Download citation
Download citation
link to html
The title compound, SrZnCoFe16O27 (ZnCo-W), strontium zinc cobalt hexadecairon oxide, crystallizes in space group P63/mmc, with the Sr atom at a site with \bar 6m2 symmetry and Zn2+ located at two tetrahedral sites (4e and 4f, each with 3m symmetry) of the spinel blocks. The Zn occupancy is 36% on equipoint 4e and 14% on 4f. The enrichment of diamagnetic ions on one of seven sublattices is thought to be responsible for the high temperature dependence of the saturation magnetization.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102017316/sk1585sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102017316/sk1585Isup2.hkl
Contains datablock I

Comment top

W-type hexagonal ferrites are ferrimagnetic oxides in which the cations are distributed over seven sublattices (one bipyramidal, two tetrahedral and four octahedral sites, Fig. 1). At low temperatures, Zn-containing W ferrites have the highest saturation magnetization of all ferrites. According to their well known site preference, the diamagnetic Zn2+ ions are incorporated in the tetrahedral interstices of the close packing of O atoms. They exclusively reduce the magnetic moments of the minority sublattice so that the resulting total magnetization is enhanced. In the solid solution series SrZnxCo2 - xFe16O27, no further increase of the low-temperature saturation magnetization is found for x > 1.5, indicating that the diamagnetic dilution becomes high enough to weaken severely the magnetic superexchange interactions and disturb the otherwise collinear spin arrangement. The magnetization of ZnxCo2 - x—W ferrites with high Zn contents shows a relatively strong decrease with increasing? temperature, so that, at room temperature, their saturation magnetization is no higher than that of Zn-free W ferrites (Graetsch et al., 1984).

Partial combined substitution of Li+/Fe3+ for Zn2+ into Zn2—W ferrite, however, yields an approximately 15% higher saturation magnetization at room temperature for the composition SrZnLi0.5Fe16.5O27, whereas both compounds have approximately the same saturation magnetization at 0 K (Ram & Joubert, 1991). This has been ascribed to a selective incorporation of Li+ in the octahedral sites of the R blocks (Ram & Joubert, 1991; Albanese et al., 1994), which also belong to the minority sublattice. The distribution of diamagnetic cations over several sites of the minority sublattice obviously reduces the temperature dependence of the saturation magnetization.

The present crystal structure refinement of SrZnCoFe16O27 or ZnCo-W was undertaken in order to obtain more information about the cation distribution, which might be useful to understand more details of the magnetization behaviour.

In contrast with magnetoplumbite and spinel, the tetrahedral sites in the spinel blocks of the W-type structure are not symmetrically equivalent. In SrZn2Fe16O27, 50% of the available tetrahedral sites are occupied by Zn ions. Zn is enriched on equipoint 4 e with an occupancy of about 3/4, compared with 1/4 on 4f (Graetsch et al., 1986). The old data set for Zn2—W has been reprocessed using SHELXL97 (Sheldrick, 1997). Application of an extinction correction yielded more precise site occupancy factors of 0.695 (2) and 0.305 (2) for the equipoints 4 e (Me2 tetrahedron) and 4f (Me4 tetrahedron), respectively. The corresponding values for ZnCo-W are 0.3557 (1) for Me2 and 0.1443 (1) for Me4 (Fig. 1). Thus, the ratio of Zn atoms on the Me2 and Me4 tetrahedral sites is approximately constant in ZnCo-W and Zn2—W, with a value of 2. Both tetrahedra are distorted to trigonal pyramids, elongated along the c axis for Me4 and shortened for Me2. The mean M—O distances are slightly longer for the Zn-rich Me2 polyhedron (1.917 Å, compared with 1.908 Å for Me4).

Due to the small difference in the X-ray scattering factors for Co2+ and Fe3+, the location of the Co ions in ZnCo-W could only be detected by the different sizes of the ions and the corresponding interatomic Me—O distances. Comparision with BaCo2Fe16O27, SrZn2Fe16O27 and SrFe12O19 indicated an enrichment of Co2+ (high-spin state) in the Me1 octahedra within the spinel blocks. This finding is in accordance with the results of a neutron diffraction study on BaCo2Fe16O27 (Collomb et al., 1986).

The trigonal bipyramid in the R blocks of hexagonal ferrites is known to show some disorder, which is mainly of dynamic origin. The position of the central cation (Fe7) is described by a split-atom model, where Fe3+ ions with half occupancy are displaced from the centre of the bipyramid and the horizontal mirror plane in either direction of the c axis. The distance between the positions of the split atoms is 0.301 (2) Å in ZnCo-W, which is in the range of other W-type and magnetoplumbite-type hexaferrites (Graetsch & Gebert, 1996). The displacement ellipsoids of the three horizontal O7 and two apical O6 atoms are elongated perpendicular and parallel to the c axis, respectively, indicating that the O atoms are affected by the vibrations of Fe7 through the triangle formed by O7 atoms on the horizontal mirror plane.

Experimental top

ZnCo-W crystals with a size of up to ca 3 mm were grown from a SrO/B2O3 flux by slow cooling of the melt in a platinum crucible from 1613 to 1223 K at a rate of 2.5 K h-1. The crystals were removed from the solidified flux with hot dilute HNO3. Chemical analysis showed that deviation from stoichiometric SrZnCoFe16O27 was negligible and that the FeO content was less than 1% of the starting amount of Fe2O3 (Graetsch et al., 1984).

Refinement top

Lattice parameters were refined from a Guinier X-ray powder diagram using Si as the internal standard. Soft constraints were used in order to restrict the sum of the Zn atoms on both tetrahedral sites to one Zn per formula unit, and to fix full occupancy of the Me2 and Me4 tetrahedral sites by both Zn2+ and Fe3+. From interatomic distance considerations, it was assumed that Co occupies one third of the octahedral Me1 positions.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2002); cell refinement: LCLSQ (Burnham, 1963); data reduction: CrysAlis RED (Oxford Diffraction, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS for Windows (Dowty, 1994); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A polyhedral representation of SrZnCoFe16O27 W-type hexagonal ferrite. Me1—Me7 denote the different types of polyhedra.
strontium zinc cobalt hexadecairon oxide top
Crystal data top
CoFe16O27SrZnDx = 5.164 Mg m3
Mr = 1537.52Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63/mmcCell parameters from 30 reflections
Hall symbol: -P 6c 2cθ = 2.5–42.5°
a = 5.902 (1) ŵ = 16.14 mm1
c = 32.78 (1) ÅT = 293 K
V = 988.9 (4) Å3Plate, black
Z = 20.33 × 0.15 × 0.05 mm
F(000) = 1454
Data collection top
Xcalibur with Sapphire2 CCD-area detector
diffractometer
687 independent reflections
Radiation source: fine-focus sealed tube659 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω and ϕ scansθmax = 31.4°, θmin = 3.7°
Absorption correction: numerical
after shape optimisation Ref.
h = 88
Tmin = 0.085, Tmax = 0.468k = 88
16610 measured reflectionsl = 4545
Refinement top
Refinement on F2Primary atom site location: patterson
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0178P)2 + 2.9005P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.056(Δ/σ)max = 0.005
S = 1.30Δρmax = 0.85 e Å3
687 reflectionsΔρmin = 0.68 e Å3
62 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.00828 (18)
Crystal data top
CoFe16O27SrZnZ = 2
Mr = 1537.52Mo Kα radiation
Hexagonal, P63/mmcµ = 16.14 mm1
a = 5.902 (1) ÅT = 293 K
c = 32.78 (1) Å0.33 × 0.15 × 0.05 mm
V = 988.9 (4) Å3
Data collection top
Xcalibur with Sapphire2 CCD-area detector
diffractometer
687 independent reflections
Absorption correction: numerical
after shape optimisation Ref.
659 reflections with I > 2σ(I)
Tmin = 0.085, Tmax = 0.468Rint = 0.052
16610 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02362 parameters
wR(F2) = 0.0561 restraint
S = 1.30Δρmax = 0.85 e Å3
687 reflectionsΔρmin = 0.68 e Å3
Special details top

Experimental. 3591 data frames and 26 reference frames were recorded with a framewidth of 0.75 and an exposure time of 15 s resulting in a coverage of 91.6% at a resolution of 0.75 Å and an average redundancy of 23.2. The sample to detector distance was 120.3 mm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sr0.00.00.250.01301 (10)
Fe10.51.00.00.00701 (8)0.66667
Co10.51.00.00.00701 (8)0.33333
Fe20.00.00.056350 (14)0.00632 (9)0.64430 (10)
Zn20.00.00.056350 (14)0.00632 (9)0.35570 (10)
Fe30.33330.66670.074897 (15)0.00573 (10)
Fe40.33330.66670.093675 (15)0.00531 (10)0.85570 (10)
Zn40.33330.66670.093675 (15)0.00531 (10)0.14430 (10)
Fe50.83562 (3)1.67123 (6)0.151283 (9)0.00552 (6)
Fe60.33330.66670.208509 (16)0.00529 (10)
Fe70.33330.66670.25459 (4)0.0041 (2)0.5
O10.82328 (14)1.6466 (3)0.03606 (4)0.0072 (3)
O20.33330.66670.03487 (8)0.0084 (5)
O30.51093 (14)1.0219 (3)0.11089 (4)0.0059 (3)
O40.00.00.11408 (8)0.0072 (5)
O50.16277 (15)0.3255 (3)0.18041 (5)0.0075 (3)
O60.33330.66670.18063 (8)0.0058 (5)
O70.4854 (2)0.9709 (4)0.250.0085 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr0.01438 (13)0.01438 (13)0.0103 (2)0.00719 (7)0.00.0
Fe10.00781 (12)0.00714 (17)0.00585 (15)0.00357 (8)0.00033 (7)0.00067 (15)
Co10.00781 (12)0.00714 (17)0.00585 (15)0.00357 (8)0.00033 (7)0.00067 (15)
Fe20.00690 (12)0.00690 (12)0.00515 (19)0.00345 (6)0.00.0
Zn20.00690 (12)0.00690 (12)0.00515 (19)0.00345 (6)0.00.0
Fe30.00640 (13)0.00640 (13)0.0044 (2)0.00320 (6)0.00.0
Fe40.00527 (12)0.00527 (12)0.0054 (2)0.00264 (6)0.00.0
Zn40.00527 (12)0.00527 (12)0.0054 (2)0.00264 (6)0.00.0
Fe50.00576 (9)0.00483 (12)0.00567 (11)0.00242 (6)0.00012 (5)0.00024 (10)
Fe60.00573 (12)0.00573 (12)0.0044 (2)0.00286 (6)0.00.0
Fe70.00484 (19)0.00484 (19)0.0027 (6)0.00242 (9)0.00.0
O10.0080 (4)0.0076 (6)0.0059 (6)0.0038 (3)0.0007 (3)0.0015 (5)
O20.0097 (7)0.0097 (7)0.0058 (11)0.0048 (3)0.00.0
O30.0074 (4)0.0060 (6)0.0038 (5)0.0030 (3)0.0002 (3)0.0005 (5)
O40.0088 (6)0.0088 (6)0.0042 (10)0.0044 (3)0.00.0
O50.0073 (4)0.0085 (7)0.0070 (6)0.0042 (3)0.0010 (3)0.0019 (5)
O60.0048 (6)0.0048 (6)0.0078 (11)0.0024 (3)0.00.0
O70.0135 (7)0.0060 (9)0.0036 (8)0.0030 (5)0.00.0
Geometric parameters (Å, º) top
Sr—O5i2.8235 (16)Fe3—O3xii1.9815 (15)
Sr—O5ii2.8235 (16)Fe3—O1xii2.0455 (15)
Sr—O52.8235 (16)Fe3—O1xiv2.0455 (15)
Sr—O5iii2.8235 (16)Fe3—O1xvi2.0455 (15)
Sr—O5iv2.8235 (16)Fe3—Fe1xiv2.9884 (8)
Sr—O5v2.8235 (16)Fe3—Fe1xii2.9884 (8)
Sr—O7vi2.955 (3)Fe4—O31.9012 (15)
Sr—O7vii2.955 (3)Fe4—O3xxii1.9012 (15)
Sr—O7viii2.955 (3)Fe4—O3xxiii1.9012 (15)
Sr—O7ix2.955 (3)Fe4—O21.928 (3)
Sr—O7x2.955 (3)Fe5—O5xxiv1.9257 (10)
Sr—O7xi2.955 (3)Fe5—O5xxv1.9257 (10)
Fe1—O1xii2.0336 (10)Fe5—O6xvi1.9769 (14)
Fe1—O1xiii2.0336 (10)Fe5—O4xxvi2.0763 (15)
Fe1—O1xiv2.0336 (10)Fe5—O3xv2.1263 (11)
Fe1—O1xv2.0336 (10)Fe5—O3xiii2.1263 (11)
Fe1—O2xvi2.0517 (15)Fe5—Fe5xxvii2.9106 (7)
Fe1—O22.0517 (15)Fe5—Fe5xxviii2.9106 (7)
Fe1—Fe1xiv2.9510 (5)Fe5—Srxxvi3.6463 (9)
Fe1—Fe1xvii2.9510 (5)Fe6—O5xxiii1.9719 (15)
Fe1—Fe1xiv2.9510 (5)Fe6—O51.9719 (15)
Fe1—Fe1xvii2.9510 (5)Fe6—O5xxii1.9719 (16)
Fe1—Fe1xviii2.9510 (5)Fe6—O72.0657 (17)
Fe1—Fe1xii2.9510 (5)Fe6—O7x2.0657 (17)
Fe2—O41.892 (3)Fe6—O7vi2.0657 (17)
Fe2—O1xix1.9251 (15)Fe6—Fe6iii2.7202 (13)
Fe2—O1xx1.9251 (15)Fe7—O7xvi1.859 (2)
Fe2—O1xxi1.9251 (15)Fe7—O7xxix1.859 (2)
Fe3—O3xiv1.9815 (15)Fe7—O7xxx1.859 (2)
Fe3—O3xvi1.9815 (15)Fe7—O6xxxi2.124 (3)
O5i—Sr—O5ii61.38 (5)O3xxiii—Fe4—O2107.26 (4)
O5i—Sr—O561.38 (5)O5xxiv—Fe5—O5xxv96.89 (9)
O5ii—Sr—O561.38 (5)O5xxiv—Fe5—O6xvi98.26 (6)
O5i—Sr—O5iii145.73 (3)O5xxv—Fe5—O6xvi98.26 (6)
O5ii—Sr—O5iii145.73 (3)O5xxiv—Fe5—O4xxvi86.25 (5)
O5—Sr—O5iii107.78 (6)O5xxv—Fe5—O4xxvi86.25 (5)
O5i—Sr—O5iv145.73 (3)O6xvi—Fe5—O4xxvi173.14 (9)
O5ii—Sr—O5iv107.78 (6)O5xxiv—Fe5—O3xv90.95 (6)
O5—Sr—O5iv145.73 (3)O5xxv—Fe5—O3xv170.74 (6)
O5iii—Sr—O5iv61.38 (5)O6xvi—Fe5—O3xv85.44 (6)
O5i—Sr—O5v107.78 (6)O4xxvi—Fe5—O3xv89.35 (5)
O5ii—Sr—O5v145.73 (3)O5xxiv—Fe5—O3xiii170.74 (6)
O5—Sr—O5v145.73 (3)O5xxv—Fe5—O3xiii90.95 (6)
O5iii—Sr—O5v61.38 (5)O6xvi—Fe5—O3xiii85.44 (6)
O5iv—Sr—O5v61.38 (5)O4xxvi—Fe5—O3xiii89.35 (5)
O5i—Sr—O7vi119.66 (3)O3xv—Fe5—O3xiii80.84 (8)
O5ii—Sr—O7vi91.70 (2)O5xxiii—Fe6—O599.95 (6)
O5—Sr—O7vi58.36 (3)O5xxiii—Fe6—O5xxii99.95 (6)
O5iii—Sr—O7vi58.36 (3)O5—Fe6—O5xxii99.95 (6)
O5iv—Sr—O7vi91.70 (2)O5xxiii—Fe6—O788.55 (4)
O5v—Sr—O7vi119.66 (3)O5—Fe6—O7166.67 (6)
O5i—Sr—O7vii58.36 (3)O5xxii—Fe6—O788.55 (4)
O5ii—Sr—O7vii91.70 (2)O5xxiii—Fe6—O7x88.55 (4)
O5—Sr—O7vii119.66 (3)O5—Fe6—O7x88.55 (4)
O5iii—Sr—O7vii119.66 (3)O5xxii—Fe6—O7x166.66 (6)
O5iv—Sr—O7vii91.70 (2)O7—Fe6—O7x81.36 (6)
O5v—Sr—O7vii58.36 (3)O5xxiii—Fe6—O7vi166.66 (6)
O7vi—Sr—O7vii174.22 (8)O5—Fe6—O7vi88.55 (4)
O5i—Sr—O7viii91.70 (3)O5xxii—Fe6—O7vi88.55 (4)
O5ii—Sr—O7viii58.36 (3)O7—Fe6—O7vi81.36 (6)
O5—Sr—O7viii119.66 (3)O7x—Fe6—O7vi81.36 (6)
O5iii—Sr—O7viii119.66 (3)O7xvi—Fe7—O7xxix119.351 (10)
O5iv—Sr—O7viii58.36 (3)O7xvi—Fe7—O7xxx119.351 (10)
O5v—Sr—O7viii91.70 (3)O7xxix—Fe7—O7xxx119.351 (10)
O7vi—Sr—O7viii120.0000 (10)O7xvi—Fe7—O6xxxi94.64 (4)
O7vii—Sr—O7viii65.78 (8)O7xxix—Fe7—O6xxxi94.64 (4)
O5i—Sr—O7ix119.66 (3)O7xxx—Fe7—O6xxxi94.64 (4)
O5ii—Sr—O7ix58.36 (3)Fe2xxvi—O1—Fe1xviii123.13 (5)
O5—Sr—O7ix91.70 (3)Fe2xxvi—O1—Fe1xviii123.13 (5)
O5iii—Sr—O7ix91.70 (3)Fe2xxvi—O1—Fe1xviii123.13 (5)
O5iv—Sr—O7ix58.36 (3)Fe2xxvi—O1—Fe1xviii123.13 (5)
O5v—Sr—O7ix119.66 (3)Fe2xxvi—O1—Fe1xvii123.13 (5)
O7vi—Sr—O7ix65.78 (8)Fe2xxvi—O1—Fe1xvii123.13 (5)
O7vii—Sr—O7ix120.0000 (10)Fe1xviii—O1—Fe1xvii93.03 (6)
O7viii—Sr—O7ix54.22 (8)Fe1xviii—O1—Fe1xvii93.03 (6)
O5i—Sr—O7x91.70 (2)Fe2xxvi—O1—Fe1xvii123.13 (5)
O5ii—Sr—O7x119.66 (3)Fe2xxvi—O1—Fe1xvii123.13 (5)
O5—Sr—O7x58.36 (3)Fe1xviii—O1—Fe1xvii93.03 (6)
O5iii—Sr—O7x58.36 (3)Fe1xviii—O1—Fe1xvii93.03 (6)
O5iv—Sr—O7x119.66 (3)Fe2xxvi—O1—Fe3xvi121.29 (7)
O5v—Sr—O7x91.70 (2)Fe2xxvi—O1—Fe3xvi121.29 (7)
O7vi—Sr—O7x54.22 (8)Fe1xviii—O1—Fe3xvi94.21 (5)
O7vii—Sr—O7x120Fe1xviii—O1—Fe3xvi94.21 (5)
O7viii—Sr—O7x174.22 (8)Fe1xvii—O1—Fe3xvi94.21 (5)
O7ix—Sr—O7x120Fe1xvii—O1—Fe3xvi94.21 (5)
O5i—Sr—O7xi58.36 (3)Fe4—O2—Fe1xiv123.86 (6)
O5ii—Sr—O7xi119.66 (3)Fe4—O2—Fe1xiv123.86 (6)
O5—Sr—O7xi91.70 (2)Fe4—O2—Fe1123.86 (6)
O5iii—Sr—O7xi91.70 (2)Fe1xiv—O2—Fe191.97 (9)
O5iv—Sr—O7xi119.66 (3)Fe1xiv—O2—Fe191.97 (9)
O5v—Sr—O7xi58.36 (3)Fe4—O2—Fe1xii123.86 (6)
O7vi—Sr—O7xi120Fe1xiv—O2—Fe1xii91.97 (9)
O7vii—Sr—O7xi54.22 (8)Fe1xiv—O2—Fe1xii91.97 (9)
O7viii—Sr—O7xi120Fe1—O2—Fe1xii91.97 (9)
O7ix—Sr—O7xi174.22 (8)Fe4—O2—Fe1xii123.86 (6)
O7x—Sr—O7xi65.78 (8)Fe1xiv—O2—Fe1xii91.97 (9)
O1xii—Fe1—O1xiii180.00 (6)Fe1xiv—O2—Fe1xii91.97 (9)
O1xii—Fe1—O1xiv85.97 (8)Fe1—O2—Fe1xii91.97 (9)
O1xiii—Fe1—O1xiv94.03 (8)Fe4—O3—Fe3xvi126.20 (8)
O1xii—Fe1—O1xv94.03 (8)Fe4—O3—Fe5xv120.79 (5)
O1xiii—Fe1—O1xv85.97 (8)Fe3xvi—O3—Fe5xv95.48 (5)
O1xiv—Fe1—O1xv180.00 (7)Fe4—O3—Fe5xiii120.79 (5)
O1xii—Fe1—O2xvi92.58 (5)Fe3xvi—O3—Fe5xiii95.48 (5)
O1xiii—Fe1—O2xvi87.42 (5)Fe5xv—O3—Fe5xiii89.41 (6)
O1xiv—Fe1—O2xvi92.58 (5)Fe2—O4—Fe5xx125.97 (6)
O1xv—Fe1—O2xvi87.42 (5)Fe2—O4—Fe5xxi125.97 (6)
O1xii—Fe1—O287.42 (5)Fe5xx—O4—Fe5xxi89.00 (8)
O1xiii—Fe1—O292.58 (5)Fe2—O4—Fe5xix125.97 (6)
O1xiv—Fe1—O287.42 (5)Fe5xx—O4—Fe5xix89.00 (8)
O1xv—Fe1—O292.58 (5)Fe5xxi—O4—Fe5xix89.00 (8)
O2xvi—Fe1—O2180.00 (12)Fe5xxi—O5—Fe5xx98.18 (7)
O4—Fe2—O1xix110.21 (4)Fe5xxi—O5—Fe6127.58 (4)
O4—Fe2—O1xx110.21 (4)Fe5xx—O5—Fe6127.58 (4)
O1xix—Fe2—O1xx108.72 (5)Fe5xxi—O5—Sr98.54 (5)
O4—Fe2—O1xxi110.21 (4)Fe5xx—O5—Sr98.54 (5)
O1xix—Fe2—O1xxi108.72 (5)Fe6—O5—Sr98.27 (6)
O1xx—Fe2—O1xxi108.72 (5)Fe5xii—O6—Fe5xiv98.33 (9)
O3xiv—Fe3—O3xvi88.18 (6)Fe5xii—O6—Fe5xvi98.33 (9)
O3xiv—Fe3—O3xii88.18 (6)Fe5xiv—O6—Fe5xvi98.33 (9)
O3xvi—Fe3—O3xii88.18 (6)Fe5xii—O6—Fe7xxxi119.12 (7)
O3xiv—Fe3—O1xii93.22 (4)Fe5xiv—O6—Fe7xxxi119.12 (7)
O3xvi—Fe3—O1xii93.22 (4)Fe5xvi—O6—Fe7xxxi119.12 (7)
O3xii—Fe3—O1xii178.05 (6)Fe7xxxii—O7—Fe6134.18 (5)
O3xiv—Fe3—O1xiv178.05 (6)Fe7xvi—O7—Fe6143.47 (6)
O3xvi—Fe3—O1xiv93.22 (4)Fe7xxxii—O7—Fe6iii143.47 (6)
O3xii—Fe3—O1xiv93.22 (4)Fe7xvi—O7—Fe6iii134.18 (5)
O1xii—Fe3—O1xiv85.35 (6)Fe6—O7—Fe6iii82.36 (8)
O3xiv—Fe3—O1xvi93.22 (4)Fe7xxxii—O7—Srxxxiii87.12 (4)
O3xvi—Fe3—O1xvi178.05 (6)Fe7xvi—O7—Srxxxiii87.12 (4)
O3xii—Fe3—O1xvi93.22 (4)Fe6—O7—Srxxxiii92.17 (3)
O1xii—Fe3—O1xvi85.35 (6)Fe6iii—O7—Srxxxiii92.17 (3)
O1xiv—Fe3—O1xvi85.35 (6)Fe7xxxii—O7—Srxxxiv87.12 (4)
O3—Fe4—O3xxii111.59 (4)Fe7xvi—O7—Srxxxiv87.12 (4)
O3—Fe4—O3xxiii111.59 (4)Fe6—O7—Srxxxiv92.17 (3)
O3xxii—Fe4—O3xxiii111.59 (4)Fe6iii—O7—Srxxxiv92.17 (3)
O3—Fe4—O2107.26 (4)Srxxxiii—O7—Srxxxiv174.22 (8)
O3xxii—Fe4—O2107.26 (4)
Symmetry codes: (i) y, x, z; (ii) x, xy, z; (iii) x, y, z+1/2; (iv) x, xy, z+1/2; (v) y, x, z+1/2; (vi) x, xy+1, z+1/2; (vii) x1, xy, z+1/2; (viii) y+1, x, z+1/2; (ix) x, y1, z; (x) y+1, x+1, z+1/2; (xi) x1, y1, z; (xii) x+1, x+y, z; (xiii) x, xy+2, z; (xiv) y1, x, z; (xv) y+2, x+2, z; (xvi) x+1, y+2, z; (xvii) y, x+1, z; (xviii) x+1, x+y+1, z; (xix) x1, y2, z; (xx) y+2, x+1, z; (xxi) x1, xy+1, z; (xxii) y+1, x+1, z; (xxiii) x, xy+1, z; (xxiv) x+1, xy+2, z; (xxv) y+1, x+2, z; (xxvi) x+1, y+2, z; (xxvii) y+3, x+3, z; (xxviii) x, xy+3, z; (xxix) y1, x, z1/2; (xxx) x+1, x+y, z1/2; (xxxi) x, y, z1/2; (xxxii) x+1, y+2, z+1/2; (xxxiii) x, y+1, z; (xxxiv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaCoFe16O27SrZn
Mr1537.52
Crystal system, space groupHexagonal, P63/mmc
Temperature (K)293
a, c (Å)5.902 (1), 32.78 (1)
V3)988.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)16.14
Crystal size (mm)0.33 × 0.15 × 0.05
Data collection
DiffractometerXcalibur with Sapphire2 CCD-area detector
diffractometer
Absorption correctionNumerical
after shape optimisation Ref.
Tmin, Tmax0.085, 0.468
No. of measured, independent and
observed [I > 2σ(I)] reflections
16610, 687, 659
Rint0.052
(sin θ/λ)max1)0.733
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.056, 1.30
No. of reflections687
No. of parameters62
No. of restraints1
Δρmax, Δρmin (e Å3)0.85, 0.68

Computer programs: CrysAlis CCD (Oxford Diffraction, 2002), LCLSQ (Burnham, 1963), CrysAlis RED (Oxford Diffraction, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ATOMS for Windows (Dowty, 1994), WinGX (Farrugia, 1999).

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds