Download citation
Download citation
link to html
N,N'-Di­thio­bisphthal­imide crystallizes from 1,4-dioxan solution as a solvate, 3C16H8N2O4S2·1.8C4H8O2, having space group C2/c. Four of the 12 C16H8N2O4S2 mol­ecules in the unit cell lie on twofold rotation axes, while the other eight lie in general positions. These mol­ecules are linked by aromatic [pi]-[pi]-stacking interactions and by C-H...O hydrogen bonds to form a framework enclosing continuous channels running parallel to the [101] direction, which account for ca 20% of the unit-cell volume. The dioxan mol­ecules lie in these channels disordered across two sets of sites, with one set across an inversion centre and the other across a twofold rotation axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102007680/sk1551sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102007680/sk1551Isup2.hkl
Contains datablock I

CCDC reference: 188622

Comment top

We have recently described a number of solvates (pseudopolymorphs) of N,N'-dithiodiphthalimide, as well as several solvent-free polymorphs (Skakle et al., 2001; Farrell et al., 2002). The solvates studied to date fall into four distinct groups. The first group is of solvates where the diphthalimide molecules and the solvent are linked by C—H···O hydrogen bonds. In the remaining three types of solvate, the solvent molecules are not hydrogen bonded to the framework formed by the diphthalimide. These three types are where the solvent molecules are in isolated cavities, or channel polymorphs in which localized solvent molecules in the channels are readily refinable, or channel polymorphs in which the solvent molecules are disordered and/or mobile within the channels (non-localized solvent molecules). Continuing this study, we report here the structure of the title dioxan solvate, (I), which is a further channel polymorph containing localized solvent molecules, but which differs from any other example so far examined. \sch

Compound (I) crystallizes in space group C2/c with 12 molecules of the diphthalimide per unit cell. Based upon the diphthalimide molecules only, this gives a Z' value of 3/2, which is very uncommon in this space group (Brock & Dunitz, 1994). Four of the diphthalimide molecules, the type 1 molecules containing atom S1 (Fig. 1a), lie across twofold rotation axes, while the eight type 2 molecules containing atoms S11 and S21 (Fig. 1 b) lie in general positions.

Each type of molecule forms chains in which the molecules are linked by aromatic π···π stacking interactions. In the type 2 molecule at (x, y, z), the C11—C16 ring forms a π···π stacking interaction with the C21—C26 ring in the molecule at (x, 1 - y, z - 1/2), in which the interplanar angle is 1.5 (3)°, the interplanar spacing is 3.362 (3) Å and the centroid separation is 3.657 (3) Å. Similarly, the C11—C16 ring at (x, 1 - y, z - 1/2) in turn forms a stacking interaction with the C21—C26 ring at (x, y, z - 1), so generating a chain of type 2 molecules running parallel to the [001] direction. Four chains of this type run through each unit cell. The reference chain lies in the domain 0.06 < x < 0.27, 0.28 < y < 0.72, and the other three lie in the domains 0.23 < x < 0.44, 0.78 < y < 1.22, 0.56 < x < 0.77, 0.78 < y < 1.22, and 0.73 < x < 0.94, 0.28 < y < 0.72. There are thus two pairs of adjacent chains running through each unit cell (Fig. 2).

In the type 1 molecule which lies across the twofold rotation axis along (0,y,1/4), the two aryl rings are at (x, y, z) and (-x, y, 1/2 - z). The ring at (x, y, z) forms a π···π stacking interaction with that at (-x, -y, -z), part of the type 1 molecule lying across the rotation axis along (0,-y,-1/4); the interplanar spacing is 3.347 (4) Å and the centroid separation is 3.754 (4) Å. Similarly, the ring at (-x, y, 1/2 - z), also part of the molecule across (0,y,1/4), forms a stacking interaction with the ring at (x, -y, 1/2 + z), which is part of the molecule across the twofold axis along (0,-y,3/4). In this manner, a second [001] chain is generated, and there are two chains of this type running through each unit cell, related by the C-centring operation and lying in the domains -0.10 < x < 0.10, -0.20 < y < 1/5, and 0.40 < x < 0.60, 0.30 < y < 0.70 (Fig. 3). The type 1 chains thus fit neatly in the gaps between the pairs of type 2 chains, giving a sequence of types along [100] of the form ···122122122···, and these stacked chains are linked along the [010] direction by weak C—H···O hydrogen bonds (Table 2).

The C—H···O hydrogen bond involving atoms of a type 2 molecule as both donor and acceptor (Table 2, Fig. 1) simply reinforces the π···π stacked type 2 chain along [001] by formation of a C(7) motif. The combination of the other two hydrogen bonds links the chains of different types. In the type 1 molecule across the twofold rotation axis (0,y,1/4), the two symmetry-related C4 atoms are at (x, y, z) and (-x, y, 1/2 - z). These act as hydrogen-bond donors to atoms O22 in the type 2 molecules at (x, -y, z - 1/2) and (-x, -y, 1 - z), respectively, while the atoms C22 in these two molecules act as donors to atoms O1 at (x, y - 1, z) and (-x, y - 1, 1/2 - z), which both lie in the same type 1 molecule (Fig. 4). In this way a molecular ladder is generated, with a pair of C22(14) chains related by the twofold axis acting as the uprights, and with the central N—S—S—N fragment of the type 1 molecules acting as the rungs, which enclose R44(36) rings. There are four of these ladders running through each unit cell, and they link the π···π stacked [001] chains into a (100) sheet.

The overall framework generated by the diphthalimide molecules occupies only 80% of the unit-cell volume [i.e. 20% solvent-accessible volume, as estimated using PLATON (Spek, 2002)], which is typical of the channel polymorphs described earlier (Skakle et al., 2001; Farrell et al., 2002), and in fact the remaining volume takes the form of continuous channels, two per unit cell, which run parallel to the [101] direction (Fig. 5). It is within these channels that the dioxan molecules lie, each disordered over two partially occupied sets of sites at different special positions. The dioxan molecules containing atoms O41 and O51 are disordered across the centre of inversion at (1/4,3/4,1/2), with occupancies of 0.509 (10) and 0.429 (10), respectively (Fig. 6a), while that containing atoms O31 and O34 is disordered across the twofold rotation axis along (0,y,1/4), centred approximately at (0,3/4,1/4), with occupancy 0.431 (7) (Fig. 6 b). These partially occupied dioxan sites, taken together, correspond to 7.2 molecules of dioxan per unit cell. With the 12 molecules of dithiodiphthalimide in the unit cell, this gives the composition for (I) as C16H8N2O4S2·0.6C4H8O2.

It is interesting to note the structural contrast between the dioxan solvate, (I), and the tetrahydrofuran (THF) solvate (Farrell et al., 2002). Despite the rather close similarity between the solvent molecules, the THF solvate has Z' = 1/2 in C2/c (based upon the diphthalimide molecules) and the solvent molecules are intractably disordered within continuous channels along [001].

The leading dimensions (Table 1) of the two independent diphthalimide molecules in (I) do not differ significantly, and they are typical of those observed in other polymorphs and solvates of N,N'-dithiodiphthalimide. We note in particular the planarity at N and the torsion angles within the N—S—S—N fragments, which indicate that the formally non-bonding lone pairs at adjacent N and S atoms are essentially orthogonal.

The diphthalimide molecules in (I) conform closely to the rare space group P2/m in a much smaller unit cell, derived from the observed cell by the transformation (1/3,0,1/3; 0,1,0; -1/3,0,1/6) and having Z = 2, i.e. Z' = 1/2, which would require all of the diphthalimide molecules to lie on twofold rotation axes, rather than just one third of them. However, the dioxan molecules do not conform to this pseudosymmetry, so that the correct space group is indeed C2/c.

Experimental top

A sample of N·N'-dithiodiphthalimide was purchased from Aldrich. Crystals of (I) suitable for single-crystal X-ray diffraction were grown by slow evaporation of a solution in 1,4-dioxan.

Refinement top

Compound (I) crystallized in the monoclinic system, space group C2/c or Cc from the systematic absences; C2/c was assumed, and confirmed by the analysis. H atoms were treated as riding atoms, with C—H = 0.95 and 0.99 Å. One dithiodiphthalimide molecule lies about a twofold axis and another is in a general position. There are two partially occupied sites with disordered dioxan molecules. One site, with molecule O31—C36, is disordered [occupancy 0.431 (7)] about a twofold axis, and the other, with molecules O41—C42 [occupancy 0.509 (10)] and O51—C52 [occupancy 0.429 (10)], is disordered about an inversion centre. This leads to the asymmetric unit having a formulation 3(dithiodiphthalimide)-1.8(dioxan).

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2002); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The two independent molecules of N,N'-dithiodiphthalimide in (I), showing the atom-labelling scheme; (a) a molecule of type 1, where the atoms with the suffix A are at the symmetry position (-x, y, 1/2 - z), and (b) a molecule of type 2. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing the two π···π stacked chains of type 2 molecules in the domain 0 < x < 1/2. For the sake of clarity, H atoms have been omitted.
[Figure 3] Fig. 3. Part of the crystal structure of (I) showing π···π stacked chains of type 1 molecules in the domains -0.10 < x < 0.10 and 0.40 < x < 0.60. For the sake of clarity, H atoms have been omitted.
[Figure 4] Fig. 4. Part of the crystal structure of (I) showing formation of a hydrogen-bonded molecular ladder parallel to [010] linking the π···π stacked chains. The atoms marked with a star (*), hash (#) or dollar sign ($) are at the symmetry positions (-x, y, 1/2 - z), (x, -y, z - 1/2) and (x, 1 - y, z - 1/2), respectively.
[Figure 5] Fig. 5. A space-filling representation of the molecules of N,N'-dithiodiphthalimide in (I), showing the continuous channels running parallel to [101].
[Figure 6] Fig. 6. The disordered dioxan molecules in (I), (a) at the inversion centre (1/4,3/4,1/2), where the atoms with the suffix B are at the symmetry position (1/2 - x, 3/2 - y, 1 - z), and (b) across the twofold rotation axis (0,y,1/4), where the atoms with the suffix C are at the symmetry position (-x, y, 1/2 - z). For the sake of clarity, H atoms have been omitted.
N,N'-Dithiodiphthalimide–1,4-dioxan (1/0.6) top
Crystal data top
3C16H8N2O4S2·1.8C4H8O2F(000) = 2529.6
Mr = 1227.68Dx = 1.512 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6116 reflections
a = 20.7900 (11) Åθ = 3.6–27.6°
b = 16.052 (1) ŵ = 0.33 mm1
c = 16.7780 (9) ÅT = 150 K
β = 105.604 (4)°Needle, colourless
V = 5392.8 (5) Å30.34 × 0.12 × 0.10 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
6116 independent reflections
Radiation source: fine-focus sealed X-ray tube3050 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.127
ϕ scans, and ω scans with κ offsetsθmax = 27.6°, θmin = 3.6°
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
h = 2626
Tmin = 0.884, Tmax = 0.964k = 2020
20736 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.072H-atom parameters constrained
wR(F2) = 0.183 w = 1/[σ2(Fo2) + (0.0197P)2 + 21.0287P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
6116 reflectionsΔρmax = 0.42 e Å3
425 parametersΔρmin = 0.33 e Å3
12 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00080 (19)
Crystal data top
3C16H8N2O4S2·1.8C4H8O2V = 5392.8 (5) Å3
Mr = 1227.68Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.7900 (11) ŵ = 0.33 mm1
b = 16.052 (1) ÅT = 150 K
c = 16.7780 (9) Å0.34 × 0.12 × 0.10 mm
β = 105.604 (4)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
6116 independent reflections
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
3050 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 0.964Rint = 0.127
20736 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07212 restraints
wR(F2) = 0.183H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0197P)2 + 21.0287P]
where P = (Fo2 + 2Fc2)/3
6116 reflectionsΔρmax = 0.42 e Å3
425 parametersΔρmin = 0.33 e Å3
Special details top

Experimental. The program DENZO-SMN (Otwinowski & Minor, 1997) uses a scaling algorithm [Fox, G. C. & Holmes, K. C. (1966). Acta Cryst. 20, 886–891] which effectively corrects for absorption effects. High-redundancy data were used in the scaling program, hence the `multi-scan' code word was used. No transmission coefficients are available from the program (only scale factors for each frame).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.04972 (7)0.17861 (8)0.25419 (7)0.0398 (3)
O10.04693 (19)0.1966 (2)0.07067 (19)0.0416 (9)
O20.07682 (19)0.0098 (2)0.26757 (18)0.0424 (9)
N10.0603 (2)0.1082 (2)0.1845 (2)0.0342 (9)
C10.0752 (3)0.0495 (3)0.0654 (3)0.0351 (11)
C20.0819 (3)0.0340 (3)0.0134 (3)0.0362 (11)
C30.0955 (3)0.0476 (3)0.0310 (3)0.0393 (12)
C40.1029 (3)0.1108 (3)0.0269 (3)0.0403 (12)
C50.0972 (3)0.0948 (3)0.1065 (3)0.0378 (12)
C60.0838 (3)0.0133 (3)0.1243 (3)0.0341 (11)
C70.0591 (2)0.1281 (3)0.1010 (3)0.0313 (10)
C80.0740 (3)0.0220 (3)0.2018 (3)0.0346 (11)
S110.21862 (7)0.31965 (7)0.41390 (7)0.0364 (3)
O110.24785 (19)0.50864 (19)0.41635 (18)0.0409 (9)
O120.2173 (2)0.2897 (2)0.23296 (18)0.0439 (9)
N110.2310 (2)0.3850 (2)0.3408 (2)0.0322 (9)
C110.2522 (2)0.5022 (3)0.2725 (2)0.0310 (10)
C120.2653 (3)0.5822 (3)0.2503 (3)0.0354 (11)
C130.2698 (3)0.5932 (3)0.1689 (3)0.0371 (11)
C140.2629 (3)0.5263 (3)0.1147 (3)0.0363 (11)
C150.2496 (3)0.4471 (3)0.1382 (3)0.0370 (12)
C160.2445 (2)0.4358 (3)0.2180 (2)0.0310 (10)
C170.2444 (2)0.4715 (3)0.3529 (3)0.0315 (10)
C180.2296 (3)0.3586 (3)0.2590 (3)0.0349 (11)
S210.11888 (7)0.32369 (8)0.40292 (7)0.0398 (3)
O210.09246 (19)0.5144 (2)0.39105 (19)0.0444 (9)
O220.1237 (2)0.30560 (19)0.5846 (2)0.0454 (9)
N210.1092 (2)0.3945 (2)0.4726 (2)0.0358 (10)
C210.0861 (2)0.5158 (3)0.5349 (3)0.0320 (10)
C220.0721 (3)0.5959 (3)0.5531 (3)0.0362 (11)
C230.0645 (3)0.6103 (3)0.6323 (3)0.0398 (12)
C240.0724 (3)0.5465 (3)0.6896 (3)0.0423 (12)
C250.0869 (3)0.4657 (3)0.6711 (3)0.0378 (12)
C260.0939 (3)0.4518 (3)0.5921 (3)0.0334 (11)
C270.0952 (3)0.4813 (3)0.4561 (3)0.0352 (11)
C280.1107 (3)0.3730 (3)0.5557 (3)0.0359 (11)
O310.0625 (6)0.7728 (7)0.2346 (6)0.049 (3)0.431 (7)
C320.0002 (7)0.7709 (12)0.1713 (10)0.062 (6)0.431 (7)
C330.0439 (7)0.7050 (7)0.1914 (7)0.049 (3)0.431 (7)
O340.0589 (5)0.7244 (7)0.2670 (6)0.049 (3)0.431 (7)
C350.0029 (7)0.7296 (10)0.3301 (9)0.046 (4)0.431 (7)
C360.0476 (7)0.7940 (7)0.3099 (7)0.049 (3)0.431 (7)
O410.1864 (3)0.7126 (4)0.4901 (4)0.039 (2)0.509 (10)
C420.2168 (17)0.7070 (13)0.4236 (16)0.037 (3)0.509 (10)
C430.2904 (18)0.7140 (11)0.4623 (9)0.037 (2)0.509 (10)
O510.1905 (4)0.7903 (5)0.4548 (4)0.040 (3)0.429 (10)
C520.219 (2)0.7186 (14)0.428 (2)0.037 (3)0.429 (10)
C530.294 (2)0.7078 (15)0.4569 (8)0.037 (2)0.429 (10)
H20.07730.07710.05340.043*
H30.09990.06050.08450.047*
H40.11200.16580.01220.048*
H50.10220.13780.14660.045*
H120.27100.62730.28820.042*
H130.27780.64730.15060.045*
H140.26730.53520.06050.044*
H150.24420.40160.10060.044*
H220.06770.63960.51380.043*
H230.05380.66470.64700.048*
H240.06780.55850.74320.051*
H250.09180.42200.71040.045*
H32A0.00850.75890.11710.074*0.431 (7)
H32B0.02200.82580.16780.074*0.431 (7)
H33A0.08580.70140.14630.059*0.431 (7)
H33B0.02110.65040.19610.059*0.431 (7)
H35A0.02550.67480.33620.055*0.431 (7)
H35B0.00620.74350.38350.055*0.431 (7)
H36A0.02550.84910.30440.059*0.431 (7)
H36B0.08950.79750.35510.059*0.431 (7)
H42A0.20110.75270.38340.044*0.509 (10)
H42B0.20590.65310.39440.044*0.509 (10)
H43A0.30470.66510.49870.044*0.509 (10)
H43B0.31330.71060.41770.044*0.509 (10)
H52A0.20640.71870.36690.044*0.429 (10)
H52B0.19870.66890.44590.044*0.429 (10)
H53A0.30720.65410.43740.044*0.429 (10)
H53B0.31660.75360.43600.044*0.429 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0559 (9)0.0325 (6)0.0364 (6)0.0069 (6)0.0214 (6)0.0070 (5)
O10.051 (2)0.0343 (19)0.0421 (17)0.0001 (16)0.0176 (17)0.0016 (14)
O20.054 (3)0.0416 (19)0.0330 (17)0.0046 (18)0.0137 (17)0.0016 (14)
N10.042 (3)0.034 (2)0.0288 (18)0.0017 (19)0.0138 (18)0.0057 (15)
C10.038 (3)0.037 (2)0.032 (2)0.002 (2)0.013 (2)0.0026 (19)
C20.034 (3)0.045 (3)0.028 (2)0.005 (2)0.005 (2)0.0023 (19)
C30.036 (3)0.045 (3)0.037 (2)0.001 (2)0.010 (2)0.006 (2)
C40.040 (3)0.039 (3)0.042 (2)0.006 (2)0.011 (2)0.008 (2)
C50.041 (3)0.036 (3)0.038 (2)0.002 (2)0.014 (2)0.005 (2)
C60.032 (3)0.039 (2)0.031 (2)0.001 (2)0.008 (2)0.0033 (19)
C70.034 (3)0.030 (2)0.031 (2)0.007 (2)0.010 (2)0.0026 (18)
C80.035 (3)0.037 (3)0.032 (2)0.004 (2)0.009 (2)0.0036 (19)
S110.0532 (9)0.0280 (6)0.0331 (6)0.0053 (6)0.0200 (6)0.0049 (5)
O110.062 (3)0.0334 (17)0.0305 (16)0.0003 (17)0.0175 (17)0.0027 (13)
O120.069 (3)0.0312 (17)0.0359 (17)0.0003 (18)0.0206 (18)0.0034 (14)
N110.050 (3)0.0236 (18)0.0280 (17)0.0001 (18)0.0190 (18)0.0012 (14)
C110.036 (3)0.032 (2)0.026 (2)0.002 (2)0.010 (2)0.0036 (17)
C120.039 (3)0.036 (2)0.031 (2)0.004 (2)0.009 (2)0.0016 (19)
C130.039 (3)0.038 (3)0.036 (2)0.001 (2)0.013 (2)0.007 (2)
C140.042 (3)0.041 (3)0.029 (2)0.001 (2)0.015 (2)0.0029 (19)
C150.050 (3)0.036 (3)0.029 (2)0.002 (2)0.016 (2)0.0015 (18)
C160.038 (3)0.027 (2)0.029 (2)0.003 (2)0.011 (2)0.0030 (17)
C170.037 (3)0.027 (2)0.032 (2)0.000 (2)0.013 (2)0.0002 (17)
C180.043 (3)0.036 (3)0.029 (2)0.001 (2)0.015 (2)0.0001 (19)
S210.0548 (9)0.0329 (6)0.0362 (6)0.0089 (6)0.0201 (6)0.0079 (5)
O210.060 (3)0.0401 (19)0.0342 (17)0.0022 (18)0.0154 (17)0.0036 (14)
O220.071 (3)0.0279 (18)0.0434 (18)0.0004 (17)0.0256 (18)0.0008 (14)
N210.047 (3)0.035 (2)0.0299 (18)0.0012 (19)0.0174 (19)0.0028 (15)
C210.033 (3)0.031 (2)0.033 (2)0.000 (2)0.010 (2)0.0011 (18)
C220.034 (3)0.034 (2)0.039 (2)0.001 (2)0.007 (2)0.0001 (19)
C230.038 (3)0.035 (3)0.048 (3)0.000 (2)0.014 (2)0.013 (2)
C240.043 (3)0.044 (3)0.044 (3)0.004 (2)0.019 (2)0.013 (2)
C250.041 (3)0.043 (3)0.035 (2)0.001 (2)0.019 (2)0.003 (2)
C260.036 (3)0.035 (2)0.030 (2)0.005 (2)0.011 (2)0.0028 (18)
C270.037 (3)0.033 (2)0.037 (2)0.001 (2)0.013 (2)0.001 (2)
C280.040 (3)0.036 (3)0.035 (2)0.004 (2)0.015 (2)0.005 (2)
O310.045 (6)0.061 (7)0.046 (5)0.014 (6)0.021 (5)0.009 (5)
C320.079 (14)0.062 (12)0.048 (9)0.003 (11)0.025 (9)0.029 (10)
C330.052 (9)0.042 (7)0.048 (7)0.009 (6)0.007 (7)0.009 (5)
O340.041 (6)0.056 (7)0.054 (6)0.000 (6)0.019 (5)0.009 (5)
C350.059 (11)0.043 (10)0.040 (7)0.006 (8)0.024 (7)0.001 (8)
C360.055 (9)0.046 (7)0.052 (7)0.007 (6)0.023 (7)0.016 (6)
O410.044 (5)0.035 (4)0.042 (4)0.004 (3)0.019 (3)0.004 (3)
C420.048 (4)0.027 (5)0.037 (4)0.006 (5)0.015 (3)0.008 (4)
C430.045 (4)0.033 (3)0.039 (3)0.007 (3)0.022 (3)0.004 (2)
O510.050 (6)0.038 (4)0.034 (4)0.012 (4)0.013 (4)0.001 (3)
C520.048 (4)0.027 (5)0.037 (4)0.006 (5)0.015 (3)0.008 (4)
C530.045 (4)0.033 (3)0.039 (3)0.007 (3)0.022 (3)0.004 (2)
Geometric parameters (Å, º) top
S1—N11.683 (4)C1—C21.389 (6)
S11—N111.685 (3)C1—C71.472 (6)
S21—N211.681 (4)C2—C31.389 (7)
S1—S1i2.034 (3)C2—H20.95
S11—S212.033 (2)C3—C41.383 (7)
O11—C171.205 (5)C3—H30.95
O12—C181.192 (5)C4—C51.396 (6)
N11—C171.419 (5)C4—H40.95
N11—C181.429 (5)C5—C61.387 (7)
C11—C161.384 (6)C5—H50.95
C11—C121.384 (6)C6—C81.482 (6)
C11—C171.486 (5)O31—C361.421 (8)
C12—C131.405 (6)O31—C321.436 (9)
C12—H120.95C32—C331.495 (9)
C13—C141.391 (6)C32—H32A0.99
C13—H130.95C32—H32B0.99
C14—C151.380 (6)C33—O341.420 (9)
C14—H140.95C33—H33A0.99
C15—C161.385 (6)C33—H33B0.99
C15—H150.95O34—C351.430 (9)
C16—C181.490 (6)C35—C361.491 (9)
O21—C271.201 (5)C35—H35A0.99
O22—C281.187 (5)C35—H35B0.99
N21—C281.429 (5)C36—H36A0.99
N21—C271.435 (6)C36—H36B0.99
C21—C221.371 (6)O41—C421.425 (10)
C21—C261.386 (6)O41—C43ii1.431 (10)
C21—C271.491 (6)C42—C431.498 (9)
C22—C231.399 (6)C42—H42A0.99
C22—H220.95C42—H42B0.99
C23—C241.384 (7)C43—O41ii1.431 (10)
C23—H230.95C43—H43A0.99
C24—C251.385 (7)C43—H43B0.99
C24—H240.95O51—C521.425 (10)
C25—C261.389 (6)O51—C53ii1.430 (10)
C25—H250.95C52—C531.498 (9)
C26—C281.487 (6)C52—H52A0.99
O1—C71.209 (5)C52—H52B0.99
O2—C81.203 (5)C53—O51ii1.430 (10)
N1—C81.427 (6)C53—H53A0.99
N1—C71.430 (5)C53—H53B0.99
C1—C61.389 (6)
S1—N1—C7124.1 (3)C2—C3—H3118.9
S1—N1—C8124.5 (3)C3—C4—C5121.0 (4)
C7—N1—C8111.4 (3)C3—C4—H4119.5
N1—S1—S1i105.80 (16)C5—C4—H4119.5
N11—S11—S21105.41 (16)C6—C5—C4116.9 (4)
S11—S21—N21105.58 (17)C6—C5—H5121.5
S11—N11—C17124.5 (3)C4—C5—H5121.5
S11—N11—C18123.1 (3)C5—C6—C1121.8 (4)
C17—N11—C18112.3 (3)C5—C6—C8129.2 (4)
S21—N21—C27125.4 (3)C1—C6—C8108.9 (4)
S21—N21—C28122.7 (3)O1—C7—N1124.2 (4)
C27—N21—C28111.9 (3)O1—C7—C1130.8 (4)
C16—C11—C12122.2 (4)N1—C7—C1105.1 (4)
C16—C11—C17108.8 (4)O2—C8—N1123.8 (4)
C12—C11—C17129.0 (4)O2—C8—C6131.2 (5)
C11—C12—C13116.6 (4)N1—C8—C6105.0 (4)
C11—C12—H12121.7C36—O31—C32107.1 (12)
C13—C12—H12121.7O31—C32—C33109.5 (11)
C14—C13—C12121.0 (4)O31—C32—H32A109.8
C14—C13—H13119.5C33—C32—H32A109.8
C12—C13—H13119.5O31—C32—H32B109.8
C15—C14—C13121.3 (4)C33—C32—H32B109.8
C15—C14—H14119.4H32A—C32—H32B108.2
C13—C14—H14119.4O34—C33—C32110.0 (12)
C14—C15—C16118.0 (4)O34—C33—H33A109.7
C14—C15—H15121.0C32—C33—H33A109.7
C16—C15—H15121.0O34—C33—H33B109.7
C11—C16—C15120.9 (4)C32—C33—H33B109.7
C11—C16—C18109.7 (3)H33A—C33—H33B108.2
C15—C16—C18129.4 (4)C33—O34—C35107.8 (11)
O11—C17—N11125.0 (4)O34—C35—C36111.3 (11)
O11—C17—C11130.0 (4)O34—C35—H35A109.4
N11—C17—C11105.1 (3)C36—C35—H35A109.4
O12—C18—N11125.1 (4)O34—C35—H35B109.4
O12—C18—C16130.8 (4)C36—C35—H35B109.4
N11—C18—C16104.1 (4)H35A—C35—H35B108.0
C22—C21—C26122.1 (4)O31—C36—C35109.5 (10)
C22—C21—C27129.2 (4)O31—C36—H36A109.8
C26—C21—C27108.7 (4)C35—C36—H36A109.8
C21—C22—C23116.9 (4)O31—C36—H36B109.8
C21—C22—H22121.5C35—C36—H36B109.8
C23—C22—H22121.5H36A—C36—H36B108.2
C24—C23—C22121.0 (4)C42—O41—C43ii109.6 (9)
C24—C23—H23119.5O41—C42—C43106 (2)
C22—C23—H23119.5O41—C42—H42A110.6
C23—C24—C25122.0 (4)C43—C42—H42A110.6
C23—C24—H24119.0O41—C42—H42B110.6
C25—C24—H24119.0C43—C42—H42B110.6
C24—C25—C26116.6 (4)H42A—C42—H42B108.7
C24—C25—H25121.7O41ii—C43—C42117 (3)
C26—C25—H25121.7O41ii—C43—H43A108.0
C21—C26—C25121.3 (4)C42—C43—H43A108.0
C21—C26—C28110.0 (4)O41ii—C43—H43B108.0
C25—C26—C28128.7 (4)C42—C43—H43B108.0
O21—C27—N21124.2 (4)H43A—C43—H43B107.3
O21—C27—C21130.9 (4)C52—O51—C53ii110.1 (11)
N21—C27—C21104.9 (4)O51—C52—C53119 (3)
O22—C28—N21124.2 (4)O51—C52—H52A107.7
O22—C28—C26131.3 (4)C53—C52—H52A107.7
N21—C28—C26104.5 (4)O51—C52—H52B107.7
C6—C1—C2121.3 (4)C53—C52—H52B107.7
C6—C1—C7109.5 (4)H52A—C52—H52B107.1
C2—C1—C7129.2 (4)O51ii—C53—C52105 (3)
C3—C2—C1116.7 (4)O51ii—C53—H53A110.7
C3—C2—H2121.6C52—C53—H53A110.7
C1—C2—H2121.6O51ii—C53—H53B110.7
C4—C3—C2122.2 (4)C52—C53—H53B110.7
C4—C3—H3118.9H53A—C53—H53B108.8
S1i—S1—N1—C792.2 (4)C26—C21—C27—O21179.7 (6)
S11—S21—N21—C2793.1 (4)C22—C21—C27—N21179.7 (5)
S21—S11—N11—C1789.1 (4)C26—C21—C27—N210.6 (6)
N1i—S1i—S1—N191.52 (18)C27—N21—C28—O22177.2 (5)
N11—S11—S21—N2195.17 (19)S21—N21—C28—O225.9 (8)
S21—S11—N11—C1891.4 (4)C27—N21—C28—C262.1 (5)
C16—C11—C12—C130.7 (7)S21—N21—C28—C26174.8 (3)
C17—C11—C12—C13179.7 (5)C21—C26—C28—O22176.7 (6)
C11—C12—C13—C141.4 (7)C25—C26—C28—O222.5 (10)
C12—C13—C14—C151.7 (8)C21—C26—C28—N212.5 (6)
C13—C14—C15—C161.0 (8)C25—C26—C28—N21178.3 (5)
C12—C11—C16—C150.1 (8)S1i—S1—N1—C890.3 (4)
C17—C11—C16—C15179.8 (5)C6—C1—C2—C31.8 (8)
C12—C11—C16—C18178.9 (5)C7—C1—C2—C3178.1 (5)
C17—C11—C16—C181.4 (5)C1—C2—C3—C40.6 (8)
C14—C15—C16—C110.2 (7)C2—C3—C4—C50.3 (8)
C14—C15—C16—C18178.8 (5)C3—C4—C5—C60.0 (8)
C18—N11—C17—O11179.7 (5)C4—C5—C6—C11.2 (8)
S11—N11—C17—O110.8 (8)C4—C5—C6—C8178.9 (5)
C18—N11—C17—C110.1 (6)C2—C1—C6—C52.2 (8)
S11—N11—C17—C11179.4 (3)C7—C1—C6—C5177.8 (5)
C16—C11—C17—O11179.4 (5)C2—C1—C6—C8179.7 (5)
C12—C11—C17—O110.2 (9)C7—C1—C6—C80.3 (6)
C16—C11—C17—N110.8 (5)C8—N1—C7—O1178.1 (5)
C12—C11—C17—N11179.5 (5)S1—N1—C7—O14.1 (7)
C17—N11—C18—O12177.6 (5)C8—N1—C7—C11.8 (5)
S11—N11—C18—O122.9 (8)S1—N1—C7—C1176.0 (3)
C17—N11—C18—C160.9 (6)C6—C1—C7—O1178.6 (5)
S11—N11—C18—C16178.6 (3)C2—C1—C7—O11.4 (10)
C11—C16—C18—O12177.0 (6)C6—C1—C7—N11.3 (6)
C15—C16—C18—O121.7 (10)C2—C1—C7—N1178.8 (5)
C11—C16—C18—N111.4 (5)C7—N1—C8—O2179.2 (5)
C15—C16—C18—N11179.9 (5)S1—N1—C8—O23.0 (7)
S11—S21—N21—C2890.4 (4)C7—N1—C8—C61.6 (5)
C26—C21—C22—C231.2 (7)S1—N1—C8—C6176.2 (3)
C27—C21—C22—C23178.4 (5)C5—C6—C8—O22.2 (10)
C21—C22—C23—C241.3 (8)C1—C6—C8—O2179.9 (6)
C22—C23—C24—C251.1 (8)C5—C6—C8—N1178.7 (5)
C23—C24—C25—C260.7 (8)C1—C6—C8—N10.8 (6)
C22—C21—C26—C250.9 (8)C36—O31—C32—C3362.1 (18)
C27—C21—C26—C25178.8 (5)O31—C32—C33—O3462.6 (18)
C22—C21—C26—C28178.4 (5)C32—C33—O34—C3559.0 (14)
C27—C21—C26—C282.0 (6)C33—O34—C35—C3658.6 (17)
C24—C25—C26—C210.6 (8)C32—O31—C36—C3560.8 (14)
C24—C25—C26—C28178.5 (5)O34—C35—C36—O3160.9 (17)
C28—N21—C27—O21178.7 (5)C43ii—O41—C42—C4353 (2)
S21—N21—C27—O214.4 (8)O41—C42—C43—O41ii57.6 (18)
C28—N21—C27—C211.0 (5)C53ii—O51—C52—C5359 (3)
S21—N21—C27—C21175.9 (3)O51—C52—C53—O51ii57 (2)
C22—C21—C27—O210.0 (10)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O11iii0.952.453.306 (6)151
C4—H4···O22iv0.952.533.268 (6)134
C23—H23···O1v0.952.553.257 (6)131
Symmetry codes: (iii) x, y+1, z1/2; (iv) x, y, z1/2; (v) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula3C16H8N2O4S2·1.8C4H8O2
Mr1227.68
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)20.7900 (11), 16.052 (1), 16.7780 (9)
β (°) 105.604 (4)
V3)5392.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.34 × 0.12 × 0.10
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
Tmin, Tmax0.884, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
20736, 6116, 3050
Rint0.127
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.183, 1.02
No. of reflections6116
No. of parameters425
No. of restraints12
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0197P)2 + 21.0287P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.42, 0.33

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2002), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) top
S1—N11.683 (4)S1—S1i2.034 (3)
S11—N111.685 (3)S11—S212.033 (2)
S21—N211.681 (4)
S1—N1—C7124.1 (3)S11—N11—C17124.5 (3)
S1—N1—C8124.5 (3)S11—N11—C18123.1 (3)
C7—N1—C8111.4 (3)C17—N11—C18112.3 (3)
N1—S1—S1i105.80 (16)S21—N21—C27125.4 (3)
N11—S11—S21105.41 (16)S21—N21—C28122.7 (3)
S11—S21—N21105.58 (17)C27—N21—C28111.9 (3)
S1i—S1—N1—C792.2 (4)N1i—S1i—S1—N191.52 (18)
S11—S21—N21—C2793.1 (4)N11—S11—S21—N2195.17 (19)
S21—S11—N11—C1789.1 (4)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O11ii0.952.453.306 (6)151
C4—H4···O22iii0.952.533.268 (6)134
C23—H23···O1iv0.952.553.257 (6)131
Symmetry codes: (ii) x, y+1, z1/2; (iii) x, y, z1/2; (iv) x, y+1, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds