Download citation
Download citation
link to html
In the title compound, C20H20FNO5S, the pyrrolidine ring adopts an envelope conformation. The fluoro­phenyl and thio­phene rings are individually planar. The molecular and crystal structures are stabilized by intra- and intermolecular C-H...O interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010101681X/sk1510sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010101681X/sk1510Isup2.hkl
Contains datablock I

CCDC reference: 179278

Comment top

N-Phenyl-γ-lactams have been observed to exhibit Gram-positive and Gram-negative antibacterial activities (Ray et al., 1995). Though the bioactivity of the γ-lactam derivatives is controlled by the substitutents attached to the γ-lactam ring which correspond to the ability of several proteins to inhibit the crosslinking of the bacterial wall (Baldwin et al., 1984), the introduction of a thiophene ring was obtained to enhance the bioactivities of the γ-lactam systems to be comparable with those of ampicilines (Kar et al., 1998). The title compound, (I), one of the thieno-γ-lactam derivatives having fluoro and gem-diethyl ester substituents, was synthesized in order to obtain a novel γ-lactam analogue with potential as a biological surrogate. The crystal structure of (I) was undertaken in order to elucidate its molecular conformation.

The bond lengths and angles in (I) show normal values and agree with those of related structures studied previously (Kandasamy et al., 1995; Sivakumar et al., 1995; Ray et al., 1997). The pyrrolidine ring adopts an envelope conformation, with atom C9 deviating by -0.196 (3) Å from the C10/N1/C7/C8 plane and with puckering parameters (Cremer & Pople, 1975) Q2 = 0.319 (3) Å and ϕ2 = 114.9 (5)°. The fluorophenyl and thiophene rings are planar to within ±0.007 (4) and ±0.001 (4) Å, respectively, with a dihedral angle of 67.1 (2)° between them. These fluorophenyl and thiophene rings form dihedral angles of 81.7 (2) and 46.8 (2)° with respect to the pyrrolidine ring, corresponding to an equatorial and a bisectional configuration, respectively.

One of the two ethyl carboxylate groups shows disorder in the C15 and C16 atoms, and both the major and minor configurations are in a crisscross pattern and deviate from the C10/C14/O4/O5 plane by 0.46 (2) and 0.73 (3) Å for C15A and C16A, and by -0.05 (2) and 1.31 (2) Å for C15B and C16B. In the other ethyl carboxylate group, atom O3 deviates by -0.118 (4) Å from the C10/C11/O2/C12/C13 plane, which makes an angle of 50.3 (3) with the pyrrolidine-ring plane.

The molecular structure of (I) is maintained by an intramolecular interaction between C9 and O2 [2.718 (3) Å]. In the crystal, the molecules form four C—H···O interactions (Table 2) which, together with van der Waals interactions, stabilize the crystal structure.

Related literature top

For related literature, see: Baldwin et al. (1984); Cremer & Pople (1975); Kandasamy et al. (1995); Kar et al. (1998); Ray et al. (1995, 1997); Sivakumar et al. (1995).

Experimental top

The title compound was synthesized from p-fluoroaniline (Aldrich) through the formation of arylaminomalonate (bromoethylmalonate) and condensation with 3-(2-thienyl)acrloyl chloride in the present of triethylamine in an overall yield of 80%.

Refinement top

After checking their presence in the difference map, all H atoms were fixed geometrically and allowed to ride on their attached parent atoms (C—H = 0.93–0.98 Å). Due to the large fraction of weak data at higher angles, the 2θ maximum was limited to 50°.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the b axis. Disordered components are not shown as they are not involved in any hydrogen bonding or weak interactions.
Diethyl 1-(p-fluorophenyl)-5-oxo-3-(2-thienyl)pyrrolidine-2,2-dicarboxylate top
Crystal data top
C20H20FNO5SZ = 2
Mr = 405.43F(000) = 424
Triclinic, P1Dx = 1.369 Mg m3
a = 9.6560 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1195 (1) ÅCell parameters from 3864 reflections
c = 12.3126 (2) Åθ = 1.8–28.6°
α = 110.704 (1)°µ = 0.21 mm1
β = 92.659 (1)°T = 293 K
γ = 115.856 (1)°Slab, colourless
V = 983.58 (3) Å30.42 × 0.32 × 0.16 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
3391 independent reflections
Radiation source: fine-focus sealed tube2358 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 8.33 pixels mm-1θmax = 25.0°, θmin = 1.8°
ω scansh = 911
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 1112
Tmin = 0.919, Tmax = 0.968l = 1114
5604 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.096P)2]
where P = (Fo2 + 2Fc2)/3
3391 reflections(Δ/σ)max < 0.001
273 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C20H20FNO5Sγ = 115.856 (1)°
Mr = 405.43V = 983.58 (3) Å3
Triclinic, P1Z = 2
a = 9.6560 (2) ÅMo Kα radiation
b = 10.1195 (1) ŵ = 0.21 mm1
c = 12.3126 (2) ÅT = 293 K
α = 110.704 (1)°0.42 × 0.32 × 0.16 mm
β = 92.659 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
3391 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
2358 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.968Rint = 0.045
5604 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 0.95Δρmax = 0.35 e Å3
3391 reflectionsΔρmin = 0.44 e Å3
273 parameters
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 10 s covered 0.3° in ω. The crystal-to-detector distance was 4 cm and the detector swing angle was -35°. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the intensity of duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.09020 (9)0.42654 (8)0.36062 (7)0.0538 (3)
F10.8995 (3)0.6360 (3)0.0284 (2)0.1039 (8)
O10.4219 (2)0.1151 (2)0.49515 (18)0.0609 (6)
O20.2608 (2)0.1873 (2)0.20841 (17)0.0499 (5)
O30.3428 (3)0.0689 (2)0.08644 (18)0.0656 (6)
O40.0970 (3)0.1343 (3)0.2981 (2)0.0696 (7)
O50.0139 (2)0.0271 (2)0.2020 (2)0.0623 (6)
N10.3565 (2)0.0818 (2)0.32687 (18)0.0385 (5)
C10.4900 (3)0.3678 (3)0.1864 (3)0.0541 (7)
H1A0.39510.37000.19650.065*
C20.6275 (4)0.5069 (4)0.1116 (3)0.0648 (9)
H2A0.62570.60250.06980.078*
C30.7642 (4)0.5000 (4)0.1010 (3)0.0640 (9)
C40.7720 (4)0.3616 (4)0.1586 (3)0.0644 (9)
H4A0.86760.36070.14880.077*
C50.6352 (3)0.2232 (4)0.2317 (3)0.0518 (7)
H5A0.63760.12750.27180.062*
C60.4948 (3)0.2274 (3)0.2450 (2)0.0394 (6)
C70.3332 (3)0.0375 (3)0.4479 (2)0.0440 (6)
C80.1802 (3)0.1185 (3)0.5078 (2)0.0470 (7)
H8A0.09660.10000.53380.056*
H8B0.19240.19380.57650.056*
C90.1432 (3)0.1832 (3)0.4114 (2)0.0357 (6)
H9A0.20190.24190.41280.043*
C100.2229 (3)0.0244 (3)0.2924 (2)0.0335 (5)
C110.2825 (3)0.0410 (3)0.1830 (2)0.0389 (6)
C120.3036 (4)0.2198 (4)0.1086 (3)0.0647 (9)
H12A0.23720.20930.05290.078*
H12B0.41330.14330.06640.078*
C130.2807 (5)0.3832 (5)0.1572 (4)0.0902 (13)
H13A0.31080.40630.09360.135*
H13B0.17120.45820.19670.135*
H13C0.34490.39320.21360.135*
C140.1066 (3)0.0411 (3)0.2632 (2)0.0427 (6)
C15A0.1305 (14)0.0007 (14)0.2144 (19)0.054 (3)0.44 (3)
H15A0.17620.03150.29700.065*0.44 (3)
H15B0.10470.11000.16650.065*0.44 (3)
C16A0.236 (2)0.114 (2)0.166 (3)0.098 (6)0.44 (3)
H16A0.33450.11240.16790.147*0.44 (3)
H16B0.25510.22140.21360.147*0.44 (3)
H16C0.18530.08110.08490.147*0.44 (3)
C15B0.1098 (13)0.0059 (12)0.1538 (18)0.067 (3)0.56 (3)
H15C0.10190.01470.07250.081*0.56 (3)
H15D0.09580.10730.15280.081*0.56 (3)
C16B0.2680 (12)0.1277 (14)0.2299 (15)0.074 (3)0.56 (3)
H16D0.34920.10860.19700.112*0.56 (3)
H16E0.27710.13260.30940.112*0.56 (3)
H16F0.28000.22810.23250.112*0.56 (3)
C170.0285 (3)0.2981 (3)0.4312 (2)0.0372 (6)
C180.1550 (3)0.3283 (4)0.5096 (3)0.0515 (7)
H18A0.14720.27190.55660.062*
C190.2994 (4)0.4552 (4)0.5111 (3)0.0677 (9)
H19A0.39640.49060.55940.081*
C200.2827 (4)0.5190 (4)0.4363 (3)0.0632 (9)
H20B0.36560.60320.42690.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0530 (5)0.0419 (4)0.0652 (6)0.0149 (4)0.0177 (4)0.0308 (4)
F10.0750 (15)0.0696 (13)0.0794 (16)0.0152 (11)0.0156 (11)0.0075 (11)
O10.0632 (14)0.0548 (12)0.0485 (13)0.0072 (10)0.0128 (10)0.0318 (10)
O20.0661 (13)0.0474 (11)0.0400 (11)0.0287 (10)0.0007 (9)0.0220 (9)
O30.0940 (17)0.0498 (12)0.0332 (12)0.0239 (12)0.0073 (11)0.0131 (10)
O40.0700 (15)0.0665 (14)0.0853 (18)0.0407 (13)0.0032 (12)0.0374 (13)
O50.0516 (13)0.0469 (12)0.0833 (17)0.0234 (10)0.0317 (11)0.0202 (11)
N10.0390 (12)0.0329 (11)0.0310 (12)0.0063 (9)0.0032 (9)0.0149 (9)
C10.0515 (18)0.0394 (16)0.060 (2)0.0155 (14)0.0101 (14)0.0180 (14)
C20.073 (2)0.0368 (16)0.056 (2)0.0106 (16)0.0109 (16)0.0094 (14)
C30.054 (2)0.0513 (19)0.0424 (18)0.0051 (16)0.0002 (14)0.0136 (15)
C40.0419 (18)0.065 (2)0.064 (2)0.0104 (16)0.0066 (15)0.0246 (18)
C50.0432 (17)0.0485 (16)0.0543 (19)0.0143 (14)0.0097 (13)0.0220 (14)
C60.0395 (15)0.0342 (13)0.0356 (14)0.0087 (11)0.0056 (11)0.0172 (11)
C70.0443 (15)0.0389 (14)0.0407 (16)0.0100 (12)0.0062 (12)0.0214 (12)
C80.0483 (16)0.0467 (15)0.0309 (15)0.0094 (13)0.0014 (12)0.0187 (12)
C90.0370 (14)0.0343 (13)0.0322 (14)0.0128 (11)0.0054 (10)0.0161 (11)
C100.0333 (13)0.0312 (12)0.0302 (13)0.0103 (10)0.0024 (10)0.0143 (10)
C110.0384 (14)0.0383 (14)0.0349 (15)0.0131 (12)0.0050 (11)0.0176 (12)
C120.090 (3)0.071 (2)0.0464 (19)0.045 (2)0.0019 (17)0.0341 (17)
C130.148 (4)0.089 (3)0.074 (3)0.076 (3)0.027 (2)0.050 (2)
C140.0399 (15)0.0361 (14)0.0423 (16)0.0143 (12)0.0012 (11)0.0125 (12)
C15A0.049 (5)0.053 (5)0.059 (8)0.029 (4)0.020 (6)0.016 (6)
C16A0.069 (11)0.115 (10)0.128 (15)0.045 (9)0.059 (11)0.064 (12)
C15B0.054 (5)0.068 (4)0.073 (8)0.034 (4)0.025 (6)0.015 (5)
C16B0.050 (5)0.075 (5)0.093 (8)0.031 (4)0.011 (5)0.029 (6)
C170.0404 (14)0.0312 (12)0.0326 (14)0.0129 (11)0.0065 (11)0.0114 (11)
C180.0414 (16)0.0612 (18)0.0419 (17)0.0170 (14)0.0056 (12)0.0216 (14)
C190.0378 (17)0.084 (2)0.050 (2)0.0118 (16)0.0034 (13)0.0179 (17)
C200.0488 (19)0.0494 (17)0.061 (2)0.0047 (14)0.0198 (15)0.0151 (15)
Geometric parameters (Å, º) top
S1—C201.704 (3)C9—C101.573 (3)
S1—C171.724 (2)C9—H9A0.9800
F1—C31.361 (3)C10—C111.531 (3)
O1—C71.213 (3)C10—C141.532 (4)
O2—C111.315 (3)C12—C131.453 (5)
O2—C121.465 (3)C12—H12A0.9700
O3—C111.194 (3)C12—H12B0.9700
O4—C141.201 (3)C13—H13A0.9600
O5—C141.318 (3)C13—H13B0.9600
O5—C15B1.471 (10)C13—H13C0.9600
O5—C15A1.540 (12)C15A—C16A1.49 (3)
N1—C71.372 (3)C15A—H15A0.9700
N1—C61.442 (3)C15A—H15B0.9700
N1—C101.471 (3)C16A—H16A0.9600
C1—C61.370 (4)C16A—H16B0.9600
C1—C21.390 (4)C16A—H16C0.9600
C1—H1A0.9300C15B—C16B1.49 (2)
C2—C31.354 (5)C15B—H15C0.9700
C2—H2A0.9300C15B—H15D0.9700
C3—C41.366 (5)C16B—H16D0.9600
C4—C51.379 (4)C16B—H16E0.9600
C4—H4A0.9300C16B—H16F0.9600
C5—C61.379 (4)C17—C181.369 (4)
C5—H5A0.9300C18—C191.419 (4)
C7—C81.503 (4)C18—H18A0.9300
C8—C91.533 (3)C19—C201.337 (5)
C8—H8A0.9700C19—H19A0.9300
C8—H8B0.9700C20—H20B0.9300
C9—C171.497 (3)
C20—S1—C1792.45 (14)C13—C12—H12A110.1
C11—O2—C12117.1 (2)O2—C12—H12A110.1
C14—O5—C15B127.4 (7)C13—C12—H12B110.1
C14—O5—C15A106.2 (7)O2—C12—H12B110.1
C7—N1—C6121.00 (19)H12A—C12—H12B108.4
C7—N1—C10113.42 (19)C12—C13—H13A109.5
C6—N1—C10125.37 (19)C12—C13—H13B109.5
C6—C1—C2119.7 (3)H13A—C13—H13B109.5
C6—C1—H1A120.1C12—C13—H13C109.5
C2—C1—H1A120.1H13A—C13—H13C109.5
C3—C2—C1118.5 (3)H13B—C13—H13C109.5
C3—C2—H2A120.7O4—C14—O5125.6 (3)
C1—C2—H2A120.7O4—C14—C10123.8 (3)
C2—C3—F1118.8 (3)O5—C14—C10110.4 (2)
C2—C3—C4122.8 (3)C16A—C15A—O598.9 (15)
F1—C3—C4118.4 (3)C16A—C15A—H15A112.0
C3—C4—C5118.7 (3)O5—C15A—H15A112.0
C3—C4—H4A120.7C16A—C15A—H15B112.0
C5—C4—H4A120.7O5—C15A—H15B112.0
C6—C5—C4119.7 (3)H15A—C15A—H15B109.7
C6—C5—H5A120.2C15A—C16A—H16A109.5
C4—C5—H5A120.2C15A—C16A—H16B109.5
C1—C6—C5120.6 (3)H16A—C16A—H16B109.5
C1—C6—N1121.7 (2)C15A—C16A—H16C109.5
C5—C6—N1117.6 (2)H16A—C16A—H16C109.5
O1—C7—N1124.4 (2)H16B—C16A—H16C109.5
O1—C7—C8127.5 (3)O5—C15B—C16B109.2 (11)
N1—C7—C8108.0 (2)O5—C15B—H15C109.8
C7—C8—C9104.5 (2)C16B—C15B—H15C109.8
C7—C8—H8A110.8O5—C15B—H15D109.8
C9—C8—H8A110.8C16B—C15B—H15D109.8
C7—C8—H8B110.8H15C—C15B—H15D108.3
C9—C8—H8B110.8C15B—C16B—H16D109.5
H8A—C8—H8B108.9C15B—C16B—H16E109.5
C17—C9—C8113.9 (2)H16D—C16B—H16E109.5
C17—C9—C10117.5 (2)C15B—C16B—H16F109.5
C8—C9—C10102.68 (18)H16D—C16B—H16F109.5
C17—C9—H9A107.4H16E—C16B—H16F109.5
C8—C9—H9A107.4C18—C17—C9128.1 (2)
C10—C9—H9A107.4C18—C17—S1110.2 (2)
N1—C10—C11110.58 (19)C9—C17—S1121.57 (18)
N1—C10—C14111.24 (19)C17—C18—C19112.4 (3)
C11—C10—C14108.8 (2)C17—C18—H18A123.8
N1—C10—C9101.06 (18)C19—C18—H18A123.8
C11—C10—C9115.42 (19)C20—C19—C18113.6 (3)
C14—C10—C9109.59 (19)C20—C19—H19A123.2
O3—C11—O2124.9 (2)C18—C19—H19A123.2
O3—C11—C10122.6 (2)C19—C20—S1111.4 (2)
O2—C11—C10112.5 (2)C19—C20—H20B124.3
C13—C12—O2108.0 (3)S1—C20—H20B124.3
C6—C1—C2—C31.4 (5)C12—O2—C11—O34.7 (4)
C1—C2—C3—F1179.7 (3)C12—O2—C11—C10175.9 (2)
C1—C2—C3—C41.4 (5)N1—C10—C11—O367.4 (3)
C2—C3—C4—C50.6 (5)C14—C10—C11—O355.0 (3)
F1—C3—C4—C5179.6 (3)C9—C10—C11—O3178.6 (3)
C3—C4—C5—C60.1 (5)N1—C10—C11—O2111.9 (2)
C2—C1—C6—C50.8 (4)C14—C10—C11—O2125.6 (2)
C2—C1—C6—N1177.7 (3)C9—C10—C11—O22.0 (3)
C4—C5—C6—C10.0 (4)C11—O2—C12—C13176.2 (3)
C4—C5—C6—N1177.0 (2)C15B—O5—C14—O46.1 (9)
C7—N1—C6—C198.2 (3)C15A—O5—C14—O414.8 (7)
C10—N1—C6—C176.1 (3)C15B—O5—C14—C10178.0 (8)
C7—N1—C6—C578.8 (3)C15A—O5—C14—C10161.1 (7)
C10—N1—C6—C5106.9 (3)N1—C10—C14—O421.4 (3)
C6—N1—C7—O11.2 (4)C11—C10—C14—O4143.4 (3)
C10—N1—C7—O1173.8 (2)C9—C10—C14—O489.5 (3)
C6—N1—C7—C8179.8 (2)N1—C10—C14—O5162.6 (2)
C10—N1—C7—C85.2 (3)C11—C10—C14—O540.6 (3)
O1—C7—C8—C9165.2 (3)C9—C10—C14—O586.5 (2)
N1—C7—C8—C915.9 (3)C14—O5—C15A—C16A167.8 (16)
C7—C8—C9—C17156.9 (2)C15B—O5—C15A—C16A49.2 (19)
C7—C8—C9—C1028.8 (3)C14—O5—C15B—C16B104.2 (13)
C7—N1—C10—C11145.9 (2)C15A—O5—C15B—C16B57.5 (19)
C6—N1—C10—C1139.4 (3)C8—C9—C17—C1812.7 (4)
C7—N1—C10—C1493.1 (2)C10—C9—C17—C18107.4 (3)
C6—N1—C10—C1481.6 (3)C8—C9—C17—S1161.93 (19)
C7—N1—C10—C923.1 (2)C10—C9—C17—S178.0 (2)
C6—N1—C10—C9162.1 (2)C20—S1—C17—C180.2 (2)
C17—C9—C10—N1156.56 (19)C20—S1—C17—C9175.3 (2)
C8—C9—C10—N130.8 (2)C9—C17—C18—C19175.0 (3)
C17—C9—C10—C1184.1 (3)S1—C17—C18—C190.2 (3)
C8—C9—C10—C11150.1 (2)C17—C18—C19—C200.0 (4)
C17—C9—C10—C1439.1 (3)C18—C19—C20—S10.2 (4)
C8—C9—C10—C1486.7 (2)C17—S1—C20—C190.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O4i0.972.543.415 (4)150
C9—H9A···O20.982.362.718 (3)100
C12—H12B···O3ii0.972.593.443 (5)147
C18—H18A···O4i0.932.573.496 (5)171
C20—H20B···O1iii0.932.473.327 (4)154
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H20FNO5S
Mr405.43
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.6560 (2), 10.1195 (1), 12.3126 (2)
α, β, γ (°)110.704 (1), 92.659 (1), 115.856 (1)
V3)983.58 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.42 × 0.32 × 0.16
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.919, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
5604, 3391, 2358
Rint0.045
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.161, 0.95
No. of reflections3391
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.44

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Selected geometric parameters (Å, º) top
S1—C201.704 (3)N1—C61.442 (3)
S1—C171.724 (2)N1—C101.471 (3)
F1—C31.361 (3)C7—C81.503 (4)
O1—C71.213 (3)C8—C91.533 (3)
O2—C111.315 (3)C9—C171.497 (3)
O2—C121.465 (3)C9—C101.573 (3)
O3—C111.194 (3)C10—C111.531 (3)
O4—C141.201 (3)C17—C181.369 (4)
O5—C141.318 (3)C18—C191.419 (4)
N1—C71.372 (3)C19—C201.337 (5)
C20—S1—C1792.45 (14)C8—C9—C10102.68 (18)
C7—N1—C6121.00 (19)N1—C10—C9101.06 (18)
N1—C7—C8108.0 (2)C9—C17—S1121.57 (18)
C12—O2—C11—C10175.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O4i0.96922.54283.415 (4)150
C9—H9A···O20.98072.36052.718 (3)100
C12—H12B···O3ii0.96982.58753.443 (5)147
C18—H18A···O4i0.93082.57443.496 (5)171
C20—H20B···O1iii0.92932.46723.327 (4)154
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z; (iii) x+1, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds