Download citation
Download citation
link to html
The structures of the bichromophoric compounds N-(1-naphthyl­acetyl)­gly­cine phen­acyl ester, C22H19NO4, (I), and its oxy­gen analogue, phen­acyl (1-naphthyl­acetoxy)­acetate, C22H18O5, (II), have been determined. The mol­ecules of (I) are held together by intermolecular N-H...O hydrogen bonds between the carbonyl and N-H groups, while compound (II) does not show any hydrogen bonding in the crystal.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103000155/sk1607sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103000155/sk1607Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103000155/sk1607IIsup3.hkl
Contains datablock II

CCDC references: 205310; 205311

Comment top

In recent years, research in the area of intramolecular charge and energy transfer (ET) in polychromophoric molecules has become increasingly important in connection with understanding the effects of molecular conformation, interchromophore distance, and the bridging architecture on the mechanisms of transfer process (Chattoraj et al., 1991; Morrison et al., 1986; Borkent et al., 1978).

In case of the title compounds, (I) and (II), in solution, ET between an electronically excited triplet donor (phenacyl) and an acceptor (naphthyl) moiety proceeds by an electron-exchange mechanism, which requires a close contact between the chromophores (Zabadal et al., 2002). ET in the bichromophore (II) was found to be faster than that in (I), which should be closely related to a higher flexibility of (II), i.e. conformations with an easier contact of the terminal chromophores.

Contrary to the remarkable difference in the molecular conformations (and corresponding ET rates) in solution, the molecular structures in the solid phase are very similar. In the crystal structure of (I), the C7—C22 distance is 9.009 (3) Å, while the same distance in (II) is 8.818 (2) Å. The mutual distance of chromophores is obviously controlled mainly by the length and shape of the central chain. Replacing the –NH– group in (I) by –O– in (II) does not significantly affect the spatial arrangement of the bridging atoms; the r.m.s. deviations of the superimposed atomic chains (based on C12, N14/O14, C15, C16, O17 and C18) being 0.1425 Å (Fig. 5). This is also reflected in the dihedral angles throughout the chain, where the most different pairs are C15—O14—C12—C11/C15—N14—C12—C11 of −166.28 (10)/-179.18 (12)° and O17—C16—C15—N14/O17—C16—C15—O14 of −161.14 (11)/172.92 (10)°.

Compound (I) forms a hydrogen-bonded polymer (see Fig. 3 and Table 1). Compared to (II), the C12O13 double bond in (I) is elongated due to the hydrogen bonding, viz. 1.230 (2) versus 1.192 (2) Å. This is similar to what was found for the analogous bond in 1-naphthaleneacetic acid [1.211 (10) Å; Rajan, 1978], which forms hydrogen-bonded dimers. The shortest contact in (II) is between atom O14 and one of the C11 H atoms in two neighboring molecules [2.551 (16) Å], both molecules thus forming a dimer, with atoms O14, C12, C11, and H11A and their symmetry equivalents in another molecule forming an eight-membered ring (Fig. 4).

In spite of an exact crystallographical description of their conformations in the solid phase, the study of polychromophores in solution is of great importance, especially in flexible systems, in which two chromophores are connected by long bridges. The conformations, due to different driving forces in both the solid and liquid phases, differ significantly, and so the crystal structure/ET properties relationships are not directly obvious.

Experimental top

Compound (I) was synthesized by the coupling of commercially available N-t-Boc-L-Gly-OH (Fluka, Buchs, Switzerland) and phenacyl bromide (Banerjee & Falvey, 1997) brought about by stirring the mixture for 3 h under argon. The bichromophoric compound (I) was prepared by using DCC (N,N'-dicyclohexylcarbodiimide) and HOBt (1-hydroxybenzotriazole) as coupling reagents after cleavage of N-tert-butyloxycarbonyl protecting group by 3 M HCl in ethyl acetate (Narita et al., 1986). The single crystals of bichromophore (I) were recrystallized from ethanol.

Compound (II) was prepared by coupling of an appropriate carboxylic acid and phenacyl bromide. The acid was obtained by prolonging the 1-naphthaleneacetic acid by the acetyl fragment. In this procedure, the tert-butyl ester of bromoacetic acid was employed in addition to naphthylacetic acid (Ringshaw & Smith, 1964). The intermediate tert-butyl ester was then cleaved to the carboxylic acid using concentrated formic acid (Harada et al., 1997). The crude product (II) was recrystallized from a mixture of methanol and water (8:2).

Computing details top

For both compounds, data collection: Xcalibur (Oxford Diffraction Ltd, 2001); cell refinement: Xcalibur; data reduction: Xcalibur; program(s) used to solve structure: SHELXTL (Bruker, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular structure of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. Packing diagram of compound (I), showing the hydrogen-bonding scheme.
[Figure 4] Fig. 4. The van der Waals interactions in the crystal structure of (II).
[Figure 5] Fig. 5. Superimpositions of the molecular structures of (I) and (II) based on chromophores bridging atoms.
(I) top
Crystal data top
C22H19NO4F(000) = 1520
Mr = 361.38Dx = 1.340 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 500 reflections
a = 9.1467 (18) Åθ = 4.8–25.5°
b = 16.102 (3) ŵ = 0.09 mm1
c = 24.318 (5) ÅT = 120 K
V = 3581.5 (12) Å3Prism, colourless
Z = 80.50 × 0.30 × 0.20 mm
Data collection top
Kuma KM-4 CCD
diffractometer
3034 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 25.0°, θmin = 3.4°
Detector resolution: 0.06 mm pixels mm-1h = 1010
ω scansk = 1917
19123 measured reflectionsl = 2826
3141 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0322P)2 + 1.2751P]
where P = (Fo2 + 2Fc2)/3
3141 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C22H19NO4V = 3581.5 (12) Å3
Mr = 361.38Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.1467 (18) ŵ = 0.09 mm1
b = 16.102 (3) ÅT = 120 K
c = 24.318 (5) Å0.50 × 0.30 × 0.20 mm
Data collection top
Kuma KM-4 CCD
diffractometer
3034 reflections with I > 2σ(I)
19123 measured reflectionsRint = 0.024
3141 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.17Δρmax = 0.14 e Å3
3141 reflectionsΔρmin = 0.21 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O170.65998 (10)0.23473 (6)0.59035 (4)0.0228 (2)
O200.78277 (11)0.31508 (7)0.50635 (4)0.0306 (3)
O130.66381 (10)0.24377 (6)0.74350 (4)0.0228 (2)
O210.72744 (11)0.34776 (6)0.63762 (4)0.0258 (2)
C160.73858 (15)0.27543 (9)0.62853 (5)0.0186 (3)
N140.88919 (12)0.24889 (7)0.70874 (4)0.0187 (3)
H14A0.98230.26060.71360.022*
C70.74024 (14)0.33868 (9)0.83701 (5)0.0196 (3)
C190.65279 (15)0.32702 (9)0.51156 (6)0.0212 (3)
C120.79381 (14)0.26151 (8)0.74904 (6)0.0181 (3)
C180.56832 (15)0.28602 (9)0.55754 (5)0.0220 (3)
H18A0.52340.32930.58100.026*
H18B0.48860.25200.54170.026*
C10.67051 (14)0.41319 (9)0.81970 (6)0.0201 (3)
C150.83971 (15)0.21602 (9)0.65720 (5)0.0200 (3)
H15A0.78820.16280.66360.024*
H15B0.92510.20470.63330.024*
C110.85410 (15)0.29747 (9)0.80180 (6)0.0221 (3)
H11A0.90080.25240.82320.027*
H11B0.93070.33870.79260.027*
C220.56871 (16)0.38023 (8)0.47326 (6)0.0215 (3)
C30.50006 (16)0.52625 (9)0.83853 (6)0.0282 (3)
H3A0.43160.55230.86230.034*
C80.70434 (15)0.30540 (9)0.88684 (6)0.0239 (3)
H8A0.74990.25530.89830.029*
C90.60184 (16)0.34348 (10)0.92144 (6)0.0285 (3)
H9A0.57870.31890.95590.034*
C270.42101 (16)0.39601 (9)0.48145 (6)0.0258 (3)
H27A0.37140.37140.51170.031*
C20.56809 (15)0.45190 (9)0.85518 (6)0.0220 (3)
C60.70002 (16)0.45115 (9)0.76843 (6)0.0259 (3)
H6A0.76780.42630.74380.031*
C40.53067 (18)0.56118 (10)0.78910 (7)0.0327 (4)
H4A0.48370.61120.77830.039*
C100.53578 (16)0.41478 (10)0.90626 (6)0.0273 (3)
H10A0.46690.44020.93020.033*
C230.63935 (18)0.41582 (10)0.42866 (6)0.0306 (4)
H23A0.74050.40570.42280.037*
C250.4167 (2)0.48175 (9)0.40174 (7)0.0374 (4)
H25A0.36450.51680.37720.045*
C240.5628 (2)0.46586 (10)0.39290 (7)0.0389 (4)
H24A0.61090.48950.36200.047*
C260.34662 (19)0.44715 (10)0.44588 (7)0.0330 (4)
H26A0.24600.45850.45200.040*
C50.63172 (18)0.52312 (10)0.75413 (7)0.0321 (4)
H5A0.65320.54800.71960.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O170.0252 (5)0.0217 (5)0.0214 (5)0.0024 (4)0.0077 (4)0.0017 (4)
O200.0198 (6)0.0427 (7)0.0294 (6)0.0034 (5)0.0004 (4)0.0017 (5)
O130.0129 (5)0.0302 (5)0.0254 (5)0.0014 (4)0.0001 (4)0.0038 (4)
O210.0300 (6)0.0200 (5)0.0275 (5)0.0032 (4)0.0075 (4)0.0010 (4)
C160.0172 (7)0.0220 (8)0.0166 (6)0.0002 (6)0.0017 (5)0.0003 (5)
N140.0116 (5)0.0255 (6)0.0189 (6)0.0004 (5)0.0013 (4)0.0007 (5)
C70.0150 (6)0.0233 (7)0.0205 (7)0.0019 (6)0.0047 (5)0.0023 (6)
C190.0208 (7)0.0222 (7)0.0207 (7)0.0006 (6)0.0019 (6)0.0060 (6)
C120.0143 (6)0.0179 (6)0.0220 (7)0.0018 (5)0.0012 (5)0.0026 (6)
C180.0200 (7)0.0268 (7)0.0192 (7)0.0032 (6)0.0056 (6)0.0001 (6)
C10.0172 (7)0.0221 (7)0.0210 (7)0.0050 (6)0.0026 (6)0.0001 (6)
C150.0181 (7)0.0219 (7)0.0198 (7)0.0036 (6)0.0004 (6)0.0006 (6)
C110.0159 (7)0.0278 (8)0.0226 (7)0.0003 (6)0.0027 (6)0.0024 (6)
C220.0267 (7)0.0183 (7)0.0195 (7)0.0023 (6)0.0038 (6)0.0040 (5)
C30.0249 (8)0.0245 (8)0.0351 (9)0.0025 (6)0.0001 (6)0.0016 (7)
C80.0226 (7)0.0253 (8)0.0239 (7)0.0019 (6)0.0038 (6)0.0029 (6)
C90.0287 (8)0.0355 (9)0.0212 (8)0.0003 (7)0.0025 (6)0.0053 (6)
C270.0283 (8)0.0275 (8)0.0215 (7)0.0033 (6)0.0046 (6)0.0035 (6)
C20.0176 (7)0.0237 (7)0.0247 (7)0.0015 (6)0.0016 (6)0.0013 (6)
C60.0279 (7)0.0264 (8)0.0234 (7)0.0047 (6)0.0009 (6)0.0014 (6)
C40.0342 (9)0.0227 (8)0.0412 (9)0.0014 (7)0.0045 (7)0.0054 (7)
C100.0250 (8)0.0317 (8)0.0253 (8)0.0019 (7)0.0053 (6)0.0017 (6)
C230.0345 (9)0.0279 (8)0.0293 (8)0.0091 (7)0.0007 (7)0.0000 (7)
C250.0607 (12)0.0174 (8)0.0340 (9)0.0025 (8)0.0205 (8)0.0008 (7)
C240.0615 (12)0.0269 (8)0.0284 (8)0.0152 (8)0.0059 (8)0.0069 (7)
C260.0390 (9)0.0287 (8)0.0313 (9)0.0103 (7)0.0132 (7)0.0076 (7)
C50.0411 (9)0.0279 (8)0.0272 (8)0.0053 (7)0.0013 (7)0.0098 (7)
Geometric parameters (Å, º) top
O17—C161.3448 (16)C22—C271.389 (2)
O17—C181.4216 (16)C3—C41.356 (2)
O20—C191.2109 (17)C3—C21.409 (2)
O13—C121.2303 (16)C3—H3A0.9500
O21—C161.1897 (17)C8—C91.401 (2)
C16—C151.5023 (19)C8—H8A0.9500
N14—C121.3278 (18)C9—C101.349 (2)
N14—C151.4338 (17)C9—H9A0.9500
N14—H14A0.8800C27—C261.375 (2)
C7—C81.365 (2)C27—H27A0.9500
C7—C11.422 (2)C2—C101.410 (2)
C7—C111.5026 (19)C6—C51.362 (2)
C19—C221.481 (2)C6—H6A0.9500
C19—C181.5111 (19)C4—C51.397 (2)
C12—C111.5119 (19)C4—H4A0.9500
C18—H18A0.9900C10—H10A0.9500
C18—H18B0.9900C23—C241.377 (2)
C1—C61.415 (2)C23—H23A0.9500
C1—C21.418 (2)C25—C261.369 (2)
C15—H15A0.9900C25—C241.378 (3)
C15—H15B0.9900C25—H25A0.9500
C11—H11A0.9900C24—H24A0.9500
C11—H11B0.9900C26—H26A0.9500
C22—C231.387 (2)C5—H5A0.9500
C16—O17—C18114.81 (11)C27—C22—C19121.38 (13)
O21—C16—O17124.02 (13)C23—C22—C7135.87 (9)
O21—C16—C15126.14 (13)C27—C22—C792.42 (8)
O17—C16—C15109.84 (11)C4—C3—C2121.06 (15)
C12—N14—C15119.62 (11)C4—C3—H3A119.5
C12—N14—H14A120.2C2—C3—H3A119.5
C15—N14—H14A120.2C7—C8—C9121.49 (14)
C8—C7—C1119.07 (13)C7—C8—H8A119.3
C8—C7—C11119.95 (13)C9—C8—H8A119.3
C1—C7—C11120.97 (12)C10—C9—C8120.52 (14)
C8—C7—C22149.20 (9)C10—C9—H9A119.7
C1—C7—C2264.45 (8)C8—C9—H9A119.7
C11—C7—C2266.05 (7)C26—C27—C22120.05 (15)
O20—C19—C22122.41 (13)C26—C27—H27A120.0
O20—C19—C18120.66 (13)C22—C27—H27A120.0
C22—C19—C18116.92 (12)C3—C2—C10121.40 (13)
O13—C12—N14121.24 (13)C3—C2—C1119.37 (13)
O13—C12—C11122.31 (12)C10—C2—C1119.23 (13)
N14—C12—C11116.45 (11)C5—C6—C1120.35 (14)
O17—C18—C19111.56 (11)C5—C6—H6A119.8
O17—C18—H18A109.3C1—C6—H6A119.8
C19—C18—H18A109.3C3—C4—C5119.60 (15)
O17—C18—H18B109.3C3—C4—H4A120.2
C19—C18—H18B109.3C5—C4—H4A120.2
H18A—C18—H18B108.0C9—C10—C2120.54 (14)
C6—C1—C2118.19 (13)C9—C10—H10A119.7
C6—C1—C7122.67 (13)C2—C10—H10A119.7
C2—C1—C7119.14 (13)C24—C23—C22119.94 (16)
N14—C15—C16111.41 (11)C24—C23—H23A120.0
N14—C15—H15A109.3C22—C23—H23A120.0
C16—C15—H15A109.3C26—C25—C24120.06 (15)
N14—C15—H15B109.3C26—C25—H25A120.0
C16—C15—H15B109.3C24—C25—H25A120.0
H15A—C15—H15B108.0C23—C24—C25120.23 (16)
C7—C11—C12113.57 (11)C23—C24—H24A119.9
C7—C11—H11A108.9C25—C24—H24A119.9
C12—C11—H11A108.9C25—C26—C27120.38 (16)
C7—C11—H11B108.9C25—C26—H26A119.8
C12—C11—H11B108.9C27—C26—H26A119.8
H11A—C11—H11B107.7C6—C5—C4121.42 (15)
C23—C22—C27119.33 (14)C6—C5—H5A119.3
C23—C22—C19119.28 (14)C4—C5—H5A119.3
C18—O17—C16—O214.87 (19)C11—C7—C22—C27159.23 (12)
C18—O17—C16—C15175.33 (11)C8—C7—C22—C1987.4 (2)
C15—N14—C12—O131.66 (19)C1—C7—C22—C19168.15 (14)
C15—N14—C12—C11179.13 (12)C11—C7—C22—C1921.39 (13)
C16—O17—C18—C1981.18 (14)C1—C7—C8—C90.7 (2)
O20—C19—C18—O170.62 (19)C11—C7—C8—C9178.10 (13)
C22—C19—C18—O17178.19 (11)C22—C7—C8—C989.0 (2)
C8—C7—C1—C6179.18 (13)C7—C8—C9—C100.2 (2)
C11—C7—C1—C62.0 (2)C23—C22—C27—C260.7 (2)
C22—C7—C1—C633.75 (11)C19—C22—C27—C26178.56 (13)
C8—C7—C1—C21.42 (19)C7—C22—C27—C26147.28 (12)
C11—C7—C1—C2177.40 (12)C4—C3—C2—C10179.37 (15)
C22—C7—C1—C2146.85 (14)C4—C3—C2—C10.2 (2)
C12—N14—C15—C1665.17 (16)C6—C1—C2—C30.2 (2)
O21—C16—C15—N1418.7 (2)C7—C1—C2—C3179.22 (13)
O17—C16—C15—N14161.06 (11)C6—C1—C2—C10179.36 (13)
C8—C7—C11—C12113.42 (14)C7—C1—C2—C101.2 (2)
C1—C7—C11—C1267.77 (17)C2—C1—C6—C50.3 (2)
C22—C7—C11—C1232.55 (9)C7—C1—C6—C5179.10 (14)
O13—C12—C11—C721.93 (19)C2—C3—C4—C50.3 (2)
N14—C12—C11—C7158.87 (12)C8—C9—C10—C20.4 (2)
O20—C19—C22—C232.2 (2)C3—C2—C10—C9179.87 (14)
C18—C19—C22—C23176.63 (12)C1—C2—C10—C90.3 (2)
O20—C19—C22—C27177.09 (14)C27—C22—C23—C240.3 (2)
C18—C19—C22—C274.12 (19)C19—C22—C23—C24179.59 (13)
O20—C19—C22—C7125.32 (18)C7—C22—C23—C24130.77 (13)
C18—C19—C22—C755.90 (10)C22—C23—C24—C251.0 (2)
C8—C7—C22—C23171.2 (2)C26—C25—C24—C230.6 (2)
C1—C7—C22—C2384.37 (16)C24—C25—C26—C270.4 (2)
C11—C7—C22—C2362.39 (16)C22—C27—C26—C251.1 (2)
C8—C7—C22—C2750.5 (2)C1—C6—C5—C40.4 (2)
C1—C7—C22—C2754.01 (11)C3—C4—C5—C60.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14A···O13i0.881.982.7686 (15)149
Symmetry code: (i) x+1/2, y, z+3/2.
(II) top
Crystal data top
C22H18O5F(000) = 760
Mr = 362.36Dx = 1.354 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 500 reflections
a = 8.927 (2) Åθ = 4.5–27.8°
b = 11.413 (2) ŵ = 0.10 mm1
c = 17.875 (4) ÅT = 120 K
β = 102.50 (3)°Prism, colourless
V = 1778.0 (7) Å30.40 × 0.40 × 0.30 mm
Z = 4
Data collection top
Kuma KM-4 CCD
diffractometer
2917 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 25.0°, θmin = 3.4°
Detector resolution: 0.06 mm pixels mm-1h = 106
ω scansk = 1313
10881 measured reflectionsl = 2021
3128 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0366P)2 + 0.6568P]
where P = (Fo2 + 2Fc2)/3
3128 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C22H18O5V = 1778.0 (7) Å3
Mr = 362.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.927 (2) ŵ = 0.10 mm1
b = 11.413 (2) ÅT = 120 K
c = 17.875 (4) Å0.40 × 0.40 × 0.30 mm
β = 102.50 (3)°
Data collection top
Kuma KM-4 CCD
diffractometer
2917 reflections with I > 2σ(I)
10881 measured reflectionsRint = 0.021
3128 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.06Δρmax = 0.15 e Å3
3128 reflectionsΔρmin = 0.20 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O210.20177 (10)0.20181 (8)0.07671 (6)0.0294 (2)
O170.07631 (10)0.36114 (7)0.10469 (5)0.0249 (2)
O140.03387 (10)0.06219 (8)0.09141 (5)0.0253 (2)
O200.07771 (11)0.37934 (8)0.04304 (5)0.0291 (2)
O130.14173 (11)0.03358 (8)0.20015 (5)0.0325 (2)
C190.17067 (14)0.44126 (10)0.00189 (7)0.0212 (3)
C120.07612 (15)0.00061 (11)0.13881 (7)0.0237 (3)
C270.36278 (14)0.60456 (11)0.01506 (7)0.0215 (3)
H27A0.36860.60320.06870.026*
C160.09405 (14)0.24649 (11)0.09478 (7)0.0226 (3)
C250.44048 (14)0.68663 (11)0.09360 (8)0.0249 (3)
H25A0.49880.74230.11470.030*
C230.26109 (14)0.52814 (11)0.11069 (7)0.0239 (3)
H23A0.19690.47440.14340.029*
C220.26760 (13)0.52613 (10)0.03241 (7)0.0203 (3)
C180.18937 (14)0.43551 (11)0.08400 (7)0.0229 (3)
H18A0.29290.40540.10740.027*
H18B0.18010.51530.10430.027*
C70.22398 (15)0.18940 (11)0.14771 (7)0.0235 (3)
C10.38031 (15)0.16346 (11)0.14962 (7)0.0251 (3)
C90.30239 (19)0.35660 (12)0.22930 (8)0.0351 (3)
H9A0.27440.42130.25680.042*
C60.42717 (18)0.06697 (12)0.11045 (8)0.0334 (3)
H6A0.35250.01460.08280.040*
C150.04277 (15)0.18251 (11)0.11081 (8)0.0260 (3)
H15A0.04500.19000.16570.031*
H15B0.13830.21720.08030.031*
C80.18822 (17)0.28402 (12)0.18693 (7)0.0284 (3)
H8A0.08350.30120.18550.034*
C20.49524 (16)0.23851 (13)0.19178 (8)0.0318 (3)
C240.34744 (15)0.60796 (11)0.14101 (7)0.0258 (3)
H24A0.34300.60890.19460.031*
C110.09842 (16)0.11547 (11)0.10185 (7)0.0274 (3)
H11A0.00110.16010.09340.033*
H11B0.12170.10000.05110.033*
C260.44885 (14)0.68438 (11)0.01556 (8)0.0243 (3)
H26A0.51390.73780.01700.029*
C50.5789 (2)0.04859 (15)0.11206 (10)0.0477 (4)
H5A0.60890.01580.08500.057*
C100.45162 (19)0.33513 (13)0.23132 (8)0.0364 (4)
H10A0.52800.38550.25960.044*
C40.6906 (2)0.12384 (16)0.15323 (12)0.0537 (5)
H4A0.79580.11010.15370.064*
C30.65069 (18)0.21575 (16)0.19223 (10)0.0460 (4)
H3A0.72810.26560.22030.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O210.0269 (5)0.0227 (5)0.0416 (6)0.0036 (4)0.0137 (4)0.0035 (4)
O170.0254 (5)0.0194 (4)0.0322 (5)0.0001 (4)0.0114 (4)0.0003 (4)
O140.0259 (5)0.0210 (5)0.0278 (5)0.0003 (4)0.0034 (4)0.0033 (4)
O200.0308 (5)0.0235 (5)0.0302 (5)0.0060 (4)0.0003 (4)0.0015 (4)
O130.0450 (6)0.0270 (5)0.0227 (5)0.0055 (4)0.0013 (4)0.0016 (4)
C190.0207 (6)0.0156 (6)0.0261 (6)0.0040 (5)0.0026 (5)0.0014 (5)
C120.0262 (7)0.0231 (6)0.0224 (7)0.0011 (5)0.0063 (5)0.0037 (5)
C270.0237 (6)0.0197 (6)0.0210 (6)0.0024 (5)0.0045 (5)0.0015 (5)
C160.0253 (7)0.0210 (6)0.0214 (6)0.0024 (5)0.0046 (5)0.0037 (5)
C250.0219 (6)0.0225 (6)0.0313 (7)0.0035 (5)0.0078 (5)0.0055 (5)
C230.0241 (6)0.0230 (6)0.0230 (6)0.0022 (5)0.0012 (5)0.0025 (5)
C220.0196 (6)0.0171 (6)0.0236 (6)0.0046 (5)0.0037 (5)0.0002 (5)
C180.0232 (6)0.0181 (6)0.0281 (7)0.0027 (5)0.0072 (5)0.0008 (5)
C70.0322 (7)0.0200 (6)0.0180 (6)0.0002 (5)0.0045 (5)0.0052 (5)
C10.0323 (7)0.0217 (6)0.0217 (6)0.0005 (5)0.0070 (5)0.0087 (5)
C90.0617 (10)0.0217 (7)0.0214 (7)0.0009 (7)0.0078 (6)0.0006 (5)
C60.0452 (8)0.0246 (7)0.0344 (8)0.0048 (6)0.0170 (7)0.0092 (6)
C150.0254 (7)0.0212 (6)0.0326 (7)0.0018 (5)0.0086 (5)0.0027 (5)
C80.0398 (8)0.0237 (7)0.0225 (6)0.0034 (6)0.0083 (6)0.0047 (5)
C20.0341 (8)0.0304 (7)0.0286 (7)0.0048 (6)0.0016 (6)0.0144 (6)
C240.0270 (7)0.0288 (7)0.0221 (6)0.0056 (6)0.0061 (5)0.0036 (5)
C110.0309 (7)0.0256 (7)0.0240 (7)0.0004 (6)0.0024 (5)0.0023 (5)
C260.0227 (6)0.0195 (6)0.0298 (7)0.0003 (5)0.0039 (5)0.0014 (5)
C50.0556 (10)0.0358 (9)0.0615 (11)0.0196 (8)0.0344 (9)0.0226 (8)
C100.0513 (9)0.0282 (7)0.0248 (7)0.0135 (7)0.0027 (6)0.0056 (6)
C40.0365 (9)0.0492 (11)0.0808 (13)0.0103 (8)0.0242 (9)0.0328 (10)
C30.0335 (8)0.0449 (10)0.0561 (10)0.0056 (7)0.0023 (7)0.0262 (8)
Geometric parameters (Å, º) top
O21—C161.1930 (16)C7—C111.4975 (18)
O17—C161.3345 (16)C1—C61.4159 (19)
O17—C181.4274 (15)C1—C21.4211 (19)
O14—C121.3548 (16)C9—C101.347 (2)
O14—C151.4227 (16)C9—C81.402 (2)
O20—C191.2103 (15)C9—H9A0.9500
O13—C121.1914 (16)C6—C51.365 (2)
C19—C221.4795 (18)C6—H6A0.9500
C19—C181.5095 (18)C15—H15A0.9900
C12—C111.5005 (18)C15—H15B0.9900
C27—C261.3790 (18)C8—H8A0.9500
C27—C221.3896 (17)C2—C101.409 (2)
C27—H27A0.9500C2—C31.410 (2)
C16—C151.5029 (18)C24—H24A0.9500
C25—C261.3809 (19)C11—H11A0.9900
C25—C241.3818 (19)C11—H11B0.9900
C25—H25A0.9500C26—H26A0.9500
C23—C241.3779 (19)C5—C41.399 (3)
C23—C221.3880 (18)C5—H5A0.9500
C23—H23A0.9500C10—H10A0.9500
C18—H18A0.9900C4—C31.349 (3)
C18—H18B0.9900C4—H4A0.9500
C7—C81.3626 (18)C3—H3A0.9500
C7—C11.4198 (19)
C16—O17—C18115.96 (10)C5—C6—H6A119.8
C12—O14—C15115.43 (10)C1—C6—H6A119.8
O20—C19—C22122.48 (11)O14—C15—C16109.39 (10)
O20—C19—C18120.20 (11)O14—C15—H15A109.8
C22—C19—C18117.31 (10)C16—C15—H15A109.8
O13—C12—O14123.21 (12)O14—C15—H15B109.8
O13—C12—C11127.28 (12)C16—C15—H15B109.8
O14—C12—C11109.52 (11)H15A—C15—H15B108.2
C26—C27—C22120.18 (12)C7—C8—C9121.50 (14)
C26—C27—H27A119.9C7—C8—H8A119.2
C22—C27—H27A119.9C9—C8—H8A119.2
O21—C16—O17125.51 (12)C10—C2—C3121.31 (15)
O21—C16—C15125.44 (12)C10—C2—C1119.44 (13)
O17—C16—C15109.05 (10)C3—C2—C1119.25 (15)
C26—C25—C24120.09 (12)C23—C24—C25120.10 (12)
C26—C25—H25A120.0C23—C24—H24A119.9
C24—C25—H25A120.0C25—C24—H24A119.9
C24—C23—C22120.16 (12)C7—C11—C12113.96 (11)
C24—C23—H23A119.9C7—C11—H11A108.8
C22—C23—H23A119.9C12—C11—H11A108.8
C23—C22—C27119.44 (12)C7—C11—H11B108.8
C23—C22—C19118.83 (11)C12—C11—H11B108.8
C27—C22—C19121.72 (11)H11A—C11—H11B107.7
O17—C18—C19111.14 (10)C27—C26—C25120.01 (12)
O17—C18—H18A109.4C27—C26—H26A120.0
C19—C18—H18A109.4C25—C26—H26A120.0
O17—C18—H18B109.4C6—C5—C4120.54 (16)
C19—C18—H18B109.4C6—C5—H5A119.7
H18A—C18—H18B108.0C4—C5—H5A119.7
C8—C7—C1119.43 (12)C9—C10—C2120.51 (13)
C8—C7—C11119.82 (12)C9—C10—H10A119.7
C1—C7—C11120.74 (12)C2—C10—H10A119.7
C6—C1—C7122.98 (13)C3—C4—C5120.74 (15)
C6—C1—C2118.32 (13)C3—C4—H4A119.6
C7—C1—C2118.70 (12)C5—C4—H4A119.6
C10—C9—C8120.41 (14)C4—C3—C2120.66 (16)
C10—C9—H9A119.8C4—C3—H3A119.7
C8—C9—H9A119.8C2—C3—H3A119.7
C5—C6—C1120.48 (15)

Experimental details

(I)(II)
Crystal data
Chemical formulaC22H19NO4C22H18O5
Mr361.38362.36
Crystal system, space groupOrthorhombic, PbcaMonoclinic, P21/c
Temperature (K)120120
a, b, c (Å)9.1467 (18), 16.102 (3), 24.318 (5)8.927 (2), 11.413 (2), 17.875 (4)
α, β, γ (°)90, 90, 9090, 102.50 (3), 90
V3)3581.5 (12)1778.0 (7)
Z84
Radiation typeMo KαMo Kα
µ (mm1)0.090.10
Crystal size (mm)0.50 × 0.30 × 0.200.40 × 0.40 × 0.30
Data collection
DiffractometerKuma KM-4 CCD
diffractometer
Kuma KM-4 CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
19123, 3141, 3034 10881, 3128, 2917
Rint0.0240.021
(sin θ/λ)max1)0.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.085, 1.17 0.035, 0.084, 1.06
No. of reflections31413128
No. of parameters244244
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.210.15, 0.20

Computer programs: Xcalibur (Oxford Diffraction Ltd, 2001), Xcalibur, SHELXTL (Bruker, 1998), SHELXTL.

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N14—H14A···O13i0.881.982.7686 (15)149
Symmetry code: (i) x+1/2, y, z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds