Download citation
Download citation
link to html
The title complexes, [Pd2(C8H10N)2(C2H3O2)2], (I), [Pd2(C8H10N)2Cl2], (II), and [Pd(C8H10N)Cl(C5H5N)], (III), respectively, have been prepared as intermediates and the final product of a cyclo­palladation reaction sequence, and their structures studied by single-crystal X-ray diffraction. Complexes (I) and (II) represent the first structurally characterized dinuclear cyclo­palladation products of primary amines. For (I) and (III), pseudosymmetry relates two independent mol­ecules in the asymmetric unit.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102018218/sk1575sup1.cif
Contains datablocks global, II, III, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102018218/sk1575Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102018218/sk1575IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102018218/sk1575IIIsup4.hkl
Contains datablock III

CCDC references: 199408; 199409; 199410

Comment top

We are interested in the cyclopalladation products of primary amines as building blocks for molecular crystals. Since the discovery of cyclopalladation by Cope & Friedrich (1968), preparative efforts and structural investigations have been focused on complexes derived from tertiary amines. The work of Lewis et al. (1973), Dunina et al. (1984), Fuchita & Tsuchiya (1993), Fuchita et al., (1995, 1997) and Vicente et al. (1993, 1997) has shown that the reaction can, in principle, be extended to primary and secondary amines when appropriate reaction conditions and PdII sources are utilized.

For primary amines, no complete structural study of the cyclopalladation pathway has been carried out to date. We decided to characterize both of the intermediates and the final product of the reaction sequence shown in Scheme 1, using single-crystal diffraction. \sch

Starting from palladium(II) acetate and (R)-(1-phenyl)ethylamine, according to the method of Fuchita et al. (1997), steps (a) and (b) gave the dinuclear products (I) and (II), respectively. Bridging acetato and chloro ligands induce different overall conformations in these complexes. In (I), the planes of coordination around the Pd centres are stacked (Fig. 1), with a relatively short Pd···Pd distance of 2.9059 (14) Å. Based on spectroscopic results, Fuchita and coworkers had correctly assigned the anti configuration to this acetato-bridged dimer.

In contrast with the rather compact molecular shape of (I), the chloro complex, (II), is essentially flat (Fig. 2). The best planes through the two Pd centres and their coordinating atoms subtend a dihedral angle of 5.9 (2)°. Complexes (I) and (II) represent the first examples of structurally characterized dinuclear intermediates in the cyclopalladation of primary amines.

For the final reaction product, (III) (Fig. 3), five X-ray structure determinations involving cyclopalladated complexes of primary amines have been published to date (Dunina et al., 1999; Vicente et al., 1993; Fedorov et al., 1997; Fuchita et al., 1997). The groups of Vicente and Jones (Vicente et al., 1993) have described both a neutral compound and a cationic complex derived from the same chiral ligand, (1-phenyl)ethylamine, used in our preparations.

Experimental top

We prepared the series of compounds (I)-(III) according to the procedure of Fuchita et al. (1997). (R)-(+)-(1-phenyl)ethylamine was reacted with palladium(II) acetate to give the acetato-bridged dinuclear cyclopalladated complex (I) (Scheme 1), which was converted into the corresponding chloro-bridged analogue, (II), by reaction with sodium chloride. The chloro-bridged dinuclear complex was then cleaved with pyridine to give the mononuclear cyclopalladated complex, (III). Yields of up to 90% for the dinuclear intermediates, (I) and (II), and of 75% for the mononuclear complex, (III), have been obtained. Complexes (II) and (III) crystallize as elongated plates and needles, respectively.

Refinement top

Complexes (I) and (III) crystallize with two molecules in the asymmetric unit. In both cases, the independent moieties are related by pseudosymmetry. We can exclude centrosymmetric space groups because enantiomerically pure ligands of known chirality were used for the synthesis and the absolute configuration of the ligands is reliably reproduced by the diffraction experiment. We note that, despite several systematic absence violations, the structure of (III) can apparently be solved in space group I41/a. Tentative refinement in this centrosymmetric supergroup results in an unreasonably anisotropic displacement parameter for the methyl C atom attached to the chiral centre, an artificially shortened C—C separation (ca 1.1 Å) associated with this group, and significantly higher residual electron density close to the methyl group (0.84 Å). Fig. 4 shows the pseudosymmetry between the independent molecules in (III). This model, although obviously inappropriate for (III), might well represent the hitherto-unknown structure of the racemate. In the refinement of (I)-(III), all H atoms were introduced in idealized positions, with C—H = 0.98 Å and N—H = 0.95 Å Please clarify - 0.98 Å given in CIF data for N—H in (I), and included as riding with Uiso(H) = 1.3Ueq(C, N).

Computing details top

For all compounds, data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the two symmetrically independent molecules in (I). Displacement ellipsoids are at the 30% probability level and H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of the molecule of (II). Displacement ellipsoids are at the 30% probability level and H atoms have been omitted for clarity.
[Figure 3] Fig. 3. A view of the two symmetrically independent molecules in (III). Displacement ellipsoids are at the 30% probability level and H atoms have been omitted for clarity.
[Figure 4] Fig. 4. The pseudo-glide plane in (III). The pseudo reflection is in the view direction, the pseudo translation to the right.
(I) (R)-di-µ-acetato-κ2O:O'-bis{[2-(1-aminoethyl)phenyl- κ2C1,N]palladium(II)} top
Crystal data top
[Pd2(C8H10N)2(C2H3O2)2]F(000) = 1136
Mr = 571.23Dx = 1.716 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 30754 reflections
a = 10.423 (4) Åθ = 1.3–28.7°
b = 13.398 (5) ŵ = 1.65 mm1
c = 15.861 (5) ÅT = 295 K
β = 93.429 (9)°Parallelepiped, yellow
V = 2210.9 (13) Å30.12 × 0.05 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
11234 independent reflections
Radiation source: fine-focus sealed tube7251 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.092
ω scansθmax = 28.7°, θmin = 1.3°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 1314
Tmin = 0.826, Tmax = 0.922k = 1818
30720 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.177 w = 1/[σ2(Fo2) + (0.0546P)2 + 1.0577P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.028
11234 reflectionsΔρmax = 0.70 e Å3
513 parametersΔρmin = 1.27 e Å3
1 restraintAbsolute structure: Flack (1983); 5274 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (7)
Crystal data top
[Pd2(C8H10N)2(C2H3O2)2]V = 2210.9 (13) Å3
Mr = 571.23Z = 4
Monoclinic, P21Mo Kα radiation
a = 10.423 (4) ŵ = 1.65 mm1
b = 13.398 (5) ÅT = 295 K
c = 15.861 (5) Å0.12 × 0.05 × 0.05 mm
β = 93.429 (9)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
11234 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
7251 reflections with I > 2σ(I)
Tmin = 0.826, Tmax = 0.922Rint = 0.092
30720 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.177Δρmax = 0.70 e Å3
S = 1.01Δρmin = 1.27 e Å3
11234 reflectionsAbsolute structure: Flack (1983); 5274 Friedel pairs
513 parametersAbsolute structure parameter: 0.01 (7)
1 restraint
Special details top

Experimental. The values of Tmin and Tmax are 0.757793 and 1.000000 from SADABS.

To ensure sufficient diffraction intensity in the case of (III), a relatively long needle (1.05 × 0.08 × 0.03 mm) was selected for data collection.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.85407 (8)0.84420 (6)0.47109 (5)0.0449 (2)
Pd21.06517 (8)0.72032 (7)0.53806 (6)0.0510 (3)
Pd30.63183 (8)0.93673 (6)0.03734 (5)0.0464 (2)
Pd40.42956 (8)1.05594 (7)0.05130 (6)0.0483 (2)
O110.7520 (8)0.7442 (8)0.5407 (5)0.060 (2)
C1230.7894 (12)0.6610 (12)0.5657 (7)0.057 (3)
C1240.6899 (17)0.6017 (14)0.6065 (10)0.092 (6)
H12A0.72740.53860.62730.120*
H12B0.61840.58780.56520.120*
H12C0.65830.63960.65390.120*
O210.8998 (8)0.6235 (7)0.5582 (6)0.061 (2)
O120.9087 (10)0.9227 (7)0.5876 (5)0.064 (2)
C1210.9693 (12)0.8788 (11)0.6502 (7)0.054 (3)
C1220.9691 (16)0.9290 (12)0.7339 (8)0.086 (5)
H12D0.96210.87860.77820.111*
H12E0.89590.97480.73440.111*
H12F1.04930.96650.74420.111*
O221.0286 (9)0.8005 (8)0.6488 (6)0.066 (3)
O310.5885 (8)0.8497 (7)0.0782 (5)0.058 (2)
C3410.5391 (12)0.8868 (10)0.1456 (9)0.058 (3)
C3420.5546 (15)0.8273 (12)0.2284 (7)0.081 (5)
H34A0.48930.84910.27150.105*
H34B0.54400.75580.21750.105*
H34C0.64040.83930.24850.105*
O410.4797 (8)0.9699 (8)0.1530 (5)0.060 (2)
O320.7417 (8)1.0295 (7)0.0318 (5)0.055 (2)
C3430.7076 (12)1.1114 (11)0.0695 (8)0.053 (3)
C3440.8142 (14)1.1628 (14)0.1157 (9)0.083 (5)
H34D0.79621.15660.17680.108*
H34E0.89681.13110.09960.108*
H34F0.81781.23360.10010.108*
O420.5983 (8)1.1486 (7)0.0720 (5)0.061 (2)
C110.8252 (11)0.7707 (10)0.3647 (7)0.052 (3)
C120.7396 (12)0.6904 (9)0.3474 (8)0.055 (3)
H120.68030.66990.38980.072*
C130.7393 (13)0.6399 (9)0.2698 (8)0.061 (3)
H130.68270.58220.25960.080*
C140.8184 (15)0.6708 (12)0.2071 (9)0.073 (4)
H140.81660.63560.15290.095*
C150.8988 (13)0.7505 (12)0.2216 (7)0.063 (4)
H150.95320.77320.17710.082*
C160.9039 (11)0.7998 (9)0.2995 (7)0.048 (3)
C170.9968 (12)0.8879 (9)0.3223 (7)0.051 (3)
H171.07960.86020.34350.066*
C181.0218 (14)0.9634 (11)0.2497 (7)0.075 (4)
H18A0.93940.98700.22400.098*
H18B1.07030.93020.20670.098*
H18C1.07131.02030.27290.098*
N10.9370 (10)0.9449 (9)0.3954 (6)0.061 (3)
H1A0.87230.99230.37250.080*
H1B1.00380.98230.42800.080*
C211.2265 (12)0.7920 (10)0.5214 (8)0.058 (3)
C221.2798 (13)0.8719 (14)0.5772 (9)0.080 (5)
H221.23000.89830.62270.104*
C231.3980 (14)0.9084 (14)0.5648 (11)0.094 (6)
H231.43200.96160.60220.123*
C241.4714 (16)0.8752 (16)0.5036 (12)0.091 (6)
H241.55830.90180.49890.118*
C251.4226 (13)0.8020 (11)0.4463 (10)0.076 (4)
H251.47270.77960.39950.098*
C261.2997 (12)0.7617 (9)0.4583 (8)0.061 (3)
C271.2479 (13)0.6714 (11)0.4032 (10)0.075 (4)
H271.23720.69650.34520.098*
C281.326 (2)0.5727 (17)0.398 (2)0.212 (16)
H28A1.33850.54380.45500.276*
H28B1.40920.58670.37580.276*
H28C1.27800.52540.36110.276*
N21.1104 (10)0.6481 (8)0.4305 (6)0.060 (3)
H2A1.10260.57600.43930.078*
H2B1.04800.66700.38450.078*
C310.6661 (11)1.0124 (9)0.1434 (6)0.044 (3)
C320.7279 (14)1.1060 (11)0.1532 (9)0.070 (4)
H320.76531.13540.10370.091*
C330.7393 (14)1.1606 (14)0.2313 (10)0.085 (5)
H330.77951.22660.23530.111*
C340.6895 (16)1.1138 (13)0.3012 (10)0.083 (5)
H340.70211.14570.35670.108*
C350.6203 (13)1.0205 (10)0.2946 (8)0.062 (4)
H350.58190.99240.34430.081*
C360.6083 (12)0.9703 (9)0.2169 (8)0.053 (3)
C370.5324 (11)0.8724 (10)0.2024 (7)0.053 (3)
H370.55880.82390.24630.070*
C380.3866 (12)0.8922 (11)0.2040 (10)0.088 (5)
H38A0.35850.93390.15560.115*
H38B0.36870.92680.25650.115*
H38C0.34020.82860.20100.115*
N30.5616 (11)0.8329 (9)0.1185 (6)0.061 (3)
H3A0.48310.80380.09190.079*
H3B0.62480.77910.12660.079*
C410.2682 (12)0.9842 (10)0.0357 (7)0.050 (3)
C420.2365 (13)0.8934 (10)0.0680 (8)0.059 (3)
H420.29880.85670.09990.077*
C430.1136 (14)0.8504 (12)0.0561 (9)0.074 (4)
H430.09300.78370.07840.096*
C440.0240 (14)0.9026 (12)0.0132 (12)0.080 (5)
H440.06090.87370.00550.105*
C450.0555 (12)0.9975 (10)0.0192 (9)0.065 (4)
H450.00881.03630.04780.084*
C460.1775 (11)1.0364 (8)0.0110 (6)0.045 (2)
C470.2205 (11)1.1392 (8)0.0461 (8)0.053 (3)
H470.19091.18920.00430.068*
C480.1709 (12)1.1712 (9)0.1306 (7)0.060 (3)
H48A0.20371.12540.17500.078*
H48B0.07671.16960.12700.078*
H48C0.20041.23910.14400.078*
N40.3658 (9)1.1390 (7)0.0486 (6)0.052 (2)
H4A0.40011.11050.10220.068*
H4B0.39731.20770.04500.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0510 (5)0.0385 (5)0.0454 (4)0.0045 (4)0.0029 (3)0.0006 (4)
Pd20.0481 (5)0.0418 (6)0.0628 (5)0.0018 (4)0.0012 (4)0.0073 (4)
Pd30.0520 (5)0.0374 (5)0.0498 (5)0.0031 (4)0.0034 (4)0.0017 (4)
Pd40.0473 (5)0.0384 (5)0.0591 (5)0.0048 (4)0.0020 (4)0.0040 (4)
O110.058 (5)0.064 (7)0.060 (5)0.001 (5)0.010 (4)0.019 (5)
C1230.056 (7)0.068 (10)0.046 (6)0.010 (7)0.005 (5)0.000 (6)
C1240.094 (12)0.079 (12)0.106 (12)0.003 (10)0.026 (10)0.046 (10)
O210.052 (5)0.043 (5)0.087 (6)0.001 (4)0.001 (4)0.014 (4)
O120.094 (6)0.044 (6)0.054 (5)0.011 (5)0.005 (4)0.000 (4)
C1210.064 (8)0.055 (8)0.042 (6)0.003 (6)0.009 (5)0.001 (5)
C1220.135 (13)0.069 (10)0.050 (7)0.011 (10)0.019 (8)0.010 (7)
O220.071 (6)0.059 (7)0.066 (5)0.008 (5)0.006 (5)0.004 (5)
O310.077 (6)0.038 (5)0.058 (5)0.013 (5)0.005 (4)0.002 (4)
C3410.052 (7)0.034 (7)0.086 (9)0.000 (5)0.001 (6)0.004 (6)
C3420.119 (12)0.073 (10)0.050 (7)0.035 (9)0.005 (7)0.006 (7)
O410.061 (5)0.068 (7)0.052 (5)0.010 (5)0.011 (4)0.008 (4)
O320.056 (5)0.044 (6)0.067 (5)0.011 (4)0.009 (4)0.013 (4)
C3430.052 (7)0.044 (8)0.062 (7)0.010 (6)0.004 (6)0.007 (6)
C3440.074 (10)0.088 (12)0.088 (10)0.015 (9)0.016 (8)0.039 (9)
O420.054 (5)0.044 (6)0.085 (6)0.000 (4)0.010 (4)0.015 (5)
C110.041 (6)0.053 (8)0.061 (7)0.006 (6)0.006 (5)0.003 (6)
C120.061 (7)0.041 (7)0.062 (7)0.001 (5)0.007 (6)0.000 (5)
C130.078 (8)0.023 (6)0.080 (8)0.006 (5)0.024 (7)0.005 (6)
C140.083 (10)0.054 (10)0.079 (9)0.004 (8)0.015 (8)0.020 (7)
C150.068 (8)0.071 (9)0.049 (6)0.019 (7)0.004 (6)0.004 (6)
C160.051 (6)0.046 (7)0.046 (6)0.013 (5)0.009 (5)0.009 (5)
C170.059 (7)0.050 (7)0.044 (6)0.001 (5)0.002 (5)0.005 (5)
C180.094 (10)0.082 (10)0.052 (7)0.017 (8)0.012 (6)0.013 (7)
N10.065 (6)0.048 (7)0.072 (6)0.003 (6)0.011 (5)0.025 (6)
C210.061 (8)0.037 (7)0.073 (8)0.002 (6)0.010 (6)0.015 (6)
C220.061 (8)0.103 (14)0.077 (9)0.017 (8)0.006 (7)0.015 (9)
C230.069 (9)0.098 (15)0.115 (13)0.017 (9)0.002 (9)0.016 (11)
C240.066 (10)0.096 (16)0.109 (13)0.006 (10)0.002 (9)0.014 (11)
C250.067 (9)0.055 (9)0.108 (12)0.023 (7)0.031 (8)0.025 (8)
C260.055 (7)0.044 (7)0.082 (9)0.002 (5)0.003 (6)0.033 (6)
C270.080 (9)0.056 (8)0.095 (10)0.012 (7)0.033 (8)0.009 (7)
C280.103 (16)0.105 (18)0.44 (5)0.059 (14)0.10 (2)0.03 (2)
N20.065 (6)0.044 (6)0.071 (7)0.009 (5)0.006 (5)0.009 (5)
C310.059 (6)0.036 (7)0.035 (5)0.004 (5)0.005 (5)0.005 (4)
C320.080 (9)0.048 (8)0.078 (9)0.018 (7)0.021 (7)0.003 (7)
C330.083 (11)0.082 (12)0.089 (11)0.005 (9)0.014 (9)0.001 (9)
C340.099 (11)0.064 (11)0.082 (10)0.007 (9)0.042 (9)0.031 (8)
C350.085 (9)0.045 (8)0.055 (7)0.016 (6)0.012 (6)0.005 (6)
C360.064 (7)0.028 (6)0.065 (7)0.003 (5)0.005 (6)0.005 (5)
C370.063 (7)0.044 (6)0.053 (6)0.006 (5)0.001 (5)0.007 (5)
C380.067 (8)0.078 (10)0.121 (12)0.018 (7)0.021 (8)0.047 (9)
N30.089 (8)0.040 (6)0.054 (5)0.020 (6)0.008 (5)0.012 (5)
C410.058 (7)0.049 (8)0.042 (6)0.003 (6)0.003 (5)0.009 (5)
C420.061 (7)0.042 (7)0.074 (8)0.009 (6)0.001 (6)0.010 (6)
C430.081 (9)0.048 (8)0.088 (9)0.003 (7)0.031 (7)0.014 (7)
C440.057 (9)0.059 (11)0.126 (14)0.018 (8)0.011 (8)0.007 (9)
C450.054 (7)0.049 (8)0.092 (10)0.007 (6)0.001 (6)0.016 (7)
C460.058 (6)0.029 (5)0.045 (5)0.012 (5)0.008 (5)0.007 (4)
C470.062 (7)0.028 (5)0.068 (7)0.006 (5)0.010 (6)0.011 (5)
C480.067 (8)0.048 (7)0.067 (7)0.001 (6)0.017 (6)0.002 (6)
N40.057 (5)0.029 (5)0.071 (6)0.008 (4)0.004 (5)0.002 (4)
Geometric parameters (Å, º) top
Pd1—Pd22.9059 (14)N1—H1A0.9800
Pd1—O112.071 (9)N1—H1B0.9800
Pd1—O122.172 (9)C21—C261.356 (18)
Pd1—N12.033 (12)C21—C221.48 (2)
Pd1—C111.962 (13)C22—C231.35 (2)
Pd2—O212.196 (9)C22—H220.9800
Pd2—O222.112 (10)C23—C241.35 (2)
Pd2—N22.041 (10)C23—H230.9800
Pd2—C211.968 (13)C24—C251.41 (2)
Pd3—Pd42.9355 (14)C24—H240.9800
Pd3—O312.196 (9)C25—C261.414 (18)
Pd3—O322.052 (8)C25—H250.9800
Pd3—N32.059 (10)C26—C271.57 (2)
Pd3—C311.979 (11)C27—N21.553 (16)
Pd4—O412.074 (9)C27—C281.55 (2)
Pd4—O422.193 (9)C27—H270.9800
Pd4—N42.078 (10)C28—H28A0.9801
Pd4—C411.966 (13)C28—H28B0.9801
O11—C1231.238 (18)C28—H28C0.9801
C123—O211.268 (16)N2—H2A0.9800
C123—C1241.484 (19)N2—H2B0.9800
C124—H12A0.9801C31—C321.414 (17)
C124—H12B0.9801C31—C361.457 (16)
C124—H12C0.9801C32—C331.44 (2)
O12—C1211.287 (15)C32—H320.9800
C121—O221.218 (16)C33—C341.40 (2)
C121—C1221.488 (17)C33—H330.9800
C122—H12D0.9801C34—C351.44 (2)
C122—H12E0.9801C34—H340.9800
C122—H12F0.9801C35—C361.404 (17)
O31—C3411.260 (16)C35—H350.9800
C341—O411.277 (16)C36—C371.542 (17)
C341—C3421.553 (18)C37—N31.480 (14)
C342—H34A0.9801C37—C381.544 (17)
C342—H34B0.9801C37—H370.9800
C342—H34C0.9801C38—H38A0.9801
O32—C3431.290 (15)C38—H38B0.9801
C343—O421.242 (15)C38—H38C0.9801
C343—C3441.530 (17)N3—H3A0.9800
C344—H34D0.9801N3—H3B0.9800
C344—H34E0.9801C41—C421.352 (18)
C344—H34F0.9801C41—C461.420 (16)
C11—C161.413 (16)C42—C431.428 (19)
C11—C121.413 (17)C42—H420.9800
C12—C131.404 (17)C43—C441.38 (2)
C12—H120.9800C43—H430.9800
C13—C141.39 (2)C44—C451.40 (2)
C13—H130.9800C44—H440.9800
C14—C151.37 (2)C45—C461.388 (16)
C14—H140.9800C45—H450.9800
C15—C161.399 (16)C46—C471.541 (15)
C15—H150.9800C47—N41.512 (14)
C16—C171.555 (17)C47—C481.526 (15)
C17—N11.550 (14)C47—H470.9800
C17—C181.566 (16)C48—H48A0.9801
C17—H170.9800C48—H48B0.9801
C18—H18A0.9801C48—H48C0.9801
C18—H18B0.9801N4—H4A0.9800
C18—H18C0.9801N4—H4B0.9800
O11—Pd1—O1288.7 (4)C17—N1—Pd1108.6 (8)
N1—Pd1—O11174.0 (4)C17—N1—H1A110.0
N1—Pd1—O1294.7 (4)Pd1—N1—H1A110.0
C11—Pd1—O1194.4 (5)C17—N1—H1B110.0
C11—Pd1—O12173.6 (4)Pd1—N1—H1B110.0
C11—Pd1—N182.7 (5)H1A—N1—H1B108.3
C11—Pd1—Pd295.8 (3)C26—C21—C22116.8 (12)
N1—Pd1—Pd2104.8 (3)C26—C21—Pd2118.4 (10)
O11—Pd1—Pd280.6 (3)C22—C21—Pd2124.6 (10)
O12—Pd1—Pd279.1 (3)C23—C22—C21119.3 (16)
O22—Pd2—O2189.9 (4)C23—C22—H22120.3
N2—Pd2—O2193.7 (4)C21—C22—H22120.4
N2—Pd2—O22176.5 (4)C24—C23—C22123.2 (19)
C21—Pd2—O21172.9 (5)C24—C23—H23118.4
C21—Pd2—O2293.5 (5)C22—C23—H23118.4
C21—Pd2—N282.9 (5)C23—C24—C25119.7 (16)
C21—Pd2—Pd1107.8 (4)C23—C24—H24120.1
N2—Pd2—Pd199.9 (3)C25—C24—H24120.1
O22—Pd2—Pd181.0 (2)C24—C25—C26118.2 (14)
O21—Pd2—Pd178.9 (2)C24—C25—H25120.9
O32—Pd3—O3188.3 (4)C26—C25—H25120.9
N3—Pd3—O3195.8 (4)C21—C26—C25122.6 (14)
N3—Pd3—O32166.9 (4)C21—C26—C27116.9 (11)
C31—Pd3—O31178.0 (4)C25—C26—C27120.2 (13)
C31—Pd3—O3293.8 (4)N2—C27—C28109.6 (13)
C31—Pd3—N382.4 (4)N2—C27—C26107.0 (10)
C31—Pd3—Pd4102.5 (3)C28—C27—C26121.4 (16)
O32—Pd3—Pd479.8 (2)N2—C27—H27106.0
N3—Pd3—Pd4113.3 (3)C28—C27—H27106.0
O31—Pd3—Pd477.5 (2)C26—C27—H27106.0
O41—Pd4—O4287.5 (4)C27—C28—H28A109.5
N4—Pd4—O41175.9 (4)C27—C28—H28B109.5
N4—Pd4—O4296.1 (3)H28A—C28—H28B109.5
C41—Pd4—O4194.8 (4)C27—C28—H28C109.5
C41—Pd4—O42174.5 (4)H28A—C28—H28C109.5
C41—Pd4—N481.4 (4)H28B—C28—H28C109.5
C41—Pd4—Pd3105.6 (3)C27—N2—Pd2113.6 (9)
O41—Pd4—Pd382.1 (2)C27—N2—H2A108.8
N4—Pd4—Pd3100.3 (3)Pd2—N2—H2A108.8
O42—Pd4—Pd379.7 (2)C27—N2—H2B108.8
C123—O11—Pd1126.2 (9)Pd2—N2—H2B108.8
O11—C123—O21126.7 (13)H2A—N2—H2B107.7
O11—C123—C124114.0 (13)C32—C31—C36117.6 (11)
O21—C123—C124119.4 (14)C32—C31—Pd3127.2 (9)
C123—C124—H12A109.5C36—C31—Pd3114.8 (9)
C123—C124—H12B109.5C31—C32—C33124.0 (14)
H12A—C124—H12B109.5C31—C32—H32118.0
C123—C124—H12C109.5C33—C32—H32118.0
H12A—C124—H12C109.5C34—C33—C32116.1 (16)
H12B—C124—H12C109.5C34—C33—H33122.0
C123—O21—Pd2120.3 (9)C32—C33—H33122.0
C121—O12—Pd1121.8 (9)C33—C34—C35122.5 (14)
O22—C121—O12127.3 (12)C33—C34—H34118.7
O22—C121—C122115.7 (12)C35—C34—H34118.7
O12—C121—C122117.1 (13)C36—C35—C34119.8 (14)
C121—C122—H12D109.5C36—C35—H35120.1
C121—C122—H12E109.5C34—C35—H35120.1
H12D—C122—H12E109.5C35—C36—C31119.8 (12)
C121—C122—H12F109.5C35—C36—C37123.9 (12)
H12D—C122—H12F109.5C31—C36—C37116.3 (10)
H12E—C122—H12F109.5N3—C37—C36107.8 (10)
C121—O22—Pd2124.7 (9)N3—C37—C38109.4 (10)
C341—O31—Pd3123.5 (9)C36—C37—C38110.3 (11)
O31—C341—O41126.4 (13)N3—C37—H37109.7
O31—C341—C342117.2 (12)C36—C37—H37109.7
O41—C341—C342116.4 (12)C38—C37—H37109.7
C341—C342—H34A109.5C37—C38—H38A109.5
C341—C342—H34B109.5C37—C38—H38B109.5
H34A—C342—H34B109.5H38A—C38—H38B109.5
C341—C342—H34C109.5C37—C38—H38C109.5
H34A—C342—H34C109.5H38A—C38—H38C109.5
H34B—C342—H34C109.5H38B—C38—H38C109.5
C341—O41—Pd4123.8 (9)C37—N3—Pd3114.9 (8)
C343—O32—Pd3128.0 (8)C37—N3—H3A108.5
O42—C343—O32125.7 (11)Pd3—N3—H3A108.5
O42—C343—C344119.7 (12)C37—N3—H3B108.5
O32—C343—C344114.6 (12)Pd3—N3—H3B108.5
C343—C344—H34D109.5H3A—N3—H3B107.5
C343—C344—H34E109.5C42—C41—C46119.1 (12)
H34D—C344—H34E109.5C42—C41—Pd4125.7 (10)
C343—C344—H34F109.5C46—C41—Pd4115.2 (9)
H34D—C344—H34F109.5C41—C42—C43120.9 (13)
H34E—C344—H34F109.5C41—C42—H42119.5
C343—O42—Pd4120.7 (9)C43—C42—H42119.6
C16—C11—C12117.1 (12)C44—C43—C42120.0 (14)
C16—C11—Pd1115.1 (9)C44—C43—H43120.0
C12—C11—Pd1127.7 (9)C42—C43—H43120.0
C13—C12—C11120.4 (12)C43—C44—C45119.3 (14)
C13—C12—H12119.8C43—C44—H44120.3
C11—C12—H12119.8C45—C44—H44120.3
C14—C13—C12120.8 (12)C46—C45—C44120.1 (14)
C14—C13—H13119.6C46—C45—H45119.9
C12—C13—H13119.6C44—C45—H45119.9
C15—C14—C13119.7 (13)C45—C46—C41120.4 (11)
C15—C14—H14120.2C45—C46—C47123.4 (11)
C13—C14—H14120.2C41—C46—C47116.2 (10)
C14—C15—C16120.5 (13)N4—C47—C48111.6 (10)
C14—C15—H15119.8N4—C47—C46106.1 (9)
C16—C15—H15119.8C48—C47—C46117.5 (9)
C15—C16—C11121.5 (13)N4—C47—H47107.0
C15—C16—C17123.6 (11)C48—C47—H47107.0
C11—C16—C17114.9 (10)C46—C47—H47107.0
N1—C17—C16105.9 (9)C47—C48—H48A109.5
N1—C17—C18108.9 (10)C47—C48—H48B109.5
C16—C17—C18116.6 (10)H48A—C48—H48B109.5
N1—C17—H17108.4C47—C48—H48C109.5
C16—C17—H17108.4H48A—C48—H48C109.5
C18—C17—H17108.4H48B—C48—H48C109.5
C17—C18—H18A109.5C47—N4—Pd4110.2 (7)
C17—C18—H18B109.5C47—N4—H4A109.6
H18A—C18—H18B109.5Pd4—N4—H4A109.6
C17—C18—H18C109.5C47—N4—H4B109.6
H18A—C18—H18C109.5Pd4—N4—H4B109.6
H18B—C18—H18C109.5H4A—N4—H4B108.1
(II) (R)-di-µ-chloro-bis{[2-(1-aminoethyl)phenyl-κ2C1,N]palladium(II)} top
Crystal data top
[Pd2(C8H10N)2Cl2]F(000) = 1024
Mr = 524.04Dx = 1.955 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 24302 reflections
a = 7.330 (3) Åθ = 1.8–28.2°
b = 10.819 (4) ŵ = 2.32 mm1
c = 22.453 (8) ÅT = 293 K
V = 1780.4 (11) Å3Elongated plate, light yellow
Z = 41.00 × 0.45 × 0.02 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4390 independent reflections
Radiation source: fine-focus sealed tube3782 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
ω scansθmax = 28.2°, θmin = 1.8°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.205, Tmax = 0.955k = 1414
24210 measured reflectionsl = 2929
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.048P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
4390 reflectionsΔρmax = 0.77 e Å3
201 parametersΔρmin = 0.88 e Å3
0 restraintsAbsolute structure: Flack (1983); 1864 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (6)
Crystal data top
[Pd2(C8H10N)2Cl2]V = 1780.4 (11) Å3
Mr = 524.04Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.330 (3) ŵ = 2.32 mm1
b = 10.819 (4) ÅT = 293 K
c = 22.453 (8) Å1.00 × 0.45 × 0.02 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4390 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
3782 reflections with I > 2σ(I)
Tmin = 0.205, Tmax = 0.955Rint = 0.088
24210 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.109Δρmax = 0.77 e Å3
S = 1.07Δρmin = 0.88 e Å3
4390 reflectionsAbsolute structure: Flack (1983); 1864 Friedel pairs
201 parametersAbsolute structure parameter: 0.02 (6)
0 restraints
Special details top

Experimental. The values of Tmin and Tmax are 0.757793 and 1.000000 from SADABS.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.31461 (7)0.90027 (5)0.03219 (2)0.03502 (14)
Pd20.10607 (7)0.73789 (5)0.14796 (2)0.03421 (14)
Cl10.0137 (2)0.85650 (19)0.05849 (8)0.0438 (5)
Cl20.4042 (3)0.79497 (19)0.12412 (9)0.0500 (5)
C110.2580 (10)0.9937 (7)0.0395 (3)0.0381 (16)
C120.0897 (11)0.9983 (7)0.0692 (3)0.0424 (17)
H120.01480.95100.05430.055*
C130.0732 (12)1.0699 (8)0.1196 (4)0.051 (2)
H130.04511.07590.13970.066*
C140.2180 (14)1.1323 (9)0.1418 (4)0.064 (3)
H140.20241.18260.17770.084*
C150.3818 (14)1.1269 (8)0.1159 (4)0.058 (2)
H150.48561.17080.13350.076*
C160.4048 (11)1.0581 (7)0.0633 (3)0.0445 (17)
C170.5817 (11)1.0477 (8)0.0316 (4)0.053 (2)
H170.68031.04140.06090.069*
C180.6211 (19)1.1525 (9)0.0095 (6)0.111 (5)
H18A0.51341.16920.03410.145*
H18B0.65151.22630.01380.145*
H18C0.72431.13090.03530.145*
N10.5715 (8)0.9303 (7)0.0030 (3)0.0504 (17)
H1A0.65210.93450.03600.066*
H1B0.60880.86340.02160.066*
C210.1680 (10)0.6466 (6)0.2198 (3)0.0343 (15)
C220.3435 (9)0.6108 (7)0.2366 (3)0.0391 (16)
H220.44840.62720.21070.051*
C230.3660 (12)0.5502 (8)0.2918 (4)0.055 (2)
H230.48870.52800.30530.072*
C240.2221 (12)0.5230 (7)0.3257 (4)0.051 (2)
H240.24180.47940.36340.066*
C250.0485 (10)0.5537 (7)0.3095 (4)0.0433 (18)
H250.05530.53400.33540.056*
C260.0232 (9)0.6133 (7)0.2558 (3)0.0357 (15)
C270.1652 (10)0.6525 (7)0.2357 (3)0.0383 (16)
H270.24930.58260.24020.050*
C280.2377 (10)0.7610 (8)0.2700 (4)0.0497 (19)
H28A0.25030.73850.31210.065*
H28B0.35720.78470.25400.065*
H28C0.15300.83070.26620.065*
N20.1484 (7)0.6841 (6)0.1707 (3)0.0377 (14)
H2A0.23160.74860.16140.049*
H2B0.18110.61390.14760.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0289 (2)0.0425 (3)0.0337 (3)0.0004 (2)0.0008 (2)0.0020 (2)
Pd20.0279 (2)0.0431 (3)0.0316 (2)0.0021 (2)0.0006 (2)0.0011 (2)
Cl10.0301 (9)0.0649 (13)0.0363 (9)0.0027 (8)0.0016 (7)0.0083 (8)
Cl20.0334 (9)0.0677 (13)0.0489 (10)0.0066 (9)0.0038 (8)0.0173 (9)
C110.037 (4)0.042 (4)0.035 (4)0.002 (3)0.001 (3)0.005 (3)
C120.040 (4)0.050 (4)0.037 (4)0.007 (4)0.002 (3)0.004 (3)
C130.047 (5)0.065 (5)0.040 (4)0.001 (4)0.017 (4)0.002 (4)
C140.068 (6)0.073 (6)0.052 (5)0.013 (5)0.011 (5)0.019 (5)
C150.059 (5)0.064 (6)0.052 (5)0.001 (5)0.014 (5)0.018 (4)
C160.042 (4)0.053 (4)0.039 (4)0.005 (4)0.008 (4)0.002 (3)
C170.043 (4)0.061 (5)0.056 (5)0.016 (4)0.004 (4)0.007 (4)
C180.137 (12)0.056 (6)0.141 (12)0.022 (7)0.053 (11)0.006 (7)
N10.027 (3)0.069 (5)0.055 (4)0.005 (3)0.004 (3)0.006 (3)
C210.033 (4)0.037 (3)0.034 (3)0.000 (3)0.001 (3)0.004 (3)
C220.032 (4)0.047 (4)0.038 (4)0.002 (3)0.005 (3)0.004 (3)
C230.046 (5)0.064 (5)0.056 (5)0.007 (4)0.002 (4)0.015 (4)
C240.055 (5)0.043 (4)0.054 (5)0.010 (4)0.004 (4)0.007 (4)
C250.034 (4)0.048 (4)0.048 (4)0.001 (3)0.006 (3)0.001 (3)
C260.025 (3)0.046 (4)0.036 (3)0.002 (3)0.002 (3)0.003 (3)
C270.030 (4)0.045 (4)0.040 (4)0.005 (3)0.000 (3)0.000 (3)
C280.038 (4)0.061 (5)0.049 (4)0.003 (4)0.006 (3)0.001 (4)
N20.021 (3)0.060 (4)0.032 (3)0.004 (2)0.001 (2)0.000 (3)
Geometric parameters (Å, º) top
Pd1—Cl12.332 (2)C18—H18B0.9801
Pd1—Cl22.447 (2)C18—H18C0.9801
Pd1—N12.020 (6)N1—H1A0.9500
Pd1—C111.946 (8)N1—H1B0.9500
Pd2—Cl12.4781 (19)C21—C261.381 (10)
Pd2—Cl22.333 (2)C21—C221.395 (10)
Pd2—N22.019 (5)C22—C231.411 (11)
Pd2—C211.946 (7)C22—H220.9800
C11—C161.388 (10)C23—C241.333 (12)
C11—C121.404 (11)C23—H230.9800
C12—C131.377 (10)C24—C251.364 (11)
C12—H120.9800C24—H240.9800
C13—C141.352 (12)C25—C261.381 (10)
C13—H130.9800C25—H250.9800
C14—C151.335 (13)C26—C271.513 (10)
C14—H140.9800C27—C281.501 (11)
C15—C161.406 (11)C27—N21.505 (9)
C15—H150.9800C27—H270.9800
C16—C171.484 (11)C28—H28A0.9801
C17—C181.489 (13)C28—H28B0.9801
C17—N11.490 (10)C28—H28C0.9801
C17—H170.9800N2—H2A0.9500
C18—H18A0.9801N2—H2B0.9500
Cl1—Pd1—Cl286.90 (7)H18B—C18—H18C109.5
N1—Pd1—Cl1175.2 (2)C17—N1—Pd1110.7 (5)
N1—Pd1—Cl295.67 (19)C17—N1—H1A109.5
C11—Pd1—N181.2 (3)Pd1—N1—H1A109.5
C11—Pd1—Cl196.5 (2)C17—N1—H1B109.5
C11—Pd1—Cl2175.5 (2)Pd1—N1—H1B109.5
Cl2—Pd2—Cl186.15 (7)H1A—N1—H1B108.1
N2—Pd2—Cl195.82 (17)C26—C21—C22118.6 (6)
N2—Pd2—Cl2177.97 (18)C26—C21—Pd2116.0 (5)
C21—Pd2—N281.9 (3)C22—C21—Pd2125.4 (5)
C21—Pd2—Cl1177.4 (2)C21—C22—C23118.2 (7)
C21—Pd2—Cl296.1 (2)C21—C22—H22120.9
Pd1—Cl1—Pd292.98 (7)C23—C22—H22120.9
Pd2—Cl2—Pd193.74 (7)C24—C23—C22120.8 (8)
C16—C11—C12118.7 (7)C24—C23—H23119.6
C16—C11—Pd1114.5 (6)C22—C23—H23119.6
C12—C11—Pd1126.8 (6)C23—C24—C25122.2 (8)
C13—C12—C11119.2 (8)C23—C24—H24118.9
C13—C12—H12120.4C25—C24—H24118.9
C11—C12—H12120.4C24—C25—C26118.1 (7)
C14—C13—C12121.0 (8)C24—C25—H25120.9
C14—C13—H13119.5C26—C25—H25120.9
C12—C13—H13119.5C25—C26—C21122.0 (6)
C15—C14—C13121.6 (8)C25—C26—C27120.9 (6)
C15—C14—H14119.2C21—C26—C27117.0 (6)
C13—C14—H14119.2C28—C27—N2110.4 (6)
C14—C15—C16119.7 (8)C28—C27—C26112.9 (6)
C14—C15—H15120.1N2—C27—C26106.2 (6)
C16—C15—H15120.1C28—C27—H27109.1
C11—C16—C15119.7 (8)N2—C27—H27109.1
C11—C16—C17117.0 (7)C26—C27—H27109.1
C15—C16—C17123.2 (8)C27—C28—H28A109.5
C16—C17—C18114.2 (9)C27—C28—H28B109.5
C16—C17—N1105.7 (6)H28A—C28—H28B109.5
C18—C17—N1109.7 (8)C27—C28—H28C109.5
C16—C17—H17109.1H28A—C28—H28C109.5
C18—C17—H17109.1H28B—C28—H28C109.5
N1—C17—H17109.1C27—N2—Pd2112.7 (4)
C17—C18—H18A109.5C27—N2—H2A109.0
C17—C18—H18B109.5Pd2—N2—H2A109.0
H18A—C18—H18B109.5C27—N2—H2B109.0
C17—C18—H18C109.5Pd2—N2—H2B109.0
H18A—C18—H18C109.5H2A—N2—H2B107.8
(III) [SP-4–4]-(R)-[2-(1-aminoethyl)phenyl-κ2C1,N]chloro(pyridine- κN)palladium(II) top
Crystal data top
[Pd(C8H10N)Cl(C5H5N)]Dx = 1.685 Mg m3
Mr = 341.12Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41Cell parameters from 37267 reflections
Hall symbol: I 4bwθ = 1.6–28.5°
a = 18.511 (5) ŵ = 1.56 mm1
c = 15.698 (6) ÅT = 293 K
V = 5379 (3) Å3Needle, coluorless
Z = 161.05 × 0.08 × 0.03 mm
F(000) = 2720
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6731 independent reflections
Radiation source: fine-focus sealed tube5005 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.098
ω scansθmax = 28.5°, θmin = 1.6°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 2424
Tmin = 0.292, Tmax = 0.955k = 2424
37248 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0375P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
6731 reflectionsΔρmax = 0.54 e Å3
309 parametersΔρmin = 0.54 e Å3
1 restraintAbsolute structure: Flack (1983); 3192 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (6)
Crystal data top
[Pd(C8H10N)Cl(C5H5N)]Z = 16
Mr = 341.12Mo Kα radiation
Tetragonal, I41µ = 1.56 mm1
a = 18.511 (5) ÅT = 293 K
c = 15.698 (6) Å1.05 × 0.08 × 0.03 mm
V = 5379 (3) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6731 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
5005 reflections with I > 2σ(I)
Tmin = 0.292, Tmax = 0.955Rint = 0.098
37248 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.110Δρmax = 0.54 e Å3
S = 1.05Δρmin = 0.54 e Å3
6731 reflectionsAbsolute structure: Flack (1983); 3192 Friedel pairs
309 parametersAbsolute structure parameter: 0.01 (6)
1 restraint
Special details top

Experimental. The values of Tmin and Tmax are 0.757793 and 1.000000 from SADABS.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.49331 (3)0.39613 (3)0.24549 (3)0.03910 (18)
Cl10.40499 (12)0.39478 (13)0.35822 (18)0.0545 (6)
N120.4158 (3)0.3628 (3)0.1619 (6)0.0408 (18)
C90.3589 (4)0.4045 (4)0.1446 (7)0.050 (2)
H90.35840.45380.16740.065*
C100.3033 (4)0.3831 (5)0.0987 (7)0.055 (2)
H100.26120.41470.09220.072*
C110.3041 (5)0.3152 (5)0.0591 (8)0.069 (3)
H110.26530.30000.02070.090*
C120.3613 (5)0.2713 (4)0.0762 (8)0.063 (3)
H120.36290.22190.05400.081*
C130.4169 (5)0.2978 (5)0.1255 (8)0.059 (3)
H130.45950.26730.13430.077*
N110.5772 (3)0.4231 (3)0.3253 (5)0.0434 (18)
H11A0.57950.47410.33120.056*
H11B0.56900.40280.38000.056*
C10.7101 (4)0.4313 (5)0.3306 (5)0.070 (2)
H1A0.70780.48350.31990.091*
H1B0.75480.41180.30640.091*
H1C0.70930.42240.39210.091*
C20.6471 (4)0.3954 (4)0.2902 (5)0.0410 (17)
H20.65010.34380.30340.053*
C30.6410 (4)0.4028 (4)0.1946 (6)0.0376 (18)
C40.7003 (5)0.4120 (4)0.1414 (7)0.053 (2)
H40.74920.41090.16540.069*
C50.6912 (6)0.4225 (5)0.0565 (8)0.063 (3)
H50.73390.42870.02030.082*
C60.6230 (5)0.4247 (5)0.0193 (9)0.063 (3)
H60.61770.43250.04210.082*
C70.5628 (5)0.4156 (5)0.0704 (7)0.053 (2)
H70.51460.41690.04460.069*
C80.5698 (4)0.4043 (4)0.1609 (7)0.042 (2)
Pd20.10564 (3)0.00190 (3)0.14678 (3)0.03857 (18)
Cl20.10783 (12)0.08972 (12)0.03174 (19)0.0538 (6)
N220.1433 (4)0.0787 (3)0.2290 (6)0.044 (2)
C290.2082 (4)0.0762 (5)0.2635 (8)0.061 (3)
H290.23880.03430.25160.080*
C300.2348 (5)0.1295 (5)0.3152 (10)0.085 (4)
H300.28190.12360.34290.110*
C310.1960 (5)0.1901 (6)0.3279 (7)0.073 (3)
H310.21790.23160.35670.095*
C320.1302 (5)0.1932 (5)0.3022 (9)0.086 (4)
H320.09840.23290.31960.112*
C330.1048 (5)0.1365 (5)0.2469 (10)0.086 (4)
H330.05670.14130.22140.112*
N210.0712 (3)0.0791 (3)0.0715 (5)0.0436 (19)
H21A0.09680.07720.01910.057*
H21B0.02140.07200.05940.057*
C210.1474 (4)0.1892 (4)0.0755 (5)0.061 (2)
H21C0.15040.23840.09850.080*
H21D0.14450.19130.01330.080*
H21E0.19040.16190.09230.080*
C220.0810 (4)0.1525 (4)0.1102 (7)0.049 (2)
H220.03890.18190.09510.063*
C230.0807 (4)0.1422 (5)0.2037 (6)0.0397 (19)
C240.0696 (4)0.2000 (5)0.2595 (8)0.063 (3)
H240.06260.24880.23690.082*
C250.0683 (5)0.1880 (7)0.3482 (9)0.070 (3)
H250.06190.22790.38860.091*
C260.0763 (5)0.1189 (6)0.3751 (8)0.072 (3)
H260.07280.10910.43640.094*
C270.0891 (5)0.0615 (6)0.3211 (8)0.067 (3)
H270.09580.01260.34380.087*
C280.0925 (4)0.0739 (5)0.2357 (7)0.045 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0382 (3)0.0410 (3)0.0381 (5)0.0041 (2)0.0042 (3)0.0026 (3)
Cl10.0554 (12)0.0656 (14)0.0425 (17)0.0121 (11)0.0016 (11)0.0020 (12)
N120.047 (4)0.035 (3)0.040 (5)0.001 (3)0.007 (3)0.005 (3)
C90.046 (4)0.047 (4)0.057 (6)0.006 (3)0.008 (4)0.007 (4)
C100.046 (4)0.065 (5)0.056 (6)0.006 (4)0.007 (4)0.017 (4)
C110.053 (5)0.077 (6)0.077 (8)0.031 (4)0.018 (5)0.026 (6)
C120.083 (6)0.048 (5)0.057 (7)0.016 (4)0.013 (5)0.012 (4)
C130.053 (5)0.053 (5)0.071 (8)0.001 (4)0.004 (5)0.001 (5)
N110.043 (4)0.045 (3)0.042 (5)0.004 (3)0.006 (3)0.006 (3)
C10.041 (4)0.108 (7)0.061 (5)0.010 (4)0.005 (4)0.011 (5)
C20.042 (4)0.044 (4)0.037 (4)0.008 (3)0.001 (3)0.000 (3)
C30.044 (4)0.027 (3)0.042 (5)0.000 (3)0.002 (3)0.005 (3)
C40.056 (4)0.042 (4)0.060 (6)0.006 (3)0.001 (4)0.005 (4)
C50.074 (6)0.058 (5)0.058 (8)0.020 (4)0.018 (5)0.005 (5)
C60.064 (6)0.075 (6)0.049 (8)0.006 (5)0.008 (5)0.005 (6)
C70.050 (5)0.069 (6)0.039 (7)0.003 (4)0.002 (4)0.001 (5)
C80.041 (4)0.041 (4)0.043 (7)0.008 (3)0.003 (4)0.001 (4)
Pd20.0377 (3)0.0407 (3)0.0374 (5)0.0029 (2)0.0021 (3)0.0030 (3)
Cl20.0570 (13)0.0550 (12)0.0495 (18)0.0044 (10)0.0004 (12)0.0083 (12)
N220.050 (4)0.042 (4)0.041 (6)0.005 (3)0.007 (3)0.003 (3)
C290.044 (4)0.080 (6)0.060 (7)0.020 (4)0.024 (4)0.040 (5)
C300.047 (5)0.104 (8)0.104 (11)0.017 (5)0.016 (6)0.051 (7)
C310.069 (6)0.096 (7)0.056 (7)0.014 (5)0.018 (5)0.033 (6)
C320.073 (6)0.063 (6)0.123 (11)0.023 (5)0.037 (7)0.049 (6)
C330.058 (5)0.074 (6)0.126 (11)0.023 (5)0.030 (7)0.039 (7)
N210.052 (4)0.049 (4)0.030 (4)0.000 (3)0.003 (3)0.011 (3)
C210.065 (5)0.042 (4)0.077 (6)0.014 (3)0.011 (4)0.001 (4)
C220.037 (4)0.039 (4)0.070 (6)0.008 (3)0.007 (4)0.002 (4)
C230.030 (3)0.050 (4)0.039 (4)0.006 (3)0.006 (3)0.007 (3)
C240.050 (4)0.056 (5)0.084 (8)0.011 (4)0.001 (5)0.026 (5)
C250.071 (6)0.089 (7)0.052 (7)0.003 (5)0.011 (5)0.029 (6)
C260.064 (6)0.115 (9)0.038 (8)0.025 (6)0.014 (5)0.015 (6)
C270.070 (6)0.082 (7)0.049 (9)0.021 (5)0.018 (6)0.009 (6)
C280.034 (4)0.060 (5)0.040 (6)0.016 (3)0.001 (4)0.009 (5)
Geometric parameters (Å, º) top
Pd1—Cl12.409 (3)Pd2—Cl22.430 (3)
Pd1—N112.056 (7)Pd2—N212.012 (7)
Pd1—N122.040 (7)Pd2—N222.042 (8)
Pd1—C81.947 (10)Pd2—C281.994 (10)
N12—C131.331 (12)N22—C331.317 (10)
N12—C91.335 (10)N22—C291.318 (11)
C9—C101.318 (12)C29—C301.369 (14)
C9—H90.9800C29—H290.9800
C10—C111.402 (13)C30—C311.346 (13)
C10—H100.9800C30—H300.9800
C11—C121.361 (13)C31—C321.283 (11)
C11—H110.9800C31—H310.9800
C12—C131.377 (13)C32—C331.441 (14)
C12—H120.9800C32—H320.9800
C13—H130.9800C33—H330.9800
N11—C21.498 (10)N21—C221.499 (11)
N11—H11A0.9500N21—H21A0.9500
N11—H11B0.9500N21—H21B0.9500
C1—C21.484 (10)C21—C221.507 (9)
C1—H1A0.9801C21—H21C0.9801
C1—H1B0.9801C21—H21D0.9801
C1—H1C0.9801C21—H21E0.9801
C2—C31.511 (12)C22—C231.480 (14)
C2—H20.9800C22—H220.9800
C3—C41.390 (13)C23—C281.378 (13)
C3—C81.421 (12)C23—C241.397 (13)
C4—C51.358 (16)C24—C251.410 (18)
C4—H40.9800C24—H240.9800
C5—C61.392 (15)C25—C261.356 (15)
C5—H50.9800C25—H250.9800
C6—C71.382 (14)C26—C271.380 (15)
C6—H60.9800C26—H260.9800
C7—C81.442 (15)C27—C281.361 (16)
C7—H70.9800C27—H270.9800
N11—Pd1—Cl193.9 (2)N21—Pd2—Cl293.9 (2)
N12—Pd1—Cl189.6 (2)N22—Pd2—Cl289.9 (2)
C8—Pd1—Cl1174.4 (3)C28—Pd2—Cl2173.1 (3)
N12—Pd1—N11175.0 (3)N21—Pd2—N22175.9 (3)
C8—Pd1—N1181.2 (3)C28—Pd2—N2181.3 (4)
C8—Pd1—N1295.5 (4)C28—Pd2—N2295.1 (4)
C13—N12—C9116.5 (8)C33—N22—C29115.7 (8)
C13—N12—Pd1122.6 (6)C33—N22—Pd2121.1 (7)
C9—N12—Pd1120.7 (6)C29—N22—Pd2123.2 (6)
C10—C9—N12123.7 (8)N22—C29—C30123.2 (8)
C10—C9—H9118.2N22—C29—H29118.4
N12—C9—H9118.2C30—C29—H29118.4
C9—C10—C11120.2 (8)C31—C30—C29119.7 (9)
C9—C10—H10119.9C31—C30—H30120.2
C11—C10—H10119.9C29—C30—H30120.2
C12—C11—C10117.2 (9)C32—C31—C30119.9 (9)
C12—C11—H11121.4C32—C31—H31120.1
C10—C11—H11121.4C30—C31—H31120.1
C11—C12—C13118.6 (8)C31—C32—C33117.7 (9)
C11—C12—H12120.7C31—C32—H32121.1
C13—C12—H12120.7C33—C32—H32121.1
N12—C13—C12123.5 (8)N22—C33—C32123.0 (9)
N12—C13—H13118.2N22—C33—H33118.5
C12—C13—H13118.2C32—C33—H33118.5
C2—N11—Pd1110.2 (6)C22—N21—Pd2113.5 (6)
C2—N11—H11A109.6C22—N21—H21A108.9
Pd1—N11—H11A109.6Pd2—N21—H21A108.9
C2—N11—H11B109.6C22—N21—H21B108.9
Pd1—N11—H11B109.6Pd2—N21—H21B108.9
H11A—N11—H11B108.1H21A—N21—H21B107.7
C2—C1—H1A109.5C22—C21—H21C109.5
C2—C1—H1B109.5C22—C21—H21D109.5
H1A—C1—H1B109.5H21C—C21—H21D109.5
C2—C1—H1C109.5C22—C21—H21E109.5
H1A—C1—H1C109.5H21C—C21—H21E109.5
H1B—C1—H1C109.5H21D—C21—H21E109.5
C1—C2—N11111.7 (7)C23—C22—N21106.6 (7)
C1—C2—C3116.3 (7)C23—C22—C21114.7 (8)
N11—C2—C3105.7 (7)N21—C22—C21111.2 (7)
C1—C2—H2107.6C23—C22—H22108.0
N11—C2—H2107.6N21—C22—H22108.0
C3—C2—H2107.6C21—C22—H22108.0
C4—C3—C8120.5 (9)C28—C23—C24119.9 (11)
C4—C3—C2123.3 (8)C28—C23—C22118.5 (9)
C8—C3—C2116.2 (8)C24—C23—C22121.6 (9)
C5—C4—C3120.6 (10)C23—C24—C25120.1 (11)
C5—C4—H4119.7C23—C24—H24120.0
C3—C4—H4119.7C25—C24—H24120.0
C4—C5—C6121.9 (11)C26—C25—C24117.0 (11)
C4—C5—H5119.0C26—C25—H25121.5
C6—C5—H5119.0C24—C25—H25121.5
C7—C6—C5119.0 (12)C25—C26—C27123.6 (12)
C7—C6—H6120.5C25—C26—H26118.2
C5—C6—H6120.5C27—C26—H26118.2
C6—C7—C8121.1 (9)C28—C27—C26119.0 (10)
C6—C7—H7119.4C28—C27—H27120.5
C8—C7—H7119.4C26—C27—H27120.5
C3—C8—C7116.9 (8)C27—C28—C23120.4 (10)
C3—C8—Pd1114.8 (8)C27—C28—Pd2125.2 (8)
C7—C8—Pd1128.2 (7)C23—C28—Pd2114.3 (8)

Experimental details

(I)(II)(III)
Crystal data
Chemical formula[Pd2(C8H10N)2(C2H3O2)2][Pd2(C8H10N)2Cl2][Pd(C8H10N)Cl(C5H5N)]
Mr571.23524.04341.12
Crystal system, space groupMonoclinic, P21Orthorhombic, P212121Tetragonal, I41
Temperature (K)295293293
a, b, c (Å)10.423 (4), 13.398 (5), 15.861 (5)7.330 (3), 10.819 (4), 22.453 (8)18.511 (5), 18.511 (5), 15.698 (6)
α, β, γ (°)90, 93.429 (9), 9090, 90, 9090, 90, 90
V3)2210.9 (13)1780.4 (11)5379 (3)
Z4416
Radiation typeMo KαMo KαMo Kα
µ (mm1)1.652.321.56
Crystal size (mm)0.12 × 0.05 × 0.051.00 × 0.45 × 0.021.05 × 0.08 × 0.03
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Bruker SMART APEX CCD area-detector
diffractometer
Bruker SMART APEX CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.826, 0.9220.205, 0.9550.292, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
30720, 11234, 7251 24210, 4390, 3782 37248, 6731, 5005
Rint0.0920.0880.098
(sin θ/λ)max1)0.6770.6650.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.177, 1.01 0.049, 0.109, 1.07 0.046, 0.110, 1.05
No. of reflections1123443906731
No. of parameters513201309
No. of restraints101
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 1.270.77, 0.880.54, 0.54
Absolute structureFlack (1983); 5274 Friedel pairsFlack (1983); 1864 Friedel pairsFlack (1983); 3192 Friedel pairs
Absolute structure parameter0.01 (7)0.02 (6)0.01 (6)

Computer programs: SMART (Bruker, 2001), SMART, SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1990), SHELXL97.

Selected geometric parameters (Å, º) for (I) top
Pd1—Pd22.9059 (14)Pd3—C311.979 (11)
Pd1—O112.071 (9)Pd4—O412.074 (9)
Pd1—O122.172 (9)Pd4—O422.193 (9)
Pd1—N12.033 (12)Pd4—N42.078 (10)
Pd1—C111.962 (13)Pd4—C411.966 (13)
Pd2—O212.196 (9)C16—C171.555 (17)
Pd2—O222.112 (10)C17—N11.550 (14)
Pd2—N22.041 (10)C26—C271.57 (2)
Pd2—C211.968 (13)C27—N21.553 (16)
Pd3—Pd42.9355 (14)C36—C371.542 (17)
Pd3—O312.196 (9)C37—N31.480 (14)
Pd3—O322.052 (8)C46—C471.541 (15)
Pd3—N32.059 (10)C47—N41.512 (14)
O11—Pd1—O1288.7 (4)O32—Pd3—O3188.3 (4)
N1—Pd1—O11174.0 (4)N3—Pd3—O3195.8 (4)
N1—Pd1—O1294.7 (4)N3—Pd3—O32166.9 (4)
C11—Pd1—O1194.4 (5)C31—Pd3—O31178.0 (4)
C11—Pd1—O12173.6 (4)C31—Pd3—O3293.8 (4)
C11—Pd1—N182.7 (5)C31—Pd3—N382.4 (4)
O22—Pd2—O2189.9 (4)O41—Pd4—O4287.5 (4)
N2—Pd2—O2193.7 (4)N4—Pd4—O41175.9 (4)
N2—Pd2—O22176.5 (4)N4—Pd4—O4296.1 (3)
C21—Pd2—O21172.9 (5)C41—Pd4—O4194.8 (4)
C21—Pd2—O2293.5 (5)C41—Pd4—O42174.5 (4)
C21—Pd2—N282.9 (5)C41—Pd4—N481.4 (4)
Selected geometric parameters (Å, º) for (II) top
Pd1—Cl12.332 (2)Pd2—Cl22.333 (2)
Pd1—Cl22.447 (2)Pd2—N22.019 (5)
Pd1—N12.020 (6)Pd2—C211.946 (7)
Pd1—C111.946 (8)C17—N11.490 (10)
Pd2—Cl12.4781 (19)C27—N21.505 (9)
Cl1—Pd1—Cl286.90 (7)N2—Pd2—Cl2177.97 (18)
N1—Pd1—Cl1175.2 (2)C21—Pd2—N281.9 (3)
N1—Pd1—Cl295.67 (19)C21—Pd2—Cl1177.4 (2)
C11—Pd1—N181.2 (3)C21—Pd2—Cl296.1 (2)
C11—Pd1—Cl196.5 (2)Pd1—Cl1—Pd292.98 (7)
C11—Pd1—Cl2175.5 (2)Pd2—Cl2—Pd193.74 (7)
Cl2—Pd2—Cl186.15 (7)C17—N1—Pd1110.7 (5)
N2—Pd2—Cl195.82 (17)C27—N2—Pd2112.7 (4)
Selected geometric parameters (Å, º) for (III) top
Pd1—Cl12.409 (3)Pd2—Cl22.430 (3)
Pd1—N112.056 (7)Pd2—N212.012 (7)
Pd1—N122.040 (7)Pd2—N222.042 (8)
Pd1—C81.947 (10)Pd2—C281.994 (10)
N11—C21.498 (10)N21—C221.499 (11)
C2—C31.511 (12)C22—C231.480 (14)
N11—Pd1—Cl193.9 (2)N21—Pd2—Cl293.9 (2)
N12—Pd1—Cl189.6 (2)N22—Pd2—Cl289.9 (2)
C8—Pd1—Cl1174.4 (3)C28—Pd2—Cl2173.1 (3)
N12—Pd1—N11175.0 (3)N21—Pd2—N22175.9 (3)
C8—Pd1—N1181.2 (3)C28—Pd2—N2181.3 (4)
C8—Pd1—N1295.5 (4)C28—Pd2—N2295.1 (4)
C2—N11—Pd1110.2 (6)C22—N21—Pd2113.5 (6)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds