.00870.15200.44920.029*0.319 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I220.0573 (3)0.0536 (3)0.0348 (3)0.0392 (2)0.0088 (2)0.01212 (19)
C110.038 (7)0.030 (6)0.034 (6)0.014 (5)0.015 (6)0.010 (5)
C120.017 (4)0.020 (4)0.032 (4)0.008 (3)0.002 (3)0.004 (3)
C130.025 (4)0.031 (4)0.044 (5)0.016 (3)0.004 (4)0.009 (3)
C140.044 (7)0.022 (6)0.016 (5)0.015 (5)0.008 (5)0.007 (4)
N140.044 (7)0.026 (6)0.030 (5)0.007 (6)0.014 (6)0.005 (5)
O410.045 (8)0.030 (4)0.052 (8)0.010 (6)0.031 (7)0.003 (5)
O420.058 (7)0.072 (7)0.044 (5)0.004 (5)0.029 (5)0.021 (4)
C150.025 (4)0.031 (4)0.044 (5)0.016 (3)0.004 (4)0.009 (3)
C160.017 (4)0.020 (4)0.032 (4)0.008 (3)0.002 (3)0.004 (3)
N120.040 (5)0.036 (4)0.037 (4)0.009 (3)0.011 (4)0.006 (3)
O1210.060 (4)0.043 (3)0.033 (3)0.025 (3)0.008 (3)0.003 (3)
O1220.033 (4)0.071 (5)0.077 (6)0.005 (4)0.009 (4)0.042 (4)
C210.041 (5)0.027 (4)0.026 (4)0.008 (4)0.004 (4)0.000 (3)
C220.060 (6)0.020 (4)0.024 (4)0.015 (4)0.003 (4)0.002 (3)
C230.050 (6)0.039 (5)0.032 (5)0.024 (4)0.009 (4)0.001 (4)
C240.054 (6)0.031 (4)0.031 (4)0.012 (4)0.007 (4)0.008 (3)
C250.054 (6)0.031 (4)0.031 (4)0.012 (4)0.007 (4)0.008 (3)
C260.048 (6)0.036 (5)0.035 (5)0.006 (4)0.001 (5)0.002 (4)
C270.047 (4)0.018 (2)0.036 (3)0.002 (2)0.015 (3)0.005 (2)
N20.047 (4)0.018 (2)0.036 (3)0.002 (2)0.015 (3)0.005 (2)
N10.048 (3)0.035 (2)0.026 (2)0.015 (2)0.000 (2)0.007 (2)
Geometric parameters (Å, º) top
I22—C9222.019 (17)C27—H270.95
I22—C222.077 (10)N2—N11.300 (9)
C11—N11.306 (14)N1—N921.309 (15)
C11—C121.414 (13)N1—C9111.440 (17)
C11—C161.441 (18)N1—H10.88
C12—C131.339 (13)N1—H910.88
C12—N121.364 (14)C911—C9121.39
C12—H9160.7519C911—C9161.39
C13—C141.358 (18)C912—N9121.39 (2)
C13—H130.95C912—C9131.39
C13—H9150.8288C913—C9141.39
C14—C151.389 (15)C913—H9130.95
C14—N141.460 (12)C914—C9151.39
N14—O421.214 (17)C914—N9141.42 (5)
N14—O411.23 (2)C915—C9161.39
C15—C161.398 (12)C915—H9150.95
C15—H150.95C916—H9160.95
C15—H9131.2302N912—O9221.242 (17)
C16—H160.95N912—O9211.261 (17)
N12—O1221.228 (11)N92—C9271.28 (2)
N12—O1211.231 (9)C927—C9211.46 (2)
N12—H9160.6459C927—H9270.95
C21—C261.410 (14)C921—C9261.40 (2)
C21—C221.416 (12)C921—C9221.41 (2)
C21—C271.463 (12)C922—C9231.42 (2)
C22—C231.368 (13)C923—C9241.36 (3)
C23—C241.37 (2)C923—H9230.95
C23—H230.95C924—C9251.43 (4)
C24—C251.40 (2)C924—H9240.95
C24—H240.95C925—C9261.36 (2)
C25—C261.390 (15)C925—H9250.95
C25—H250.95C926—H9260.95
C26—H260.95N914—O9411.24 (4)
C27—N21.261 (12)N914—O9421.26 (4)
C922—I22—C22121.7 (5)C11—N1—H1116.6
N1—C11—C12128.0 (13)C911—N1—H1125.4
N1—C11—C16117.7 (11)C11—N1—H91122.0
C12—C11—C16114.2 (9)N92—N1—H91113.9
C13—C12—N12111.2 (10)C911—N1—H91113.9
C13—C12—C11124.6 (11)H1—N1—H91120.7
N12—C12—C11124.1 (10)C912—C911—C916120.0
C12—C13—C14120.1 (10)C912—C911—N1124.5 (13)
C12—C13—H13119.9C916—C911—N1115.5 (13)
C14—C13—H13119.9N912—C912—C913111.3 (12)
C13—C14—C15120.7 (8)N912—C912—C911123.0 (11)
C13—C14—N14121.0 (13)C913—C912—C911120.0
C15—C14—N14118.3 (15)C912—C913—C914120.0
O42—N14—O41124.1 (12)C912—C913—H913120.0
O42—N14—C14119.4 (15)C914—C913—H913120.0
O41—N14—C14116.4 (15)C915—C914—C913120.0
C14—C15—C16119.6 (10)C915—C914—N914121.7 (16)
C14—C15—H15120.2C913—C914—N914118.3 (17)
C16—C15—H15120.2C916—C915—C914120.0
C15—C16—C11120.8 (9)C916—C915—H915120.0
C15—C16—H16119.6C914—C915—H915120.0
C11—C16—H16119.6C915—C916—C911120.0
O122—N12—O121121.8 (8)C915—C916—H916120.0
O122—N12—C12120.9 (8)C911—C916—H916120.0
O121—N12—C12117.3 (8)O922—N912—O921123.2 (13)
C26—C21—C22118.0 (8)O922—N912—C912116.8 (13)
C26—C21—C27119.6 (8)O921—N912—C912118.4 (13)
C22—C21—C27122.4 (9)C927—N92—N1116.5 (13)
C23—C22—C21120.7 (9)N92—C927—C921118.3 (15)
C23—C22—I22116.1 (6)N92—C927—H927120.9
C21—C22—I22123.2 (7)C921—C927—H927120.9
C24—C23—C22120.2 (10)C926—C921—C922119.0 (15)
C24—C23—H23119.9C926—C921—C927120.5 (15)
C22—C23—H23119.9C922—C921—C927120.5 (15)
C23—C24—C25121.8 (14)C921—C922—C923120.4 (15)
C23—C24—H24119.1C921—C922—I22122.5 (12)
C25—C24—H24119.1C923—C922—I22117.0 (12)
C26—C25—C24118.1 (12)C924—C923—C922120.3 (19)
C26—C25—H25121.0C924—C923—H923119.8
C24—C25—H25121.0C922—C923—H923119.8
C25—C26—C21121.1 (10)C923—C924—C925118 (2)
C25—C26—H26119.4C923—C924—H924120.9
C21—C26—H26119.4C925—C924—H924120.9
N2—C27—C21121.8 (10)C926—C925—C924122 (2)
N2—C27—H27119.1C926—C925—H925118.9
C21—C27—H27119.1C924—C925—H925118.9
C27—N2—N1114.2 (9)C925—C926—C921119.6 (18)
N2—N1—C11126.9 (9)C925—C926—H926120.2
N2—N1—N92109.7 (8)C921—C926—H926120.2
C11—N1—N92123.5 (10)O941—N914—O942120 (2)
N2—N1—C911117.6 (10)O941—N914—C914118 (2)
N92—N1—C911132.1 (11)O942—N914—C914122 (2)
N2—N1—H1116.6
N1—C11—C12—C13176.9 (14)N2—N1—C911—C9120 (2)
C16—C11—C12—C130.5 (14)C11—N1—C911—C912149 (11)
N1—C11—C12—N127.7 (18)N92—N1—C911—C912170.4 (12)
C16—C11—C12—N12175.8 (12)N2—N1—C911—C916177.3 (10)
N12—C12—C13—C14176.9 (12)C11—N1—C911—C91629 (9)
C11—C12—C13—C141.1 (14)N92—N1—C911—C91612 (2)
C12—C13—C14—C150.6 (15)C916—C911—C912—N912151.0 (19)
C12—C13—C14—N14179.7 (15)N1—C911—C912—N91226 (2)
C13—C14—N14—O42173.0 (14)C916—C911—C912—C9130.0
C15—C14—N14—O427 (2)N1—C911—C912—C913177 (3)
C15—C14—N14—O41169.5 (15)N912—C912—C913—C914154.1 (16)
C13—C14—C15—C160.5 (16)C911—C912—C913—C9140.0
N14—C14—C15—C16179.3 (14)C912—C913—C914—C9150.0
C14—C15—C16—C111.0 (17)C912—C913—C914—N914178 (3)
N1—C11—C16—C15176.3 (12)C913—C914—C915—C9160.0
C12—C11—C16—C150.6 (16)N914—C914—C915—C916178 (3)
C13—C12—N12—O1222.9 (13)C914—C915—C916—C9110.0
C11—C12—N12—O122172.9 (10)C912—C911—C916—C9150.0
C13—C12—N12—O121178.1 (8)N1—C911—C916—C915177 (2)
C26—C21—C22—C233.0 (11)C913—C912—N912—O92212 (2)
C27—C21—C22—C23176.7 (7)C911—C912—N912—O922165.5 (12)
C26—C21—C22—I22173.7 (6)C913—C912—N912—O921178.5 (13)
C27—C21—C22—I226.6 (11)C911—C912—N912—O92128.3 (18)
C922—I22—C22—C23149.4 (8)N2—N1—N92—C9276.2 (15)
C922—I22—C22—C2133.8 (9)C11—N1—N92—C927174.3 (13)
C21—C22—C23—C241.4 (14)C911—N1—N92—C927177.1 (19)
I22—C22—C23—C24178.3 (9)N1—N92—C927—C921177.7 (12)
C22—C23—C24—C255.2 (18)N92—C927—C921—C9266 (2)
C23—C24—C25—C264.3 (18)N92—C927—C921—C922174.1 (15)
C24—C25—C26—C210.3 (14)C926—C921—C922—C9234 (2)
C22—C21—C26—C253.8 (12)C927—C921—C922—C923175.4 (14)
C27—C21—C26—C25175.9 (8)C926—C921—C922—I22171.6 (11)
C26—C21—C27—N22.1 (12)C927—C921—C922—I229 (2)
N1—N2—C27—C21179.6 (7)C22—I22—C922—C92134.0 (16)
C11—N1—N2—C27171.0 (10)C22—I22—C922—C923149.9 (11)
N2—N1—C11—C12178.0 (9)C921—C922—C923—C9244 (3)
N2—C27—C21—C22178.2 (7)I22—C922—C923—C924172.5 (19)
C11—C12—N12—O1216.1 (14)C922—C923—C924—C9253 (3)
C13—C14—N14—O4110 (2)C923—C924—C925—C9263 (3)
C27—N2—N1—N929.5 (10)C924—C925—C926—C9214 (3)
C27—N2—N1—C911178.1 (15)C922—C921—C926—C9255 (2)
C16—C11—N1—N21.6 (17)C927—C921—C926—C925175.2 (15)
C12—C11—N1—N921.4 (19)C915—C914—N914—O9416 (6)
C16—C11—N1—N92177.7 (10)C913—C914—N914—O941172 (4)
C12—C11—N1—C911143 (10)C915—C914—N914—O942170 (3)
C16—C11—N1—C91133 (9)C913—C914—N914—O94212 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1210.882.062.677 (9)126
N1—H91···O9210.882.072.716 (13)130
C16—H16···O122i0.952.583.301 (18)133
C23—H23···O41ii0.952.593.438 (18)149
C913—H913···O942iii0.952.353.21 (3)150
C916—H916···O922iv0.952.603.34 (3)136
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1, z1; (iii) x+1, y+1, z+2; (iv) x1, y, z.

Experimental details

(II)(III)
Crystal data
Chemical formulaC13H10IN3O2C13H9IN4O4
Mr367.14412.14
Crystal system, space groupOrthorhombic, Pca21Triclinic, P1
Temperature (K)120120
a, b, c (Å)24.0858 (11), 5.0699 (2), 10.5080 (4)7.8890 (5), 8.1405 (6), 12.176 (1)
α, β, γ (°)90, 90, 9083.876 (4), 83.679 (4), 63.151 (3)
V3)1283.16 (9)691.98 (9)
Z42
Radiation typeMo KαMo Kα
µ (mm1)2.502.34
Crystal size (mm)0.32 × 0.08 × 0.060.08 × 0.06 × 0.01
Data collection
DiffractometerKappaCCD
diffractometer
KappaCCD
diffractometer
Absorption correctionMulti-scan
DENZO-SMN (Otwinowski & Minor, 1997)
Multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
Tmin, Tmax0.502, 0.8650.835, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
8490, 2800, 2082 7346, 2924, 2187
Rint0.0630.054
(sin θ/λ)max1)0.6480.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.080, 1.02 0.047, 0.132, 1.07
No. of reflections28002924
No. of parameters160243
No. of restraints13
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.20, 0.470.84, 1.88
Absolute structureFlack (1983), 1259 Friedel pairs?
Absolute structure parameter0.08 (4)?

Computer programs: KappaCCD Software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 1997) and PRPKAPPA (Ferguson, 1999).

Selected torsion angles (º) for (II) top
C11—N1—N2—C27178.4 (5)C22—C21—C27—N2179.0 (5)
N1—N2—C27—C21179.1 (5)C13—C14—N4—O415.8 (8)
C12—C11—N1—N2178.6 (5)C13—C14—N4—O42174.1 (5)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O41i0.882.042.905 (6)166
Symmetry code: (i) x+3/2, y+1, z+1/2.
Selected torsion angles (º) for (III) top
N1—N2—C27—C21179.6 (7)N2—C27—C21—C22178.2 (7)
C11—N1—N2—C27171.0 (10)C11—C12—N12—O1216.1 (14)
N2—N1—C11—C12178.0 (9)C13—C14—N14—O4110 (2)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1210.882.062.677 (9)126
N1—H91···O9210.882.072.716 (13)130
C16—H16···O122i0.952.583.301 (18)133
C23—H23···O41ii0.952.593.438 (18)149
C913—H913···O942iii0.952.353.21 (3)150
C916—H916···O922iv0.952.603.34 (3)136
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1, z1; (iii) x+1, y+1, z+2; (iv) x1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds