Download citation
Download citation
link to html
The title mol­ecule, C26H30O3, shows a novel chemical rearrangement of the substituents at position 17, i.e. an [alpha]-­orientation of the hydroxy group and a [beta]-orientation of the bulky benzyl moiety. The packing arrangement consists of coils formed by O2...O3 hydrogen bonds along the c axis. The compound shows complete loss of oestrogenic activity, and neither does it exhibit an antagonistic effect.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101020807/sk1521sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101020807/sk1521Isup2.hkl
Contains datablock I

CCDC reference: 183011

Comment top

In our earlier reports (Miljković et al., 1973, 1978; Miljković & Petrović, 1977; Miljković & Gaši, 1981), we established that D-ring fragmentation occurs in selected 16-oximino-17β-hydroxy steroid derivatives, under the conditions of the Beckmann reaction, affording the corresponding 16,17-seco-16-cyano-17-oxo-derivatives in reasonable yields. While continuing the study of the Beckmann fragmentation reaction, we have now unexpectedly discovered a novel rearrangement reaction.

By the action of acidic aqueous TiCl3 (a reagent which caused fragmentation in all earlier cases) upon 16-oximino-17α-benzyl-17β-hydroxy derivatives in the androstane and estrane series, 16-oxo-17β-benzyl-17α-hydroxy derivatives with the inverse configuration at C17 were obtained (Miljković et al., 1997). Thus, acidic aqueous TiCl3 mainly caused the hydrolysis of the 16-oximino group to the corresponding 16-keto group, with simultaneous rearrangement of the benzyl substituent from the 17α to the 17β position. The same rearrangement reaction was observed in the case of α-oxyimino alcohol, (I) (Stanković et al., 1996), which afforded compound (II) as the main reaction product under analogous reaction conditions. The intended and expected fragmentation product, (III), was isolated only as a minor product in 10% yield. \sch

The crude structure of (II) was deduced on the basis of spectroscopic evidence. Subsequently, X-ray diffraction analysis revealed the detailed structure, indicating a novel chemical rearrangement, described recently by Miljković et al. (1997), i.e. the migration of the benzyl substituent from the 17α-position in (I) to the 17β-position in (II).

Fig. 1 shows a perspective view of the molecule of (II). Since the starting materials were synthesized from the natural oestrone, the absolute stereochemistry of which is known (Fieser & Fieser, 1967), the X-ray structure of (II) is described for the appropriate enantiomer. The puckering (Cremer & Pople, 1975) and asymmetry parameters (Duax et al., 1976) reveal the usual ring conformations: ring B is a 7α,8β half-chair, ring C has a chair conformation, and ring D exhibits a transitional form between a 13β envelope and a 13β,14α half-chair conformation.

The C1—C10···C13—C18 non-bonded torsion angle of 88.1 (3)° shows that there is no significant twist along the principal axis of the molecule. The conformation of the steroidal skeleton of (II) compared with its precursor, (I), shows no significant difference (Fig. 2). Even so, the orientations of the two substituents at C17 are reversed. Biological screening demonstrated that (II) showed a complete loss of oestrogenic activity, which was considerable in (I) (a dose of 25 mg kg-1 in experimental animals showed 74.98% of agonistic activity), as well as an absence of antagonistic effect. The unexpected α-orientation of the bulky substituent is thought to be the main reason for this significant change of biological activity (Duax et al., 1976).

In the crystal packing of (II), molecules related by the screw axis are linked by O2···O3 hydrogen bonds (Table 2), forming coils along the c axis.

Experimental top

The action of acidic aqueous TiCl3 upon 16-oximino-17α-benzyl-17β-hydroxy-16-hydroxyimino-3-methoxyestra-1,3,5(10)- triene, (I), at room temperature afforded the title compound, (II), as the main reaction product (78% yield; m.p. 385–387 K from methanol). The expected fragmentation product, (III), was isolated only as a minor product in 10% yield.

Refinement top

H atoms were generated and refined as riding groups, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(carrier atom) or 1.5Ueq(methyl C).

Computing details top

Data collection: PW1100 Software (Philips, 19??); cell refinement: PW1100 Software; data reduction: PW1100 Software; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: CSU (Vicković, 1988).

Figures top
[Figure 1] Fig. 1. A perspective view of the molecule of (II) with the atomic labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitary radii.
[Figure 2] Fig. 2. The superimposed fit for the molecules of (I) (dashed lines) and (II) (solid lines).
3-Methoxy-17α-hydroxy-17β-benzylestra-1,3,5(10)-trien-16-one top
Crystal data top
C26H30O3Dx = 1.240 Mg m3
Mr = 390.50Melting point = 385–387 K
Orthorhombic, P212121Cu Kα radiation, λ = 1.54180 Å
Hall symbol: P 2ac 2abCell parameters from 20 reflections
a = 36.426 (9) Åθ = 6.6–12.8°
b = 9.141 (1) ŵ = 0.63 mm1
c = 6.281 (2) ÅT = 293 K
V = 2091.4 (9) Å3Prism, colourless
Z = 40.47 × 0.07 × 0.03 mm
F(000) = 840
Data collection top
Philips PW1100
diffractometer
Rint = 0.066
Radiation source: fine-focus sealed tubeθmax = 70.0°, θmin = 4.9°
Graphite monochromatorh = 4344
ω/2θ scansk = 011
3923 measured reflectionsl = 07
2222 independent reflections3 standard reflections every 120 min
1827 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0461P)2 + 0.2999]
where P = (Fo2 + 2Fc2)/3
2222 reflections(Δ/σ)max < 0.001
263 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C26H30O3V = 2091.4 (9) Å3
Mr = 390.50Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 36.426 (9) ŵ = 0.63 mm1
b = 9.141 (1) ÅT = 293 K
c = 6.281 (2) Å0.47 × 0.07 × 0.03 mm
Data collection top
Philips PW1100
diffractometer
Rint = 0.066
3923 measured reflections3 standard reflections every 120 min
2222 independent reflections intensity decay: none
1827 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.02Δρmax = 0.19 e Å3
2222 reflectionsΔρmin = 0.19 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.58133 (7)0.4418 (3)0.5603 (5)0.0639 (8)
O20.30069 (6)0.5030 (3)0.5287 (4)0.0432 (6)
HO20.27820.50230.53080.065*
C10.48718 (9)0.5473 (4)0.7025 (6)0.0498 (9)
H10.47460.60480.80060.060*
C20.52519 (9)0.5416 (4)0.7138 (6)0.0509 (9)
H20.53790.59580.81530.061*
C30.54382 (9)0.4539 (4)0.5709 (6)0.0474 (8)
C40.52460 (9)0.3744 (4)0.4213 (6)0.0471 (8)
H40.53740.31530.32630.056*
C50.48654 (9)0.3804 (4)0.4091 (6)0.0436 (8)
C60.46726 (9)0.2895 (4)0.2410 (6)0.0546 (10)
H610.47720.19120.24360.066*
H620.47250.33100.10200.066*
C70.42590 (9)0.2811 (4)0.2702 (7)0.0498 (9)
H710.42010.21430.38540.060*
H720.41460.24410.14110.060*
C80.41064 (8)0.4326 (3)0.3208 (5)0.0376 (7)
H80.41970.50120.21310.045*
C90.42534 (9)0.4814 (4)0.5396 (5)0.0380 (7)
H90.41550.41290.64530.046*
C100.46702 (9)0.4704 (4)0.5501 (5)0.0401 (7)
C110.41115 (9)0.6352 (4)0.6001 (6)0.0435 (8)
H1110.41860.65730.74480.052*
H1120.42240.70700.50700.052*
C120.36936 (9)0.6487 (4)0.5834 (5)0.0404 (7)
H1210.35800.58880.69270.048*
H1220.36230.74950.60870.048*
C130.35526 (8)0.6011 (3)0.3661 (5)0.0320 (6)
C140.36903 (8)0.4423 (3)0.3255 (5)0.0349 (6)
H130.36080.38340.44690.042*
C150.34640 (9)0.3926 (4)0.1328 (5)0.0436 (8)
H1510.35830.41990.00070.052*
H1520.34280.28750.13450.052*
C160.31025 (8)0.4725 (4)0.1589 (5)0.0387 (7)
C170.31324 (8)0.5835 (3)0.3442 (5)0.0333 (6)
C180.36850 (9)0.7067 (4)0.1916 (6)0.0437 (8)
H1810.39460.71880.20220.066*
H1820.35670.79990.20950.066*
H1830.36240.66750.05430.066*
C190.28993 (8)0.7185 (3)0.3048 (5)0.0378 (7)
H1910.26440.68830.30220.045*
H1920.29580.75540.16410.045*
C200.29345 (9)0.8438 (3)0.4608 (5)0.0362 (7)
C210.30859 (9)0.9771 (4)0.3986 (6)0.0433 (8)
H210.31790.98710.26150.052*
C220.31012 (10)1.0955 (4)0.5369 (7)0.0537 (9)
H220.32041.18330.49200.064*
C230.29634 (9)1.0831 (4)0.7417 (7)0.0514 (9)
H230.29711.16220.83460.062*
C240.28144 (9)0.9514 (4)0.8054 (6)0.0458 (8)
H240.27220.94200.94280.055*
C250.28001 (9)0.8331 (4)0.6687 (6)0.0403 (7)
H250.27000.74530.71560.048*
C260.60245 (10)0.5170 (5)0.7132 (8)0.0676 (12)
H2610.62800.49840.68860.101*
H2620.59590.48380.85310.101*
H2630.59780.62010.70220.101*
O30.28249 (6)0.4515 (3)0.0552 (5)0.0579 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0421 (12)0.0639 (16)0.086 (2)0.0100 (12)0.0096 (15)0.0129 (18)
O20.0432 (12)0.0461 (13)0.0403 (12)0.0033 (11)0.0120 (11)0.0142 (12)
C10.0457 (17)0.061 (2)0.0424 (17)0.0036 (16)0.0030 (16)0.0186 (19)
C20.0495 (19)0.054 (2)0.0489 (19)0.0033 (16)0.0065 (17)0.0102 (19)
C30.0414 (16)0.0443 (17)0.056 (2)0.0067 (15)0.0051 (17)0.0001 (19)
C40.0502 (19)0.0439 (18)0.0470 (19)0.0124 (15)0.0003 (16)0.0100 (18)
C50.0479 (17)0.0367 (15)0.0461 (18)0.0050 (14)0.0008 (16)0.0051 (16)
C60.053 (2)0.059 (2)0.052 (2)0.0113 (18)0.0046 (18)0.022 (2)
C70.0498 (19)0.0421 (17)0.058 (2)0.0047 (15)0.0077 (18)0.0174 (19)
C80.0435 (16)0.0355 (15)0.0340 (15)0.0030 (13)0.0011 (14)0.0088 (15)
C90.0447 (17)0.0398 (16)0.0295 (14)0.0022 (13)0.0025 (14)0.0052 (15)
C100.0401 (15)0.0442 (16)0.0358 (15)0.0017 (14)0.0005 (14)0.0025 (16)
C110.0438 (17)0.0490 (19)0.0378 (17)0.0027 (14)0.0013 (15)0.0194 (17)
C120.0465 (17)0.0456 (17)0.0292 (15)0.0003 (15)0.0005 (14)0.0079 (15)
C130.0388 (15)0.0327 (14)0.0246 (13)0.0064 (12)0.0036 (13)0.0037 (13)
C140.0435 (15)0.0333 (14)0.0280 (14)0.0025 (13)0.0010 (14)0.0002 (14)
C150.0491 (17)0.0423 (17)0.0394 (17)0.0027 (15)0.0044 (16)0.0120 (16)
C160.0387 (16)0.0388 (16)0.0388 (16)0.0077 (14)0.0022 (14)0.0022 (16)
C170.0396 (15)0.0322 (14)0.0281 (14)0.0038 (12)0.0035 (13)0.0025 (14)
C180.0455 (17)0.0406 (17)0.0449 (18)0.0042 (15)0.0144 (17)0.0064 (17)
C190.0375 (15)0.0395 (15)0.0363 (16)0.0023 (13)0.0022 (14)0.0003 (15)
C200.0387 (15)0.0352 (14)0.0346 (16)0.0053 (13)0.0003 (14)0.0035 (14)
C210.0428 (17)0.0430 (17)0.0441 (18)0.0053 (14)0.0013 (15)0.0063 (17)
C220.053 (2)0.0410 (18)0.067 (2)0.0052 (16)0.004 (2)0.002 (2)
C230.0448 (18)0.0483 (19)0.061 (2)0.0093 (16)0.0105 (18)0.0138 (19)
C240.0434 (17)0.0533 (19)0.0406 (17)0.0127 (16)0.0040 (16)0.0029 (18)
C250.0430 (16)0.0382 (15)0.0398 (17)0.0047 (14)0.0028 (15)0.0027 (16)
C260.050 (2)0.065 (2)0.088 (3)0.0043 (19)0.017 (2)0.000 (3)
O30.0452 (13)0.0674 (16)0.0611 (16)0.0090 (12)0.0136 (13)0.0174 (16)
Geometric parameters (Å, º) top
O1—C31.372 (4)C13—C181.538 (4)
O1—C261.410 (5)C13—C171.545 (4)
O2—C171.446 (4)C13—C141.557 (4)
O2—HO20.8200C14—C151.533 (4)
C1—C21.387 (5)C14—H130.9800
C1—C101.396 (5)C15—C161.515 (4)
C1—H10.9300C15—H1510.9700
C2—C31.382 (5)C15—H1520.9700
C2—H20.9300C16—O31.218 (4)
C3—C41.379 (5)C16—C171.548 (4)
C4—C51.390 (5)C17—C191.518 (4)
C4—H40.9300C18—H1810.9600
C5—C101.403 (5)C18—H1820.9600
C5—C61.516 (5)C18—H1830.9600
C6—C71.520 (5)C19—C201.513 (4)
C6—H610.9700C19—H1910.9700
C6—H620.9700C19—H1920.9700
C7—C81.526 (4)C20—C211.394 (4)
C7—H710.9700C20—C251.398 (5)
C7—H720.9700C21—C221.388 (5)
C8—C141.519 (4)C21—H210.9300
C8—C91.541 (4)C22—C231.385 (6)
C8—H80.9800C22—H220.9300
C9—C101.523 (4)C23—C241.380 (5)
C9—C111.546 (4)C23—H230.9300
C9—H90.9800C24—C251.382 (5)
C11—C121.531 (4)C24—H240.9300
C11—H1110.9700C25—H250.9300
C11—H1120.9700C26—H2610.9600
C12—C131.522 (4)C26—H2620.9600
C12—H1210.9700C26—H2630.9600
C12—H1220.9700
C3—O1—C26118.1 (3)C18—C13—C14111.6 (2)
C17—O2—HO2109.5C17—C13—C14102.0 (2)
C2—C1—C10122.7 (3)C8—C14—C15120.3 (3)
C2—C1—H1118.6C8—C14—C13112.3 (2)
C10—C1—H1118.6C15—C14—C13103.4 (2)
C3—C2—C1118.6 (3)C8—C14—H13106.7
C3—C2—H2120.7C15—C14—H13106.7
C1—C2—H2120.7C13—C14—H13106.7
O1—C3—C4115.5 (3)C16—C15—C14103.9 (3)
O1—C3—C2124.6 (3)C16—C15—H151111.0
C4—C3—C2119.9 (3)C14—C15—H151111.0
C3—C4—C5121.5 (3)C16—C15—H152111.0
C3—C4—H4119.2C14—C15—H152111.0
C5—C4—H4119.2H151—C15—H152109.0
C4—C5—C10119.6 (3)O3—C16—C15126.0 (3)
C4—C5—C6118.6 (3)O3—C16—C17124.3 (3)
C10—C5—C6121.8 (3)C15—C16—C17109.6 (3)
C5—C6—C7113.8 (3)O2—C17—C19111.5 (3)
C5—C6—H61108.8O2—C17—C13107.1 (2)
C7—C6—H61108.8C19—C17—C13119.0 (2)
C5—C6—H62108.8O2—C17—C16104.3 (2)
C7—C6—H62108.8C19—C17—C16111.7 (3)
H61—C6—H62107.7C13—C17—C16101.8 (2)
C6—C7—C8109.9 (3)C13—C18—H181109.5
C6—C7—H71109.7C13—C18—H182109.5
C8—C7—H71109.7H181—C18—H182109.5
C6—C7—H72109.7C13—C18—H183109.5
C8—C7—H72109.7H181—C18—H183109.5
H71—C7—H72108.2H182—C18—H183109.5
C14—C8—C7114.9 (3)C17—C19—C20117.5 (3)
C14—C8—C9108.2 (3)C17—C19—H191107.9
C7—C8—C9108.8 (3)C20—C19—H191107.9
C14—C8—H8108.3C17—C19—H192107.9
C7—C8—H8108.3C20—C19—H192107.9
C9—C8—H8108.3H191—C19—H192107.2
C10—C9—C8111.5 (3)C21—C20—C25117.5 (3)
C10—C9—C11112.5 (3)C21—C20—C19121.0 (3)
C8—C9—C11111.5 (3)C25—C20—C19121.5 (3)
C10—C9—H9107.0C20—C21—C22121.5 (3)
C8—C9—H9107.0C20—C21—H21119.3
C11—C9—H9107.0C22—C21—H21119.3
C1—C10—C5117.5 (3)C21—C22—C23120.2 (4)
C1—C10—C9121.4 (3)C21—C22—H22119.9
C5—C10—C9121.1 (3)C23—C22—H22119.9
C12—C11—C9112.9 (3)C24—C23—C22118.9 (4)
C12—C11—H111109.0C24—C23—H23120.6
C9—C11—H111109.0C22—C23—H23120.6
C12—C11—H112109.0C23—C24—C25121.1 (3)
C9—C11—H112109.0C23—C24—H24119.4
H111—C11—H112107.8C25—C24—H24119.4
C13—C12—C11111.9 (3)C24—C25—C20120.9 (3)
C13—C12—H121109.2C24—C25—H25119.6
C11—C12—H121109.2C20—C25—H25119.6
C13—C12—H122109.2O1—C26—H261109.5
C11—C12—H122109.2O1—C26—H262109.5
H121—C12—H122107.9H261—C26—H262109.5
C12—C13—C18110.7 (2)O1—C26—H263109.5
C12—C13—C17116.3 (3)H261—C26—H263109.5
C18—C13—C17108.2 (3)H262—C26—H263109.5
C12—C13—C14107.8 (3)
C10—C1—C2—C31.3 (6)C12—C13—C14—C861.7 (3)
C26—O1—C3—C4178.1 (3)C18—C13—C14—C860.1 (4)
C26—O1—C3—C24.0 (6)C17—C13—C14—C8175.4 (3)
C1—C2—C3—O1177.9 (4)C12—C13—C14—C15167.2 (2)
C1—C2—C3—C40.0 (6)C18—C13—C14—C1571.1 (3)
O1—C3—C4—C5177.8 (3)C17—C13—C14—C1544.2 (3)
C2—C3—C4—C50.3 (6)C8—C14—C15—C16158.0 (3)
C3—C4—C5—C100.7 (6)C13—C14—C15—C1631.7 (3)
C3—C4—C5—C6179.8 (3)C14—C15—C16—O3170.5 (3)
C4—C5—C6—C7168.6 (3)C14—C15—C16—C177.8 (4)
C10—C5—C6—C712.0 (5)C12—C13—C17—O245.8 (3)
C5—C6—C7—C844.8 (5)C18—C13—C17—O2171.1 (2)
C6—C7—C8—C14172.5 (3)C14—C13—C17—O271.1 (3)
C6—C7—C8—C966.1 (4)C12—C13—C17—C1981.8 (4)
C14—C8—C9—C10178.3 (3)C18—C13—C17—C1943.5 (4)
C7—C8—C9—C1052.9 (4)C14—C13—C17—C19161.3 (3)
C14—C8—C9—C1155.1 (3)C12—C13—C17—C16155.0 (3)
C7—C8—C9—C11179.5 (3)C18—C13—C17—C1679.7 (3)
C2—C1—C10—C52.3 (6)C14—C13—C17—C1638.0 (3)
C2—C1—C10—C9178.8 (4)O3—C16—C17—O286.2 (4)
C4—C5—C10—C11.9 (5)C15—C16—C17—O292.1 (3)
C6—C5—C10—C1178.6 (3)O3—C16—C17—C1934.5 (4)
C4—C5—C10—C9179.2 (3)C15—C16—C17—C19147.3 (3)
C6—C5—C10—C90.3 (5)O3—C16—C17—C13162.5 (3)
C8—C9—C10—C1160.6 (3)C15—C16—C17—C1319.3 (3)
C11—C9—C10—C134.5 (5)O2—C17—C19—C2070.4 (3)
C8—C9—C10—C520.6 (4)C13—C17—C19—C2055.1 (4)
C11—C9—C10—C5146.6 (3)C16—C17—C19—C20173.3 (3)
C10—C9—C11—C12178.2 (3)C17—C19—C20—C21113.0 (3)
C8—C9—C11—C1252.2 (4)C17—C19—C20—C2570.3 (4)
C9—C11—C12—C1353.1 (4)C25—C20—C21—C220.4 (5)
C11—C12—C13—C1866.6 (4)C19—C20—C21—C22176.4 (3)
C11—C12—C13—C17169.4 (3)C20—C21—C22—C230.2 (5)
C11—C12—C13—C1455.7 (3)C21—C22—C23—C240.5 (5)
C7—C8—C14—C1555.0 (4)C22—C23—C24—C250.2 (5)
C9—C8—C14—C15176.7 (3)C23—C24—C25—C200.4 (5)
C7—C8—C14—C13177.0 (3)C21—C20—C25—C240.7 (5)
C9—C8—C14—C1361.3 (3)C19—C20—C25—C24176.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—HO2···O3i0.822.253.063 (4)168
Symmetry code: (i) x+1/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC26H30O3
Mr390.50
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)36.426 (9), 9.141 (1), 6.281 (2)
V3)2091.4 (9)
Z4
Radiation typeCu Kα
µ (mm1)0.63
Crystal size (mm)0.47 × 0.07 × 0.03
Data collection
DiffractometerPhilips PW1100
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3923, 2222, 1827
Rint0.066
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.125, 1.02
No. of reflections2222
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.19

Computer programs: PW1100 Software (Philips, 19??), PW1100 Software, SHELXS86 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), CSU (Vicković, 1988).

Selected bond lengths (Å) top
O1—C31.372 (4)O2—C171.446 (4)
O1—C261.410 (5)C16—O31.218 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—HO2···O3i0.822.2523.063 (4)168
Symmetry code: (i) x+1/2, y+1, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds