Download citation
Download citation
link to html
The title compounds, 1-ferrocenyl­methyl-2-(4-methoxy­phenyl)-1H-benz­imidazole, [Fe(C5H5)(C20H17N2O)], (I), and 2-(3,4-di­methoxy­phenyl)-1-ferrocenyl­methyl-1H-benz­imid­az­ole, [Fe(C5H5)(C21H19N2O2)], (II), are model electroactive compounds for anion sensor and antimalarial applications. Distortions from the ideal 120° angle about the MeO-C-C groups are evident, with angles of 115.1 (2) and 125.0 (2)° in (I), and 115.9 (2) and 124.6 (2)°, and 115.7 (2) and 125.1 (2)° in (II). The main intermolecular hydrogen bonds in (I) comprise C-H...N and C-H...[pi](C5H5) interactions, while in (II), only weak C-H...[pi](imidazole) and C-H...[pi](arene) interactions are present.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101015591/sk1507sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101015591/sk1507Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101015591/sk1507IIsup3.hkl
Contains datablock II

CCDC references: 179263; 179264

Comment top

The synthesis of anion receptors is currently an area of intense research activity, due primarily to the ubiquitous roles which anions play in both chemical and biological processes, for example as substrates or cofactors for enzymes, and as nucleophiles, redox agents and phase-transfer catalysts. In the past decade, combinations of organometallic moieties with amide functionalities have been demonstrated to be essential components in many anion receptors (Beer, 1998; Kingston et al., 1999). Recently, 1,3-disubstituted imidazolium cations have been utilized as such (Sato et al., 1999; Thomas et al., 2000), and their synthetic intermediates (imidazoline-2-ylidenes) are of interest as carbenes and are the subject of several synthetic and structural investigations (Benito et al., 1995; Bildstein et al., 1998, 1999; Li et al., 1998).

Benzimidazole systems have attracted our considerable attention in synthetic and applied biological research (Howarth et al., 2000; Thomas et al., 2000; Howarth & Hanlon, 2001; Gallagher, Hanlon et al., 2001). Compounds (I) and (II), shown in Figs. 1 and 2, respectively, were obtained from the respective reactions of 2-(4-methoxyphenyl)- and 2-(3,4-dimethoxyphenyl)benzimidazole with (trimethyl)ammoniumferrocenylmethyl iodide (Pauson et al., 1966; Ferguson et al., 1994) and K2CO3 in refluxing CH3CN (details in Experimental). These compounds and close relatives are important electroactive model compounds for application in anion sensor studies (Thomas et al., 2000), as well as in malarial parasite research (Howarth & Hanlon, 2001). \sch

The Fe1—C bond lengths for the substituted cyclopentadienyl ring of (I) are in the range 2.036 (2)–2.0456 (18) Å and these are similar to the values of 2.033 (2)–2.039 (2) Å in the unsubstituted ring; for (II), these values are 2.030 (2)–2.049 (2) and 2.037 (2)–2.044 (2) Å, respectively. In (I), the cyclopentadienyl C—C bond length ranges are small: 1.413 (3)–1.423 (3) and 1.399 (4)–1.413 (4) Å for the η5(C5H4) and η5(C5H5) rings, respectively; for (II), these values are 1.402 (4)–1.422 (3) and 1.393 (4)–1.410 (4) Å, respectively. In (I), the Fe1···Cg1 and Fe1···Cg2 distances are 1.6450 (9) and 1.6487 (12) Å, respectively, and Cg1···Fe1···Cg2 is 179.80 (7)°, where Cg1 and Cg2 are the centroids of the η5(C5H4) and η5(C5H5) rings, respectively; in (II), these values are, respectively, 1.6462 (11) and 1.6571 (12) Å, and 178.32 (6)°. The analogous data for ferrocenylmethyl(3-chlorophenyl)benzimidazole, (III) (Gallagher, Hanlon et al., 2001), are 1.6467 (10) and 1.6487 (11) Å, and 179.12 (7)°, and for 2-(ferrocenyl)thiophene-3-carboxylic acid, (IV) (Gallagher, Hudson & Manning 2001), 1.6435 (10) and 1.656 (3) Å, and 178.42 (11)°. These results highlight the similarity in the ferrocenyl bond lengths and angles in (I), (II) and (III). The cyclopentadienyl rings deviate from eclipsed geometry in (I), as evidenced by the C1n···Cg1···Cg2···C2n torsion angles [17.0 (2)–17.5 (2)°; n = 1–5], and in (II) [17.7 (2)–18.36 (18)°], which contrasts with the eclipsed geometry in (III) but is similar to the 20.6 (5)–21.3 (5)° range in the major conformation of (IV) (Gallagher, Hudson & Manning 2001).

The molecular conformations adopted by (I) and (II) are different, with angles of 78.07 (8) and 40.22 (9)° between the C5H4/imidazolyl rings and the imidazolyl/phenyl rings, respectively, in (I), and 73.86 (8) and 70.02 (7)°, respectively, in (II); these angles are 84.37 (9) and 56.21 (8)°, respectively, in (III). An interesting difference between (I) and (II) arises about N2, with the C1—N2—C2/C3—N2—C2 angles differing by almost 7° in (I) but being similar in (II). A smaller variation at C1 of 2.5° is observed in (I). These arise due to the different molecular and packing geometries in (I) and (II), while the disparity in (III) is intermediate between (I) and (II). Differences are also evident in the Fe—C—C—N torsion angles (Tables 1 and 3).

Analysis of the hydrogen bonding in (I) reveals a (Cp)C13—H13···N1i and a side-on C2—H2B···N1ii intermolecular interaction, and two C—H···π(C5H5) interactions (Fig. 3); details and symmetry codes are given in Table 2. The C2—H2B···Cg3 descriptor (Cg3 is the imidazolyl ring centroid) yields H2B···Cg3 2.86 Å, C2—H2B···Cg3 135° and C2···Cg3 3.605 (2) Å, stressing the acceptor as N and the interaction as C—H···N not C—H···π(imid). The C—H···π(arene) interactions are of similar strength to those in 2-(ferrocenyl)thiophene-3-carboxylic acid (Gallagher, Hudson & Manning 2001) and are relatively weak. Analysis of the hydrogen bonding in (II) reveals that there are only two interactions of significance comprising two C—H···π interactions involving the phenyl and imidazolyl rings systems (Fig. 4); details are given in Table 4.

Analysis of the April 2001 version of the Cambridge Structural Database (CSD) using CONQUEST version 1.2 (Allen & Kennard, 1993) for the para-anisole group was undertaken for structures which fulfil the three-dimensional coordinates, with R < 0.10 and no disorder criteria (Scheme 2). The C—C6H4OCH3 moiety search gives 767 entries and 1063 observations for C—C-OMe distortions in the range 100–120°; two entries have C—C-OMe angles <110°, [WIBCEP 102.3° (Niyomura et al., 1999) and ZOYPAE 109.8° (Konda et al., 1995)], and these were omitted from the calculations to give 765 entries and 1060 unique molecular structures. The mean angles are 115.5° and 124.7° about C—C-OMe, which is similar to (I). For example, in tris(4-methoxyphenyl)methanol [HIFVIB (Ferguson et al., 1996)], MeO-CCortho angles of 115.1 (3)/125.5 (3)° transoid/cisoid to the –O—CH3 group are distinct and similar to the values of 116/124° reported in the electron diffraction study of anisole, C6H5OCH3 (Siep & Siep, 1973). The mean C—O—CH3 angle from the CSD search is 117.7° (range 110–133°) and the C—C—O—CH3 torsion angle range is -36.9–33.2°, compared with -5.0 (4)° in (I). Analysis of C—C-OMe angles with both >120° shows only one structure [HADVUD (Wey et al., 1993)], using identical cut-off criteria, and three structures with both angles <120° [JIKXAC (Magnus & Moursounidis, 1991), PEXCOK (Caruga et al., 1993) and ZAMNIK (Mayer et al., 1995)]; however, these latter three structures have R-factors > 6%, and the C—C s.u.s range from 0.01 to 0.03 Å.

Analysis of the 3,4-veratryl moiety as C—C6H3(OCH3)2 yields 132 entries and 164 unique structures in the CSD. All four C—C-OMe angles were analysed in the range 100–140°. The mean methoxy angles are 115.5 and 125.1° for the para-OCH3, and 115.2 and 124.8° for the meta-OCH3 groups, with angle ranges typically ±5° of the mean values. The methoxy C—O—CH3 angles are similar, 117.2° for the para- and 117.7° for the meta-OCH3, and are also similar to (II). Unusually, there is a structure with both para C—C-OMe angles <120° (FAGHIE; Noyori et al., 1986), at 118.9 and 118.1°, and C—O—CH3 angles of 121.5 and 120.3°, and one structure with both para C—C-OMe angles >120° (LOJNED; McAuley & Subramanian, 2000), at 120.2 and 120.2°, and normal C—O—CH3 angles of 118.3 and 118.2°. Analysis of the meta C—O—CH3 angles <120° shows MXPMNQ (Amatayakul et al., 1979), with values of 117.2 and 114.7°, and 118.3 and 119.6°; however, the R-factor is 9.3% and the C—C s.u.s are in the range 0.01–0.03°. There are no structures with both meta C—O—CH3 angles >120°. Thus, the methoxy angles of 115 and 125° are not unusual for either the methoxy, (I), or the dimethoxy derivative, (II).

Analysis of the disposition of the two OCH3 groups relative to one another reveals that for 127 entries (159 unique), the range of C···C distances is narrow, 5.23–5.48 Å, with a mean of 5.40 Å and with the methoxy groups disposed transoid to each other. The five remaining C···C distances are in the range 4.21–4.99 Å and are intermediate between cisoid and transoid. The analysis suggests that ortho-related methoxy groups stagger with respect to one another, with torsion angles to the aromatic ring close to 0°. Analysis of ortho-dimethoxy aromatic compounds by Angular Group-Induced Bond Alternation (AGIBA; Krygowski et al., 1998) indicates some distortion of the C6 aromatic ring geometry in (II); (I) does not display this bond-length alternation.

Extensive structural studies have been reported on the dimethoxyphenyl group in crystal structures (Kumar et al., 1998; Dijksma et al., 1998; Bruno et al., 2001). Steric influences between the CH3 and phenyl-H groups, or electronic effects involving the oxygen lone pairs (Kumar et al., 1998; Dijksma et al., 1998), have been proposed to account for the planarity of the methoxy groups with the aromatic plane and reported methoxy O—C—C angles, while Bruno et al. (2001) have recently commented on the possibility of conjugation effects to determine the planarity of the methoxy groups with the aromatic plane, using combined ab initio calculations and database analyses.

Seven references from the CSD needed to be added. Please check the citations above are correct, and also in the References list below. Please also provide final page numbers.

Related literature top

For related literature, see: Allen & Kennard (1993); Amatayakul et al. (1979); Beer (1998); Benito et al. (1995); Bildstein et al. (1998, 1999); Bruno et al. (2001); Caruga et al. (1993); Dijksma et al. (1998); Ferguson et al. (1994, 1996); Gallagher, Hanlon, Howarth & Thomas (2001); Gallagher, Hudson & Manning (2001); Howarth & Hanlon (2001); Howarth et al. (2000); Kingston et al. (1999); Konda et al. (1995); Krygowski et al. (1998); Kumar et al. (1998); Li et al. (1998); Magnus & Moursounidis (1991); Mayer et al. (1995); McAuley & Subramanian (2000); Niyomura et al. (1999); Noyori et al. (1986); Pauson et al. (1966); Sato et al. (1999); Sheldrick (1997); Siep & Siep (1973); Thomas et al. (2000); Wey et al. (1993).

Experimental top

Compound (I) was prepared as follows. To a mixture of 2-(4-methoxyphenyl)benzimidazole (3.0 g, 12.6 mmol) and K2CO3 (2.61 g, 18.9 mmol) in CH3CN (100 ml) was added (trimethylammonium)ferrocenylmethyl iodide (4.86 g, 12.6 mmol) (Pauson et al., 1966; Ferguson et al., 1994), and the mixture was refluxed for 10 h. The reaction was cooled to room temperature, water added and the suspension extracted into CHCl3. The organic layer was washed with water, dried (MgSO4) and evaporated under vacuum to leave a brown solid. The crude product was purified by column chromatography on silica gel using CH2Cl2:CH3OH (97/3) as eluent. Compound (I) was obtained as a light orange solid [yield 2.9 g, 54%; m.p. 142–146 K (uncorrected)]. Spectroscopic analysis: IR (KBr, ν, cm-1): 3043, 2981, 2310, 1708, 1609, 1534, 1485, 1460, 1416, 1385, 1323, 1261, 1174, 1106, 1032, 1001, 895, 740, 703; 1H NMR (400 MHz, δH, p.p.m., CDCl3): 7.81 (m, 1H, arom-H), 7.71 (m, 2H, aryl-H), 7.45 (m, 1H, arom-H), 7.30 (m, 2H, aryl-H), 7.09 (m, 2H, arom-H), 5.21 (s, 2H, Fc—CH2) 4.21–4.07 (m, 9H, Cp—H), 3.91 (s, 3H, aryl-OCH3); 13C NMR (δC, p.p.m., CDCl3): 160.78, 153.47, 142.97, 135.62, 131.03, 122.95, 122.46, 119.6, 114.08, 110.27, 83.3, 68.77, 68.13, 55.42, 44.37.

Compound (II) was prepared as follows. To a mixture of 2-(3,4-dimethoxyphenyl)benzimidazole (5.35 g, 20 mmol) and K2CO3 (4.14 g, 30 mmol) in CH3CN (150 ml) was added (trimethylammonium)ferrocenylmethyl iodide (8.1 g, 21 mmol) (Pauson et al., 1966; Ferguson et al., 1994), and the mixture was refluxed for 16 h. The work-up was similar to that described for (I) above. Compound (II) was obtained as a brown oil which later solidified [yield 1.8 g, 38%; m.p. 192–194 K (uncorrected)]. Spectroscopic analysis: IR (KBr, ν, cm-1): 3051, 2982, 2849, 2697, 2411, 2320, 1713, 1609, 1495, 1434, 1420, 1363, 1259, 1145, 1024, 898, 743, 709; 1H NMR (400 MHz, δH, p.p.m., CDCl3): 7.81 (m, 1H, arom-H), 7.51 (m, 1H, arom-H), 7.35–7.03 (m, 5H, aryl-H and arom-H), 5.24 (s, 2H, Fc—CH2), 4.15–4.09 (m, 9H, Cp Fc—H), 4.00 (s, 3H, OCH3), 3.94 (s, 3H, OCH3); 13C NMR (δC, p.p.m., CDCl3): 153.84, 150.75, 149.51, 136.08, 123.05, 122.84, 122.55, 120.07, 113.21, 111.08, 110.69, 83.86, 69.25, 69.08, 68.57, 56.55, 56.43, 44.89.

Refinement top

Molecules (I) and (II) crystallized in the monoclinic system, space groups P21/n and P21/a from the systematic absences, confirmed by the analysis. All H atoms bound to C were treated as riding with the SHELXL97 defaults (Sheldrick, 1997) for C—H distances, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the remainder.

Computing details top

For both compounds, data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 1998); software used to prepare material for publication: SHELXL97 and PREP8 (Ferguson, 1998).

Figures top
[Figure 1] Fig. 1. A molecular view of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A molecular view of (II) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. A view of the interactions in the crystal structure of (I).
[Figure 4] Fig. 4. A view of the interactions in the crystal structure of (II).
(I) 1-Ferrocenylmethyl-2-(4-methoxyphenyl)-1H-benzimidazole top
Crystal data top
[Fe(C5H5)(C20H17N2O)]Dx = 1.389 Mg m3
Mr = 422.30Melting point: 417 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.4326 (10) ÅCell parameters from 75 reflections
b = 9.5414 (7) Åθ = 2.4–15.6°
c = 17.1682 (8) ŵ = 0.77 mm1
β = 97.400 (5)°T = 294 K
V = 2019.6 (2) Å3Block, orange
Z = 40.43 × 0.33 × 0.30 mm
F(000) = 880
Data collection top
Siemens P4
diffractometer
3693 reflections with I > 2σ(I)
Radiation source: X-ray tubeRint = 0.011
Graphite monochromatorθmax = 28.0°, θmin = 2.2°
ω scansh = 161
Absorption correction: ψ-scan
(North et al., 1968)
k = 112
Tmin = 0.737, Tmax = 0.803l = 2222
6105 measured reflections3 standard reflections every 197 reflections
4830 independent reflections intensity decay: variation 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.055P)2 + 0.456P]
where P = (Fo2 + 2Fc2)/3
4830 reflections(Δ/σ)max < 0.001
263 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Fe(C5H5)(C20H17N2O)]V = 2019.6 (2) Å3
Mr = 422.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.4326 (10) ŵ = 0.77 mm1
b = 9.5414 (7) ÅT = 294 K
c = 17.1682 (8) Å0.43 × 0.33 × 0.30 mm
β = 97.400 (5)°
Data collection top
Siemens P4
diffractometer
3693 reflections with I > 2σ(I)
Absorption correction: ψ-scan
(North et al., 1968)
Rint = 0.011
Tmin = 0.737, Tmax = 0.8033 standard reflections every 197 reflections
6105 measured reflections intensity decay: variation 1%
4830 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.04Δρmax = 0.58 e Å3
4830 reflectionsΔρmin = 0.31 e Å3
263 parameters
Special details top

Experimental. CSD search ========== c:ξ\0–02δataµethoxmaz.sum

Criteria for the C—C6H4—OCH3 search ========================================== three-dimensional coordinates, R factor < 0.10, No disorder

Angles as O—C—C (100–120°, 120–140°), C—O—C, (0–180°) and C—O—C—C, (0–360°).

[one C—C-OMe angle was set between 100–120° and the other 120–140° to eliminate bias]

Nent 765 OCC OCC COC COCC [Input by JFG] Nobs 1060 1060 1060 1060 Mean 115.539 124.661 117.672 -.032 SDSample. 861. 858 1.122 7.159 SDMean. 026. 026. 034. 220 Minimum 110.423 120.120 109.861 - 36.934 Maximum 119.576 129.380 132.745 33.235

#############################################################

CSD search ========== c:ξ\0–02δataδimethCC.sum

Criteria for the C—C6H3(OCH3)2 search ============================================= three-dimensional coordinates, R factor < 0.10, No disorder

OCH3···OCH3 with C···C distances calculated.

Nent 127 Nobs 159 159 159 Mean 117.227 117.536 5.397 SDSample 1.110 0.963 0.036 SDMean 0.088 0.076 0.003 Minimum 110.746 111.671 5.232 Maximum 122.045 120.593 5.481

Geometry. Mean plane data ex-SHELXL97 for (I) ###################################

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

2.0003(0.0114)x + 8.2810(0.0042)y + 7.6453(0.0141)z = 5.4619(0.0037)

* 0.0020 (0.0011) C1 * -0.0022 (0.0011) N1 * -0.0010 (0.0011) N2 * -0.0003 (0.0011) C3 * 0.0015 (0.0011) C4 - 2.9176 (0.0037) Fe1 - 0.1259 (0.0031) C2 0.0083 (0.0031) C31 0.1597 (0.0067) O1

Rms deviation of fitted atoms = 0.0016

-10.1301(0.0079)x + 0.7456(0.0096)y + 11.5817(0.0139)z = 0.2408(0.0034)

Angle to previous plane (with approximate e.s.d.) = 78.07 (8)

* -0.0009 (0.0012) C11 * 0.0009 (0.0013) C12 * -0.0005 (0.0014) C13 * -0.0001 (0.0014) C14 * 0.0006 (0.0013) C15 - 1.6449 (0.0009) Fe1 0.4299 (0.0059) N1 0.4346 (0.0040) N2 - 0.3039 (0.0051) C1 0.0005 (0.0034) C2 - 5.7590 (0.0062) O1

Rms deviation of fitted atoms = 0.0007

10.0724(0.0090)x - 0.7689(0.0113)y - 11.6769(0.0155)z = 3.0322(0.0039)

Angle to previous plane (with approximate e.s.d.) = 0.47 (15)

* 0.0003 (0.0015) C21 * -0.0014 (0.0015) C22 * 0.0021 (0.0015) C23 * -0.0019 (0.0015) C24 * 0.0010 (0.0015) C25 - 1.6486 (0.0010) Fe1 - 3.7645 (0.0068) N1 - 3.7567 (0.0046) N2 - 3.0256 (0.0059) C1 - 3.3147 (0.0039) C2 2.4192 (0.0072) O1

Rms deviation of fitted atoms = 0.0015

4.4476(0.0096)x + 3.2746(0.0083)y + 13.9949(0.0086)z = 6.6986(0.0039)

Angle to previous plane (with approximate e.s.d.) = 75.99 (7)

* -0.0058 (0.0014) C31 * 0.0039 (0.0015) C32 * -0.0017 (0.0016) C33 * 0.0014 (0.0016) C34 * -0.0033 (0.0016) C35 * 0.0055 (0.0015) C36 - 4.5273 (0.0023) Fe1 0.8231 (0.0034) N1 - 0.6144 (0.0035) N2 0.0270 (0.0032) O1

Rms deviation of fitted atoms = 0.0040

-10.1301(0.0079)x + 0.7456(0.0096)y + 11.5817(0.0139)z = 0.2408(0.0034)

Angle to previous plane (with approximate e.s.d.) = 76.45 (6)

* -0.0009 (0.0012) C11 * 0.0009 (0.0013) C12 * -0.0005 (0.0014) C13 * -0.0001 (0.0014) C14 * 0.0006 (0.0013) C15 - 1.6449 (0.0009) Fe1 0.4299 (0.0059) N1 0.4346 (0.0040) N2 - 1.7413 (0.0053) C31 - 0.3039 (0.0051) C1 0.0005 (0.0034) C2 - 5.7590 (0.0062) O1

Rms deviation of fitted atoms = 0.0007

4.4476(0.0096)x + 3.2746(0.0083)y + 13.9949(0.0086)z = 6.6986(0.0039)

Angle to previous plane (with approximate e.s.d.) = 76.45 (6)

* -0.0058 (0.0014) C31 * 0.0039 (0.0015) C32 * -0.0017 (0.0016) C33 * 0.0014 (0.0016) C34 * -0.0033 (0.0016) C35 * 0.0055 (0.0015) C36 - 4.5273 (0.0023) Fe1 0.8231 (0.0034) N1 - 0.6144 (0.0035) N2 0.0710 (0.0030) C1 - 1.6334 (0.0038) C2 0.0270 (0.0032) O1

Rms deviation of fitted atoms = 0.0040

2.0003(0.0114)x + 8.2810(0.0042)y + 7.6453(0.0141)z = 5.4619(0.0037)

Angle to previous plane (with approximate e.s.d.) = 40.22 (9)

* 0.0020 (0.0011) C1 * -0.0022 (0.0011) N1 * -0.0010 (0.0011) N2 * -0.0003 (0.0011) C3 * 0.0015 (0.0011) C4 - 2.9176 (0.0037) Fe1 - 0.1259 (0.0031) C2 0.0083 (0.0031) C31 0.1597 (0.0067) O1

Rms deviation of fitted atoms = 0.0016

-10.1301(0.0079)x + 0.7456(0.0096)y + 11.5817(0.0139)z = 0.2408(0.0034)

Angle to previous plane (with approximate e.s.d.) = 78.07 (8)

* -0.0009 (0.0012) C11 * 0.0009 (0.0013) C12 * -0.0005 (0.0014) C13 * -0.0001 (0.0014) C14 * 0.0006 (0.0013) C15 - 1.6449 (0.0009) Fe1 0.4299 (0.0059) N1 0.4346 (0.0040) N2 - 0.3039 (0.0051) C1 0.0005 (0.0034) C2 - 1.7413 (0.0053) C31 - 5.7590 (0.0062) O1

Rms deviation of fitted atoms = 0.0007

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.20014 (2)0.22243 (3)0.039503 (15)0.04622 (11)
O10.75282 (13)0.3498 (2)0.15949 (11)0.0743 (5)
N10.36909 (13)0.23245 (17)0.36578 (9)0.0441 (4)
N20.26635 (11)0.34679 (16)0.26896 (8)0.0403 (3)
C10.36807 (14)0.29632 (18)0.29742 (10)0.0400 (4)
C20.22763 (16)0.4107 (2)0.19349 (11)0.0468 (4)
C30.19879 (15)0.31226 (19)0.32413 (11)0.0423 (4)
C40.26415 (16)0.2417 (2)0.38366 (11)0.0430 (4)
C50.21942 (19)0.1921 (2)0.44920 (12)0.0548 (5)
C60.1110 (2)0.2165 (3)0.45187 (14)0.0628 (6)
C70.0468 (2)0.2868 (2)0.39238 (15)0.0629 (6)
C80.08922 (17)0.3360 (2)0.32640 (13)0.0545 (5)
C110.15878 (14)0.3132 (2)0.13943 (10)0.0412 (4)
C120.08558 (15)0.3548 (2)0.07288 (11)0.0496 (5)
C130.03625 (18)0.2326 (3)0.03748 (13)0.0622 (6)
C140.07835 (19)0.1157 (3)0.08187 (13)0.0615 (6)
C150.15371 (16)0.1654 (2)0.14463 (11)0.0492 (4)
C210.3405 (2)0.3105 (3)0.01361 (17)0.0742 (7)
C220.2627 (2)0.3083 (3)0.05327 (15)0.0713 (7)
C230.2331 (2)0.1685 (3)0.06988 (14)0.0730 (7)
C240.2926 (2)0.0837 (3)0.01265 (16)0.0786 (8)
C250.3594 (2)0.1723 (4)0.03887 (16)0.0772 (8)
C310.46557 (14)0.3102 (2)0.25770 (11)0.0423 (4)
C320.53745 (16)0.1987 (2)0.26164 (13)0.0508 (5)
C330.63338 (17)0.2065 (2)0.22893 (14)0.0568 (5)
C340.65926 (16)0.3282 (3)0.19243 (12)0.0544 (5)
C350.58890 (17)0.4412 (2)0.18803 (13)0.0564 (5)
C360.49319 (16)0.4329 (2)0.22102 (12)0.0503 (5)
C370.8327 (2)0.2429 (4)0.1688 (2)0.0964 (10)
H2A0.28950.44020.16840.056*
H2B0.18570.49360.20230.056*
H50.26150.14450.48940.066*
H60.07970.18490.49500.075*
H70.02610.30140.39660.075*
H80.04640.38230.28600.065*
H120.07240.44640.05560.060*
H130.01480.22980.00710.075*
H140.05980.02240.07170.074*
H150.19320.11030.18280.059*
H210.37380.39000.03700.089*
H220.23530.38620.08170.086*
H230.18320.13750.11130.088*
H240.28860.01340.00930.094*
H250.40740.14370.08200.093*
H320.52090.11670.28690.061*
H330.68010.13000.23160.068*
H350.60600.52300.16280.068*
H360.44700.50980.21870.060*
H37A0.85110.22210.22360.145*
H37B0.89640.27410.14760.145*
H37C0.80490.16010.14150.145*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.05016 (17)0.04883 (18)0.04048 (16)0.00396 (12)0.00895 (11)0.00459 (12)
O10.0522 (9)0.0929 (13)0.0835 (11)0.0052 (9)0.0310 (8)0.0129 (10)
N10.0443 (8)0.0477 (9)0.0399 (8)0.0052 (7)0.0038 (6)0.0017 (7)
N20.0403 (7)0.0441 (8)0.0367 (7)0.0023 (6)0.0060 (6)0.0021 (6)
C10.0411 (9)0.0398 (10)0.0392 (8)0.0062 (7)0.0057 (7)0.0038 (7)
C20.0498 (10)0.0448 (10)0.0454 (9)0.0027 (8)0.0041 (8)0.0090 (8)
C30.0447 (9)0.0421 (9)0.0415 (9)0.0061 (8)0.0106 (7)0.0032 (7)
C40.0480 (10)0.0425 (10)0.0388 (9)0.0081 (8)0.0072 (7)0.0045 (7)
C50.0675 (13)0.0562 (12)0.0428 (10)0.0099 (10)0.0156 (9)0.0029 (9)
C60.0723 (15)0.0655 (14)0.0569 (12)0.0128 (12)0.0319 (11)0.0011 (11)
C70.0538 (12)0.0671 (15)0.0731 (15)0.0070 (11)0.0285 (11)0.0070 (12)
C80.0481 (11)0.0563 (12)0.0605 (12)0.0021 (9)0.0126 (9)0.0005 (10)
C110.0374 (8)0.0478 (10)0.0389 (9)0.0005 (7)0.0073 (7)0.0067 (7)
C120.0420 (9)0.0609 (12)0.0453 (10)0.0091 (9)0.0035 (8)0.0066 (9)
C130.0489 (11)0.0889 (17)0.0466 (11)0.0052 (11)0.0030 (9)0.0031 (11)
C140.0655 (13)0.0652 (14)0.0537 (11)0.0189 (11)0.0076 (10)0.0026 (11)
C150.0561 (11)0.0496 (11)0.0414 (9)0.0071 (9)0.0047 (8)0.0085 (8)
C210.0687 (15)0.0766 (17)0.0857 (18)0.0062 (13)0.0421 (14)0.0105 (14)
C220.0874 (17)0.0695 (16)0.0647 (14)0.0179 (13)0.0393 (13)0.0180 (12)
C230.0937 (18)0.0792 (17)0.0495 (12)0.0075 (15)0.0218 (12)0.0063 (12)
C240.104 (2)0.0579 (15)0.0806 (16)0.0242 (14)0.0379 (16)0.0052 (13)
C250.0613 (14)0.105 (2)0.0682 (15)0.0244 (15)0.0208 (12)0.0079 (15)
C310.0384 (9)0.0456 (10)0.0432 (9)0.0058 (7)0.0061 (7)0.0033 (8)
C320.0492 (11)0.0456 (11)0.0583 (12)0.0026 (8)0.0096 (9)0.0046 (9)
C330.0484 (11)0.0577 (13)0.0655 (13)0.0077 (9)0.0124 (10)0.0020 (10)
C340.0440 (10)0.0707 (14)0.0508 (11)0.0026 (10)0.0153 (8)0.0041 (10)
C350.0516 (11)0.0558 (12)0.0651 (12)0.0053 (10)0.0200 (9)0.0100 (10)
C360.0458 (10)0.0438 (10)0.0634 (11)0.0016 (8)0.0156 (9)0.0025 (9)
C370.0579 (15)0.118 (3)0.121 (3)0.0206 (16)0.0404 (17)0.012 (2)
Geometric parameters (Å, º) top
Fe1—C112.0456 (18)C22—C231.403 (4)
Fe1—C122.040 (2)C23—C241.407 (4)
Fe1—C132.036 (2)C24—C251.413 (4)
Fe1—C142.036 (2)C31—C321.385 (3)
Fe1—C152.0384 (19)C31—C361.393 (3)
Fe1—C212.038 (2)C32—C331.384 (3)
Fe1—C222.033 (2)C33—C341.378 (3)
Fe1—C232.039 (2)C34—C351.384 (3)
Fe1—C242.035 (2)C35—C361.384 (3)
Fe1—C252.038 (2)C2—H2A0.9700
O1—C341.373 (2)C2—H2B0.9700
O1—C371.418 (3)C5—H50.9300
N1—C11.321 (2)C6—H60.9300
N1—C41.381 (2)C7—H70.9300
N2—C11.382 (2)C8—H80.9300
N2—C21.457 (2)C12—H120.9300
N2—C31.384 (2)C13—H130.9300
C1—C311.471 (2)C14—H140.9300
C2—C111.502 (3)C15—H150.9300
C3—C41.394 (3)C21—H210.9300
C3—C81.386 (3)C22—H220.9300
C4—C51.400 (3)C23—H230.9300
C5—C61.375 (3)C24—H240.9300
C6—C71.385 (4)C25—H250.9300
C7—C81.391 (3)C32—H320.9300
C11—C121.423 (3)C33—H330.9300
C11—C151.414 (3)C35—H350.9300
C12—C131.418 (3)C36—H360.9300
C13—C141.413 (3)C37—H37A0.9600
C14—C151.416 (3)C37—H37B0.9600
C21—C221.403 (4)C37—H37C0.9600
C21—C251.399 (4)
C11—Fe1—C21108.87 (9)C32—C31—C36118.20 (17)
C12—Fe1—C22108.77 (9)C31—C32—C33121.54 (19)
C13—Fe1—C23108.41 (11)C32—C33—C34119.6 (2)
C14—Fe1—C24108.65 (11)C33—C34—C35119.91 (18)
C15—Fe1—C25109.16 (10)C34—C35—C36120.2 (2)
O1—C34—C33125.0 (2)C35—C36—C31120.52 (19)
O1—C34—C35115.1 (2)N2—C2—H2A109.0
C34—O1—C37117.7 (2)N2—C2—H2B109.0
C1—N1—C4105.47 (15)C11—C2—H2A109.0
C1—N2—C2130.00 (15)C11—C2—H2B109.0
C1—N2—C3106.46 (15)H2A—C2—H2B107.8
C2—N2—C3123.24 (15)C4—C5—H5121.2
N1—C1—N2112.23 (16)C6—C5—H5121.2
N1—C1—C31122.62 (17)C5—C6—H6119.0
N2—C1—C31125.14 (16)C7—C6—H6119.0
N2—C2—C11112.75 (15)C6—C7—H7119.3
N2—C3—C4105.59 (16)C8—C7—H7119.3
N2—C3—C8131.71 (18)C3—C8—H8121.8
C4—C3—C8122.70 (18)C7—C8—H8121.8
N1—C4—C3110.25 (16)C11—C12—H12125.9
N1—C4—C5129.89 (19)C13—C12—H12125.9
C3—C4—C5119.86 (18)C12—C13—H13126.0
C4—C5—C6117.5 (2)C14—C13—H13126.0
C5—C6—C7122.1 (2)C13—C14—H14126.0
C6—C7—C8121.4 (2)C15—C14—H14126.0
C3—C8—C7116.4 (2)C11—C15—H15125.8
C12—C11—C2125.29 (18)C14—C15—H15125.8
C15—C11—C2127.24 (16)C22—C21—H21126.0
C12—C11—C15107.47 (17)C25—C21—H21126.0
C11—C12—C13108.12 (19)C21—C22—H22125.8
C12—C13—C14107.98 (19)C23—C22—H22125.8
C13—C14—C15108.0 (2)C22—C23—H23126.1
C11—C15—C14108.47 (18)C24—C23—H23126.1
C22—C21—C25108.0 (3)C23—C24—H24126.1
C21—C22—C23108.4 (2)C25—C24—H24126.1
C22—C23—C24107.7 (3)C21—C25—H25126.0
C23—C24—C25107.8 (3)C24—C25—H25126.0
C21—C25—C24108.0 (2)Fe1—C12—H12126.3
C2—C11—Fe1126.56 (13)Fe1—C13—H13126.1
C12—C11—Fe169.43 (11)Fe1—C14—H14126.1
C15—C11—Fe169.47 (11)Fe1—C15—H15126.2
C11—C12—Fe169.82 (11)Fe1—C21—H21126.0
C13—C12—Fe169.47 (13)Fe1—C22—H22125.7
C12—C13—Fe169.82 (12)Fe1—C23—H23126.2
C14—C13—Fe169.68 (13)Fe1—C24—H24125.7
C13—C14—Fe169.70 (13)Fe1—C25—H25126.1
C15—C14—Fe169.77 (12)C31—C32—H32119.2
C11—C15—Fe170.01 (10)C33—C32—H32119.2
C14—C15—Fe169.56 (12)C32—C33—H33120.2
C22—C21—Fe169.64 (15)C34—C33—H33120.2
C25—C21—Fe169.94 (15)C34—C35—H35119.9
C21—C22—Fe170.02 (14)C36—C35—H35119.9
C23—C22—Fe170.08 (14)C35—C36—H36119.7
C22—C23—Fe169.61 (13)C31—C36—H36119.7
C24—C23—Fe169.63 (14)O1—C37—H37A109.5
C23—C24—Fe169.95 (14)O1—C37—H37B109.5
C25—C24—Fe169.81 (14)H37A—C37—H37B109.5
C21—C25—Fe169.92 (14)O1—C37—H37C109.5
C24—C25—Fe169.58 (15)H37A—C37—H37C109.5
C32—C31—C1118.22 (17)H37B—C37—H37C109.5
C36—C31—C1123.42 (17)
N2—C2—C11—Fe1109.58 (16)C24—Fe1—C11—C268.8 (3)
C1—N2—C2—C11104.5 (2)C14—Fe1—C11—C2159.27 (18)
N1—C1—C31—C3238.0 (3)C13—Fe1—C11—C2156.93 (18)
C37—O1—C34—C335.0 (4)C21—Fe1—C11—C29.51 (19)
C4—N1—C1—N20.4 (2)C25—Fe1—C11—C233.4 (2)
C4—N1—C1—C31179.62 (16)C15—Fe1—C11—C2121.8 (2)
C3—N2—C1—N10.3 (2)C23—Fe1—C11—C280.6 (5)
C2—N2—C1—N1173.43 (17)C12—Fe1—C11—C2119.3 (2)
C3—N2—C1—C31179.72 (17)C15—C11—C12—C130.2 (2)
C2—N2—C1—C316.5 (3)C2—C11—C12—C13179.97 (18)
C3—N2—C2—C1168.4 (2)C12—C11—C15—C140.1 (2)
C1—N2—C3—C8179.8 (2)C2—C11—C15—C14179.93 (18)
C2—N2—C3—C85.6 (3)C13—C14—C15—C110.1 (2)
C1—N2—C3—C40.07 (19)C21—C22—C23—C240.3 (3)
C2—N2—C3—C4174.21 (16)C22—C21—C25—C240.1 (3)
C1—N1—C4—C30.4 (2)C23—C24—C25—C210.3 (3)
C1—N1—C4—C5179.8 (2)N2—C1—C31—C32141.98 (19)
N2—C3—C4—N10.2 (2)N1—C1—C31—C36137.4 (2)
C8—C3—C4—N1179.61 (18)N2—C1—C31—C3642.6 (3)
N2—C3—C4—C5180.00 (17)C36—C31—C32—C331.3 (3)
C8—C3—C4—C50.2 (3)C1—C31—C32—C33176.91 (19)
N1—C4—C5—C6179.9 (2)C31—C32—C33—C340.9 (3)
C3—C4—C5—C60.3 (3)C37—O1—C34—C35174.1 (3)
C4—C5—C6—C70.3 (3)C32—C33—C34—O1178.4 (2)
C5—C6—C7—C80.3 (4)C32—C33—C34—C350.6 (3)
N2—C3—C8—C7179.6 (2)O1—C34—C35—C36178.4 (2)
C4—C3—C8—C70.7 (3)C33—C34—C35—C360.8 (3)
C6—C7—C8—C30.7 (3)C34—C35—C36—C311.2 (3)
N2—C2—C11—C1518.7 (3)C32—C31—C36—C351.4 (3)
N2—C2—C11—C12161.05 (17)C1—C31—C36—C35176.81 (19)
C22—Fe1—C11—C249.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N1i0.932.483.397 (3)168
C2—H2B···N1ii0.972.613.404 (3)139
C7—H7···Cg1iii0.932.813.644 (3)151
C37—H37B···Cg2iv0.962.853.734 (3)154
C2—H2B···Cg3ii0.972.863.605 (2)135
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z+1/2; (iv) x+1, y, z.
(II) 2-(3,4-dimethoxyphenyl)-1-ferrocenylmethyl-1H-benzimidazole top
Crystal data top
[Fe(C5H5)(C21H19N2O)]Dx = 1.415 Mg m3
Mr = 452.32Melting point: 466 K
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
a = 11.7089 (10) ÅCell parameters from 50 reflections
b = 13.7888 (12) Åθ = 9.0–37.9°
c = 13.2441 (11) ŵ = 0.74 mm1
β = 96.758 (7)°T = 294 K
V = 2123.4 (3) Å3Block, red
Z = 40.35 × 0.25 × 0.15 mm
F(000) = 944
Data collection top
Siemens P4
diffractometer
3684 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 28.0°, θmin = 2.1°
ω scansh = 115
Absorption correction: ψ-scan
(North et al., 1968)
k = 118
Tmin = 0.783, Tmax = 0.900l = 1717
6262 measured reflections3 standard reflections every 197 reflections
5088 independent reflections intensity decay: variation 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.04P)2 + 0.537P]
where P = (Fo2 + 2Fc2)/3
5088 reflections(Δ/σ)max < 0.001
282 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
[Fe(C5H5)(C21H19N2O)]V = 2123.4 (3) Å3
Mr = 452.32Z = 4
Monoclinic, P21/aMo Kα radiation
a = 11.7089 (10) ŵ = 0.74 mm1
b = 13.7888 (12) ÅT = 294 K
c = 13.2441 (11) Å0.35 × 0.25 × 0.15 mm
β = 96.758 (7)°
Data collection top
Siemens P4
diffractometer
3684 reflections with I > 2σ(I)
Absorption correction: ψ-scan
(North et al., 1968)
Rint = 0.028
Tmin = 0.783, Tmax = 0.9003 standard reflections every 197 reflections
6262 measured reflections intensity decay: variation 1%
5088 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.01Δρmax = 0.21 e Å3
5088 reflectionsΔρmin = 0.22 e Å3
282 parameters
Special details top

Geometry. Mean plane data ex-SHELXL97 for (II) ####################################

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

-6.7954(0.0101)x - 2.5167(0.0133)y + 11.3425(0.0074)z = 1.0738(0.0058)

* 0.0068 (0.0012) C1 * -0.0048 (0.0012) N1 * -0.0058 (0.0012) N2 * 0.0027 (0.0012) C3 * 0.0011 (0.0013) C4 2.2882 (0.0050) Fe1 0.1587 (0.0036) C2 0.0333 (0.0035) C31 2.2895 (0.0059) O1 0.1789 (0.0073) O2

Rms deviation of fitted atoms = 0.0047

-9.7102(0.0074)x + 7.4898(0.0131)y - 0.4327(0.0150)z = 2.4018(0.0052)

Angle to previous plane (with approximate e.s.d.) = 73.86 (8)

* -0.0044 (0.0013) C11 * 0.0043 (0.0014) C12 * -0.0026 (0.0014) C13 * -0.0002 (0.0014) C14 * 0.0029 (0.0013) C15 - 1.6461 (0.0010) Fe1 3.3510 (0.0048) N1 1.3393 (0.0041) N2 2.1223 (0.0047) C1 - 0.0142 (0.0038) C2 2.2747 (0.0069) O1 0.6819 (0.0085) O2

Rms deviation of fitted atoms = 0.0033

9.9869(0.0073)x - 7.0120(0.0140)y + 0.2220(0.0161)z = 0.8919(0.0056)

Angle to previous plane (with approximate e.s.d.) = 2.52 (15)

* -0.0019 (0.0014) C21 * 0.0038 (0.0015) C22 * -0.0042 (0.0015) C23 * 0.0030 (0.0015) C24 * -0.0006 (0.0014) C25 - 1.6570 (0.0011) Fe1 - 6.4952 (0.0054) N1 - 4.5287 (0.0045) N2 - 5.2705 (0.0052) C1 - 3.1952 (0.0041) C2 - 5.3681 (0.0074) O1 - 3.6883 (0.0091) O2

Rms deviation of fitted atoms = 0.0030

-3.8273(0.0103)x + 11.2024(0.0074)y - 5.8407(0.0110)z = 4.5924(0.0061)

Angle to previous plane (with approximate e.s.d.) = 41.51 (10)

* 0.0069 (0.0015) C31 * 0.0040 (0.0015) C32 * -0.0116 (0.0016) C33 * 0.0086 (0.0016) C34 * 0.0022 (0.0017) C35 * -0.0100 (0.0016) C36 - 5.1262 (0.0029) Fe1 1.2312 (0.0037) N1 - 0.8688 (0.0038) N2 - 0.0297 (0.0033) O1

Rms deviation of fitted atoms = 0.0079

-9.7102(0.0074)x + 7.4898(0.0131)y - 0.4327(0.0150)z = 2.4018(0.0052)

Angle to previous plane (with approximate e.s.d.) = 39.13 (10)

* -0.0044 (0.0013) C11 * 0.0043 (0.0014) C12 * -0.0026 (0.0014) C13 * -0.0002 (0.0014) C14 * 0.0029 (0.0013) C15 - 1.6461 (0.0010) Fe1 3.3510 (0.0048) N1 1.3393 (0.0041) N2 1.6365 (0.0053) C31 2.1223 (0.0047) C1 - 0.0142 (0.0038) C2 2.2747 (0.0069) O1 0.6819 (0.0085) O2

Rms deviation of fitted atoms = 0.0033

-3.8273(0.0103)x + 11.2024(0.0074)y - 5.8407(0.0110)z = 4.5924(0.0061)

Angle to previous plane (with approximate e.s.d.) = 39.13 (10)

* 0.0069 (0.0015) C31 * 0.0040 (0.0015) C32 * -0.0116 (0.0016) C33 * 0.0086 (0.0016) C34 * 0.0022 (0.0017) C35 * -0.0100 (0.0016) C36 - 5.1262 (0.0029) Fe1 1.2312 (0.0037) N1 - 0.8688 (0.0038) N2 0.1386 (0.0033) C1 - 2.2511 (0.0038) C2 - 0.0297 (0.0033) O1 0.0134 (0.0035) O2

Rms deviation of fitted atoms = 0.0079

-6.7954(0.0101)x - 2.5167(0.0133)y + 11.3425(0.0074)z = 1.0738(0.0058)

Angle to previous plane (with approximate e.s.d.) = 70.02 (7)

* 0.0068 (0.0012) C1 * -0.0048 (0.0012) N1 * -0.0058 (0.0012) N2 * 0.0027 (0.0012) C3 * 0.0011 (0.0013) C4 2.2882 (0.0050) Fe1 0.1587 (0.0036) C2 0.0333 (0.0035) C31 2.2895 (0.0059) O1 0.1789 (0.0073) O2

Rms deviation of fitted atoms = 0.0047

-9.7102(0.0074)x + 7.4898(0.0131)y - 0.4327(0.0150)z = 2.4018(0.0052)

Angle to previous plane (with approximate e.s.d.) = 73.86 (8)

* -0.0044 (0.0013) C11 * 0.0043 (0.0014) C12 * -0.0026 (0.0014) C13 * -0.0002 (0.0014) C14 * 0.0029 (0.0013) C15 - 1.6461 (0.0010) Fe1 3.3510 (0.0048) N1 1.3393 (0.0041) N2 2.1223 (0.0047) C1 - 0.0142 (0.0038) C2 1.6365 (0.0053) C31 2.2747 (0.0069) O1 0.6819 (0.0085) O2

Rms deviation of fitted atoms = 0.0033

WN6006 Acta Electronic E, April issue 2001. ——————————————– Molecule [Ferrocenylmethyl(3-chlorophenyl)benzimidazole] for comparison

Fe1 C11 2.0543 (18) Fe1 C12 2.0419 (19) Fe1 C13 2.038 (2) Fe1 C14 2.034 (2) Fe1 C15 2.040 (2) Fe1 C21 2.031 (3) Fe1 C22 2.034 (3) Fe1 C23 2.032 (2) Fe1 C24 2.026 (2) Fe1 C25 2.020 (3) Cl1 C35 1.742 (2) N1 C1 1.310 (3) N1 C4 1.389 (3) N2 C1 1.378 (3) N2 C2 1.456 (2) N2 C3 1.386 (2) C1 C31 1.480 (3) C2 C11 1.504 (3) C3 C4 1.395 (3) C3 C8 1.390 (3) C4 C5 1.396 (3) C5 C6 1.365 (4) C6 C7 1.394 (4) C7 C8 1.387 (4) C11 C12 1.420 (3) C11 C15 1.428 (3) C12 C13 1.422 (3) C13 C14 1.405 (3) C14 C15 1.419 (3) C21 C22 1.354 (5) C21 C25 1.398 (5) C22 C23 1.375 (4) C23 C24 1.390 (4) C24 C25 1.434 (5)

C1 N1 C4 104.77 (17) C1 N2 C2 128.44 (16) C1 N2 C3 105.85 (16) C2 N2 C3 124.26 (17) N1 C1 N2 113.52 (17) N1 C1 C31 123.68 (19) N2 C1 C31 122.80 (18) N2 C2 C11 111.86 (15) N2 C3 C4 105.63 (17) N2 C3 C8 131.8 (2) C4 C3 C8 122.6 (2) N1 C4 C3 110.20 (17) N1 C4 C5 130.1 (2) C3 C4 C5 119.7 (2) C4 C5 C6 118.2 (3) C5 C6 C7 121.6 (2) C6 C7 C8 121.6 (2) C3 C8 C7 116.3 (3) C12 C11 C2 126.85 (18) C15 C11 C2 126.04 (18) C12 C11 C15 107.08 (18) C11 C12 C13 108.48 (19) C12 C13 C14 107.95 (19) C13 C14 C15 108.4 (2) C11 C15 C14 108.09 (19) C2 C11 Fe1 128.43 (13) C22 C21 C25 108.6 (3) C21 C22 C23 109.4 (3) C22 C23 C24 109.0 (3) C23 C24 C25 106.0 (3) C21 C25 C24 107.0 (3) C32 C31 C1 122.05 (19) C36 C31 C1 118.23 (18) C32 C31 C36 119.69 (19) C31 C32 C33 119.8 (2) C32 C33 C34 120.9 (2) C33 C34 C35 118.7 (2) C34 C35 C36 121.6 (2) C34 C35 Cl1 119.60 (18) C36 C35 Cl1 118.82 (19) C31 C36 C35 119.3 (2)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.00216 (2)0.12247 (2)0.32488 (2)0.03668 (10)
O10.02372 (14)0.61785 (13)0.41939 (13)0.0601 (5)
O20.17496 (15)0.65943 (15)0.36157 (14)0.0664 (5)
N10.23023 (16)0.47315 (12)0.06130 (13)0.0421 (4)
N20.13159 (16)0.33407 (12)0.08945 (13)0.0407 (4)
C10.13752 (19)0.43202 (15)0.10873 (15)0.0380 (5)
C20.0474 (2)0.26531 (16)0.13910 (17)0.0457 (5)
C30.2302 (2)0.31093 (15)0.02599 (15)0.0411 (5)
C40.2904 (2)0.39823 (15)0.00915 (15)0.0408 (5)
C50.3944 (2)0.40038 (18)0.05332 (17)0.0513 (6)
C60.4359 (2)0.3150 (2)0.09670 (18)0.0594 (7)
C70.3753 (3)0.2284 (2)0.07913 (18)0.0625 (7)
C80.2716 (2)0.22421 (17)0.01782 (18)0.0541 (6)
C110.08637 (18)0.22157 (15)0.23282 (16)0.0395 (5)
C120.0637 (2)0.25799 (18)0.33367 (17)0.0516 (6)
C130.1145 (2)0.1949 (2)0.39931 (19)0.0626 (7)
C140.16980 (19)0.1202 (2)0.3407 (2)0.0569 (6)
C150.15324 (18)0.13616 (16)0.23833 (18)0.0461 (5)
C210.16435 (18)0.11614 (18)0.28398 (18)0.0506 (6)
C220.16916 (19)0.1255 (2)0.38954 (19)0.0554 (6)
C230.1123 (2)0.0468 (2)0.4268 (2)0.0616 (7)
C240.0731 (2)0.01266 (18)0.3448 (3)0.0647 (8)
C250.1049 (2)0.0304 (2)0.2557 (2)0.0590 (7)
C310.04939 (19)0.48529 (15)0.17569 (16)0.0394 (5)
C320.07837 (18)0.52279 (15)0.26710 (16)0.0412 (5)
C330.00230 (19)0.57931 (17)0.32834 (16)0.0436 (5)
C340.10545 (19)0.60168 (17)0.29718 (17)0.0458 (5)
C350.13396 (19)0.56388 (19)0.20708 (17)0.0510 (6)
C360.05786 (19)0.50544 (18)0.14695 (17)0.0480 (5)
C370.1237 (2)0.5827 (2)0.4605 (2)0.0724 (8)
C380.2814 (3)0.6879 (3)0.3287 (3)0.0885 (11)
H2A0.02510.29850.15720.055*
H2B0.03460.21400.09160.055*
H50.43490.45810.06540.062*
H60.50550.31500.13850.071*
H70.40560.17180.10970.075*
H80.23140.16630.00640.065*
H120.02230.31390.35300.062*
H130.11190.20170.46940.075*
H140.21030.06900.36510.068*
H150.18140.09730.18360.055*
H210.19510.15920.24030.061*
H220.20440.17580.42830.066*
H230.10220.03590.49450.074*
H240.03290.07050.34820.078*
H250.08930.00620.19000.071*
H320.15030.50930.28690.049*
H350.20540.57790.18650.061*
H360.07890.47960.08700.058*
H37A0.19130.60050.41610.109*
H37B0.12720.61070.52640.109*
H37C0.11960.51340.46640.109*
H38A0.32340.63130.31270.133*
H38B0.32560.72360.38190.133*
H38C0.26700.72800.26930.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.03173 (15)0.03956 (16)0.03918 (16)0.00451 (13)0.00597 (11)0.00530 (14)
O10.0531 (10)0.0734 (12)0.0564 (10)0.0193 (9)0.0171 (8)0.0201 (9)
O20.0499 (10)0.0871 (13)0.0621 (11)0.0262 (9)0.0064 (8)0.0079 (10)
N10.0487 (10)0.0342 (9)0.0429 (10)0.0011 (8)0.0037 (8)0.0022 (8)
N20.0517 (11)0.0314 (9)0.0396 (9)0.0058 (8)0.0078 (8)0.0040 (7)
C10.0476 (12)0.0328 (10)0.0351 (10)0.0002 (9)0.0114 (9)0.0037 (8)
C20.0501 (13)0.0385 (12)0.0499 (12)0.0105 (10)0.0118 (10)0.0066 (10)
C30.0547 (13)0.0349 (10)0.0347 (10)0.0003 (10)0.0090 (9)0.0019 (9)
C40.0527 (12)0.0368 (11)0.0334 (10)0.0013 (9)0.0074 (9)0.0026 (8)
C50.0583 (14)0.0493 (14)0.0452 (12)0.0034 (11)0.0011 (11)0.0040 (10)
C60.0659 (16)0.0655 (17)0.0445 (13)0.0113 (14)0.0028 (12)0.0011 (12)
C70.089 (2)0.0516 (15)0.0464 (13)0.0180 (14)0.0055 (13)0.0121 (11)
C80.0785 (17)0.0375 (12)0.0465 (13)0.0025 (12)0.0091 (12)0.0028 (10)
C110.0396 (11)0.0375 (11)0.0416 (11)0.0080 (9)0.0054 (9)0.0046 (9)
C120.0582 (14)0.0453 (13)0.0510 (13)0.0156 (11)0.0049 (11)0.0036 (11)
C130.0640 (16)0.0806 (19)0.0462 (13)0.0349 (15)0.0195 (12)0.0117 (13)
C140.0364 (11)0.0675 (16)0.0693 (16)0.0127 (12)0.0173 (11)0.0237 (14)
C150.0344 (10)0.0494 (13)0.0538 (13)0.0047 (10)0.0022 (9)0.0099 (11)
C210.0361 (11)0.0596 (15)0.0588 (14)0.0056 (11)0.0172 (10)0.0119 (12)
C220.0361 (11)0.0679 (16)0.0606 (14)0.0014 (12)0.0011 (10)0.0033 (13)
C230.0429 (13)0.084 (2)0.0577 (15)0.0144 (13)0.0050 (11)0.0267 (14)
C240.0373 (13)0.0390 (13)0.118 (2)0.0063 (10)0.0101 (14)0.0136 (15)
C250.0413 (13)0.0704 (17)0.0644 (16)0.0153 (12)0.0023 (11)0.0176 (14)
C310.0427 (11)0.0326 (10)0.0423 (11)0.0000 (9)0.0032 (9)0.0053 (9)
C320.0401 (11)0.0383 (11)0.0463 (12)0.0043 (9)0.0099 (9)0.0005 (9)
C330.0453 (12)0.0436 (12)0.0430 (11)0.0038 (10)0.0101 (9)0.0002 (10)
C340.0391 (11)0.0510 (14)0.0463 (12)0.0071 (10)0.0012 (9)0.0046 (10)
C350.0380 (12)0.0652 (15)0.0507 (13)0.0043 (11)0.0096 (10)0.0088 (12)
C360.0469 (13)0.0560 (14)0.0424 (12)0.0043 (11)0.0107 (10)0.0030 (10)
C370.0616 (17)0.100 (2)0.0599 (16)0.0212 (16)0.0261 (14)0.0205 (16)
C380.0633 (18)0.117 (3)0.086 (2)0.0450 (19)0.0115 (16)0.007 (2)
Geometric parameters (Å, º) top
Fe1—C112.032 (2)C22—C231.393 (4)
Fe1—C122.030 (2)C23—C241.395 (4)
Fe1—C132.038 (2)C24—C251.410 (4)
Fe1—C142.049 (2)C31—C321.394 (3)
Fe1—C152.042 (2)C31—C361.383 (3)
Fe1—C212.037 (2)C32—C331.374 (3)
Fe1—C222.041 (2)C33—C341.407 (3)
Fe1—C232.040 (2)C34—C351.379 (3)
Fe1—C242.044 (2)C35—C361.382 (3)
Fe1—C252.039 (2)C2—H2A0.9700
O1—C331.368 (3)C2—H2B0.9700
O1—C371.432 (3)C5—H50.9300
O2—C341.364 (3)C6—H60.9300
O2—C381.423 (3)C7—H70.9300
N1—C11.317 (3)C8—H80.9300
N1—C41.388 (3)C12—H120.9300
N2—C11.378 (3)C13—H130.9300
N2—C21.466 (3)C14—H140.9300
N2—C31.383 (3)C15—H150.9300
C1—C311.475 (3)C21—H210.9300
C2—C111.498 (3)C22—H220.9300
C3—C41.399 (3)C23—H230.9300
C3—C81.391 (3)C24—H240.9300
C4—C51.390 (3)C25—H250.9300
C5—C61.373 (3)C32—H320.9300
C6—C71.395 (4)C35—H350.9300
C7—C81.380 (4)C36—H360.9300
C11—C121.422 (3)C37—H37A0.9600
C11—C151.421 (3)C37—H37B0.9600
C12—C131.410 (4)C37—H37C0.9600
C13—C141.402 (4)C38—H38A0.9600
C14—C151.409 (3)C38—H38B0.9600
C21—C221.399 (3)C38—H38C0.9600
C21—C251.400 (3)
C11—Fe1—C21107.15 (9)C32—C31—C1118.82 (19)
C12—Fe1—C22107.97 (11)C33—C32—C31121.0 (2)
C13—Fe1—C23109.76 (10)C32—C33—C34119.5 (2)
C14—Fe1—C24111.21 (10)C35—C34—C33119.2 (2)
C15—Fe1—C25109.83 (10)C34—C35—C36120.9 (2)
O1—C33—C32124.6 (2)C35—C36—C31120.2 (2)
O1—C33—C34115.9 (2)N2—C2—H2A109.2
C33—O1—C37116.5 (2)N2—C2—H2B109.2
O2—C34—C33115.7 (2)C11—C2—H2A109.2
O2—C34—C35125.1 (2)C11—C2—H2B109.2
C34—O2—C38116.7 (2)H2A—C2—H2B107.9
C1—N1—C4104.98 (17)C4—C5—H5120.9
C1—N2—C2126.63 (19)C6—C5—H5120.9
C1—N2—C3106.38 (17)C5—C6—H6119.5
C2—N2—C3126.32 (18)C7—C6—H6119.5
N1—C1—N2112.98 (19)C6—C7—H7119.0
N1—C1—C31123.47 (19)C8—C7—H7119.0
N2—C1—C31123.55 (19)C3—C8—H8121.7
N2—C2—C11112.21 (18)C7—C8—H8121.7
N2—C3—C4105.50 (18)C11—C12—H12125.8
N2—C3—C8132.6 (2)C13—C12—H12125.8
C4—C3—C8121.9 (2)Fe1—C12—H12126.1
N1—C4—C3110.14 (19)C12—C13—H13125.9
N1—C4—C5129.7 (2)C14—C13—H13125.9
C3—C4—C5120.2 (2)Fe1—C13—H13125.9
C4—C5—C6118.2 (2)C13—C14—H14125.9
C5—C6—C7121.1 (2)C15—C14—H14125.9
C8—C7—C6122.0 (2)Fe1—C14—H14126.5
C7—C8—C3116.7 (2)C11—C15—H15125.7
C12—C11—C2126.5 (2)C14—C15—H15125.7
C15—C11—C2126.8 (2)Fe1—C15—H15126.5
C12—C11—C15106.7 (2)C22—C21—H21126.1
C2—C11—Fe1125.74 (15)C25—C21—H21126.1
C12—C11—Fe169.41 (12)Fe1—C21—H21125.4
C15—C11—Fe169.95 (12)C23—C22—H22125.8
C13—C12—C11108.4 (2)C21—C22—H22125.8
C11—C12—Fe169.60 (12)Fe1—C22—H22126.0
C13—C12—Fe170.02 (14)C22—C23—H23126.0
C14—C13—C12108.2 (2)C24—C23—H23126.0
C12—C13—Fe169.40 (13)Fe1—C23—H23125.4
C14—C13—Fe170.36 (14)C23—C24—H24126.0
C13—C14—C15108.1 (2)C25—C24—H24126.0
C13—C14—Fe169.53 (14)Fe1—C24—H24126.1
C15—C14—Fe169.58 (12)C21—C25—H25126.2
C14—C15—C11108.5 (2)C24—C25—H25126.2
C11—C15—Fe169.23 (12)Fe1—C25—H25125.6
C14—C15—Fe170.12 (13)C33—C32—H32119.5
C22—C21—C25107.8 (2)C31—C32—H32119.5
C22—C21—Fe170.09 (13)C34—C35—H35119.5
C25—C21—Fe169.99 (13)C36—C35—H35119.5
C23—C22—C21108.5 (2)C35—C36—H36119.9
C21—C22—Fe169.80 (13)C31—C36—H36119.9
C23—C22—Fe170.01 (13)O1—C37—H37A109.5
C22—C23—C24108.0 (2)O1—C37—H37B109.5
C22—C23—Fe170.06 (14)H37A—C37—H37B109.5
C24—C23—Fe170.18 (14)O1—C37—H37C109.5
C23—C24—C25108.0 (2)H37A—C37—H37C109.5
C23—C24—Fe169.87 (14)H37B—C37—H37C109.5
C25—C24—Fe169.61 (14)O2—C38—H38A109.5
C21—C25—C24107.7 (2)O2—C38—H38B109.5
C21—C25—Fe169.83 (13)H38A—C38—H38B109.5
C24—C25—Fe170.00 (14)O2—C38—H38C109.5
C36—C31—C32119.1 (2)H38A—C38—H38C109.5
C36—C31—C1121.9 (2)H38B—C38—H38C109.5
N2—C2—C11—Fe1179.65 (15)C22—Fe1—C11—C250.3 (2)
N1—C1—C31—C3267.3 (3)C23—Fe1—C11—C273.3 (5)
C37—O1—C33—C3211.2 (4)C24—Fe1—C11—C263.0 (3)
C38—O2—C34—C354.7 (4)C25—Fe1—C11—C230.6 (2)
C4—N1—C1—N21.2 (2)C2—C11—C12—C13179.4 (2)
C4—N1—C1—C31178.71 (19)C15—C11—C12—C130.8 (2)
C2—N2—C1—N1172.34 (19)C2—C11—C15—C14179.5 (2)
C3—N2—C1—N11.3 (2)C12—C11—C15—C140.7 (2)
C2—N2—C1—C317.5 (3)C11—C12—C13—C140.7 (3)
C3—N2—C1—C31178.59 (18)C12—C13—C14—C150.2 (3)
C1—N2—C2—C1189.1 (3)C13—C14—C15—C110.3 (2)
C3—N2—C2—C1180.2 (3)C12—C11—C15—C140.7 (2)
C1—N2—C3—C40.8 (2)C25—C21—C22—C230.6 (3)
C2—N2—C3—C4171.91 (19)C22—C21—C25—C240.1 (3)
C1—N2—C3—C8179.5 (2)C21—C22—C23—C240.8 (3)
C2—N2—C3—C88.4 (4)C22—C23—C24—C250.7 (3)
C1—N1—C4—C5180.0 (2)C23—C24—C25—C210.3 (3)
C1—N1—C4—C30.6 (2)N1—C1—C31—C36107.7 (3)
N2—C3—C4—N10.2 (2)N2—C1—C31—C3672.5 (3)
C8—C3—C4—N1179.85 (19)N2—C1—C31—C32112.6 (2)
N2—C3—C4—C5179.33 (19)C36—C31—C32—C330.2 (3)
C8—C3—C4—C50.4 (3)C1—C31—C32—C33174.91 (19)
N1—C4—C5—C6179.8 (2)C37—O1—C33—C34169.6 (2)
C3—C4—C5—C60.4 (3)C31—C32—C33—O1179.3 (2)
C4—C5—C6—C70.3 (4)C31—C32—C33—C341.6 (3)
C5—C6—C7—C80.0 (4)C38—O2—C34—C33176.3 (2)
C6—C7—C8—C30.1 (4)O1—C33—C34—O20.3 (3)
N2—C3—C8—C7179.5 (2)C32—C33—C34—O2179.0 (2)
C4—C3—C8—C70.1 (3)O1—C33—C34—C35178.8 (2)
N2—C2—C11—C1290.7 (3)C32—C33—C34—C352.0 (3)
N2—C2—C11—C1589.0 (3)O2—C34—C35—C36179.6 (2)
C12—Fe1—C11—C2120.8 (3)C33—C34—C35—C360.7 (4)
C13—Fe1—C11—C2158.2 (2)C34—C35—C36—C311.1 (4)
C14—Fe1—C11—C2158.6 (2)C32—C31—C36—C351.5 (3)
C15—Fe1—C11—C2121.6 (2)C1—C31—C36—C35173.4 (2)
C21—Fe1—C11—C211.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···Cg1i0.932.883.514 (3)127
C7—H7···Cg2ii0.932.733.636 (3)163
C21—H21···N1i0.933.193.549 (3)105
C21—H21···N2i0.933.013.777 (3)141
C21—H21···C1i0.933.043.532 (3)115
C21—H21···C3i0.933.093.899 (3)146
C21—H21···C4i0.933.193.745 (3)121
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+1/2, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Fe(C5H5)(C20H17N2O)][Fe(C5H5)(C21H19N2O)]
Mr422.30452.32
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/a
Temperature (K)294294
a, b, c (Å)12.4326 (10), 9.5414 (7), 17.1682 (8)11.7089 (10), 13.7888 (12), 13.2441 (11)
β (°) 97.400 (5) 96.758 (7)
V3)2019.6 (2)2123.4 (3)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.770.74
Crystal size (mm)0.43 × 0.33 × 0.300.35 × 0.25 × 0.15
Data collection
DiffractometerSiemens P4
diffractometer
Siemens P4
diffractometer
Absorption correctionψ-scan
(North et al., 1968)
ψ-scan
(North et al., 1968)
Tmin, Tmax0.737, 0.8030.783, 0.900
No. of measured, independent and
observed [I > 2σ(I)] reflections
6105, 4830, 3693 6262, 5088, 3684
Rint0.0110.028
(sin θ/λ)max1)0.6610.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.110, 1.04 0.039, 0.096, 1.01
No. of reflections48305088
No. of parameters263282
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.310.21, 0.22

Computer programs: XSCANS (Siemens, 1994), XSCANS, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 1998), SHELXL97 and PREP8 (Ferguson, 1998).

Selected geometric parameters (Å, º) for (I) top
O1—C341.373 (2)N2—C21.457 (2)
O1—C371.418 (3)N2—C31.384 (2)
N1—C11.321 (2)C1—C311.471 (2)
N1—C41.381 (2)C2—C111.502 (3)
N2—C11.382 (2)
O1—C34—C33125.0 (2)N1—C1—C31122.62 (17)
O1—C34—C35115.1 (2)N2—C1—C31125.14 (16)
C34—O1—C37117.7 (2)N2—C2—C11112.75 (15)
C1—N1—C4105.47 (15)N2—C3—C4105.59 (16)
C1—N2—C2130.00 (15)N2—C3—C8131.71 (18)
C1—N2—C3106.46 (15)N1—C4—C3110.25 (16)
C2—N2—C3123.24 (15)N1—C4—C5129.89 (19)
N1—C1—N2112.23 (16)C2—C11—Fe1126.56 (13)
N2—C2—C11—Fe1109.58 (16)N1—C1—C31—C3238.0 (3)
C1—N2—C2—C11104.5 (2)C37—O1—C34—C335.0 (4)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N1i0.932.483.397 (3)168
C2—H2B···N1ii0.972.613.404 (3)139
C7—H7···Cg1iii0.932.813.644 (3)151
C37—H37B···Cg2iv0.962.853.734 (3)154
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z+1/2; (iv) x+1, y, z.
Selected geometric parameters (Å, º) for (II) top
O1—C331.368 (3)N2—C11.378 (3)
O1—C371.432 (3)N2—C21.466 (3)
O2—C341.364 (3)N2—C31.383 (3)
O2—C381.423 (3)C1—C311.475 (3)
N1—C11.317 (3)C2—C111.498 (3)
N1—C41.388 (3)
O1—C33—C32124.6 (2)N1—C1—N2112.98 (19)
O1—C33—C34115.9 (2)N1—C1—C31123.47 (19)
C33—O1—C37116.5 (2)N2—C1—C31123.55 (19)
O2—C34—C33115.7 (2)N2—C2—C11112.21 (18)
O2—C34—C35125.1 (2)N2—C3—C4105.50 (18)
C34—O2—C38116.7 (2)N2—C3—C8132.6 (2)
C1—N1—C4104.98 (17)N1—C4—C3110.14 (19)
C1—N2—C2126.63 (19)N1—C4—C5129.7 (2)
C1—N2—C3106.38 (17)C2—C11—Fe1125.74 (15)
C2—N2—C3126.32 (18)
N2—C2—C11—Fe1179.65 (15)C37—O1—C33—C3211.2 (4)
N1—C1—C31—C3267.3 (3)C38—O2—C34—C354.7 (4)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C21—H21···Cg1i0.932.883.514 (3)127
C7—H7···Cg2ii0.932.733.636 (3)163
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+1/2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds