Download citation
Download citation
link to html
The title compound, bis(2,4-dinitrophenolato-[kappa]2O,O')(1,4,7,10,13,16-hexaoxadecane-[kappa]6O)barium(II), [Ba(C6H3N2O5)2(C12H24O6)], is a 1:1 complex of barium(II)-2,4-di­nitro­phenolate and 1,4,7,10,13,16-hexaoxa­cyclo­octa­decane (18-crown-6). Its structure is located on a crystallographic inversion centre. The temperature dependence of the crystal structure has been studied. The monoclinic [beta] angle of the P21n space group increases with increasing temperature. The packing structure of the complex is stabilized by intermolecular C-H...O interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101018339/sk1500sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101018339/sk1500Isup2.hkl
Contains datablock I

CCDC reference: 180142

Comment top

The complexes of alkaline-earth metal cations with 1,4,7,10,13,16-hexaoxacyclooctadecane (18-crown-6) have been investigated intensively (Dyer et al., 1986; Wei et al., 1988; Luger et al., 1992; Rheingold et al., 1993). In general, the studies are directed to the structures of the complexes, including conformation of the macrocycle and the position of the metal cation related to the crown centre. This interest is based on the different nature of the metal cation and the counter anion.

In this study we prepared the title complex (I) whose counter anion is 2,4-dinitrophenolate, in which its nitro groups are expected to be involved in intermolecular C—H···O interactions. The cell parameters of (I) were evaluated in the wide temperature range from 123 to 300 K in order to explore the temperature-dependences of the crystal cell parameters, while the geometry and weak interactions were analyzed for the collected data at 183 K.

In all the temperature range studied, the complex (I) belongs to a monoclinic P21/n space group. Fig. 1 shows the continous temperature-dependences of the a, b, c lattice parameters, and the monoclinic angle β. Though a and b increase, the c lattice parameter decreases with the increasing temperature (Fig. 1). The important observation is the variation of the angle β with temperature for this structure. Since the monoclinic system determined by the angle of β, any variation of the monoclinic angle β with temperature implies that the crystal of the complex (I) exhibits a temperature-dependent crystal structure.

The crystallographic data of the complex (I) at choosen temperature (183 K) shows that the asymmetric unit of the monoclinic P21/n consists only one half of the molecule of (I) and another one half of the molecule is related to the other by a center of inversion at the barium atom. The unit cell contains two molecules. The barium atom lies at the crown centre, and the C1 and C6 atoms of the first half of the 18-crown-6 are connected to the C6A and C1A atoms of the second-half and vice versa, while the whole 2,4-dinitrophenol moiety is inverted to the opposite side of the 18-crown-6 ring. The barium atom is ten coordinated to the six oxygen atoms of the 18-crown-6 and the four O atoms from the two 2,4-dinitrophenol moieties.

The atomic numbering scheme and molecular conformation of (I) is shown in Fig. 2. Their bond lengths and bond angles are normal values (see Table 1). Average Ba—O(18-crown-6) and Ba—O(dinitrophenol) are 2.801 (3) Å and 2.842 (3) Å. The average Ba—O(18-crown-6) distance of (I) is slightly shorter than that in the room-temperature structure of barium-bis(trimethylacetate)-18-crown-6 [2.823 (6) Å] (Rheingold et al., 1993), while the average Ba—O(dinitrophenol) distance is slightly shorter that the sum of the covalent radii for Ba and O atoms of 2.87 Å (Shannon, 1976).

Both the 2,4-dinitrophenol moieties are essentially planar with a maximum deviation of 0.012 (4) Å. The dihedral angle between the planes through the 2,4-dinitrophenol moiety and Ba—O4—O5 is 12.8 (2)°, and that of the planes through the 18-crown-6 and 2,4-dinitrophenol is 66.7 (1)°.

In the 18-crown-6, the C atoms deviate from its least-square plane to within ±0.355 (4) Å with average C—O and C—C bond distances are being 1.427 (7) and 1.501 (7) Å, respectively. The C—O bond lengths are those of normal values for C—O single bond (Allen et al., 1987), whereas that of the C—C bond lengths in both the structures are considerably shorter than the average value of Csp3—Csp3 single bond. The average C—C bond lengths is also shorter by 0.011 Å from that of the uncomplexed 18-crown-6 at 100 K (Maverick et al., 1980) or shorter by 0.014 Å from that of the room-temperature structure of barium(II)bis(trimethylacetate)-18-crown-6 (Rheingold et al., 1993). This so-called macrocyclic C—C shortening effect has been observed in a number of crown-ether structures, and has also been intensively discussed (Shoham et al., 1983).

The conformation of the 18-crown-6 in the present complex is that of the typical crown ether arrangement determined by the torsion angles within the crown ring (Table 1). The usual O—C—C—O and C—O—C—C torsion angles which are close to +sc or -sc and ap conformations, repectively, were observed, indicating that the conformation of the rigid 18-crown-6 is approximately D3 d symmetry.

The packing structure of the title complex is stabilized by intermolecular C—H···O interactions (Table 2). Two of the interactions [C2—H2B···O8(1/2 - x,1/2 + y,-1/2 - z) and C6—H6A···O8(x,y,1 + z)] interconnect the molecules of the title complex into the molecular layers stacked along the b axis. The C···O distances of the weak interactions slightly decrease compared with those of the structure at 300 K. Irrespective of almost similar C—H···O angles, the weak interactions are strengthened as the temperature decreases, especially for C1···O5 and C6···O4.

Experimental top

3.16 g (10 mmol) of Ba(OH)2·8H2O, 3.68 g (20 mmol) of 2,4-dinitrophenol, and 2.64 g (10 mmol) of 18-crown-6 were thoroughly mixed and then dissolved in 50 ml of ethanol. 2 mmol of distilled water was then added and the concoction was warmed up until a solution was obtained. The solution was filtered and left to evaporate slowly in air. Orange single crystals suitable for X-ray data collection were obtained from the solution after a few days.

Refinement top

All H atoms were geometrically fixed and allowed to ride on their parent C atoms with C—H 0.96 Å, and were refined isotropically with fixed displacement parameters Uiso(H) = 1.2Ueq(C). Due to a large fraction of weak data at higher angles, the 2θ maximum is limited to 50°.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. Temperature variation of the cell parameters of the title complex.
[Figure 2] Fig. 2. The structure of the title complex showing 50% probability displacement ellipsoids with the atom-numbering scheme.
[Figure 3] Fig. 3. Packing diagram of (I) viewed down along the b axis. The dashed lines denote the hydrogen bondings.
Barium(II)-2,4-dinitrophenolate-18-Crown-6 top
Crystal data top
C24H30BaN4O16F(000) = 772
Mr = 767.86Dx = 1.748 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7844 reflections
a = 7.2679 (3) Åθ = 2.0–29.5°
b = 15.0351 (7) ŵ = 1.45 mm1
c = 13.3607 (6) ÅT = 183 K
β = 91.921 (1)°Block, yellow
V = 1459.1 (1) Å30.44 × 0.16 × 0.12 mm
Z = 2
Data collection top
Siemens SMART CCD area detector
diffractometer
2486 independent reflections
Radiation source: fine-focus sealed tube2043 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
Detector resolution: 8.33 pixels mm-1θmax = 25.0°, θmin = 2.0°
ω scansh = 87
Absorption correction: empirical (using intensity measurements)
SADABS (Sheldrick, 1996)
k = 1716
Tmin = 0.569, Tmax = 0.846l = 1515
7712 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0637P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2486 reflectionsΔρmax = 1.14 e Å3
206 parametersΔρmin = 1.32 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0063 (11)
Crystal data top
C24H30BaN4O16V = 1459.1 (1) Å3
Mr = 767.86Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.2679 (3) ŵ = 1.45 mm1
b = 15.0351 (7) ÅT = 183 K
c = 13.3607 (6) Å0.44 × 0.16 × 0.12 mm
β = 91.921 (1)°
Data collection top
Siemens SMART CCD area detector
diffractometer
2486 independent reflections
Absorption correction: empirical (using intensity measurements)
SADABS (Sheldrick, 1996)
2043 reflections with I > 2σ(I)
Tmin = 0.569, Tmax = 0.846Rint = 0.071
7712 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.04Δρmax = 1.14 e Å3
2486 reflectionsΔρmin = 1.32 e Å3
206 parameters
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 30 s covered 0.3° in ω. The crystal-to-detector distance was 4 cm and the detector swing angle was -35°. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the intensity of duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.00000.00000.00000.0125 (2)
N10.1218 (5)0.1190 (2)0.2599 (3)0.0187 (8)
N20.2752 (6)0.0140 (3)0.5750 (3)0.0209 (9)
O10.2488 (4)0.13670 (17)0.0500 (2)0.0178 (6)
O20.2993 (4)0.0331 (2)0.1235 (2)0.0213 (7)
O30.0967 (4)0.17951 (18)0.05062 (19)0.0153 (6)
O40.1438 (4)0.0586 (2)0.1707 (2)0.0229 (7)
O50.1170 (5)0.1179 (2)0.1670 (2)0.0364 (9)
O60.0961 (5)0.18845 (19)0.3068 (2)0.0345 (8)
O70.2742 (6)0.0609 (2)0.6084 (3)0.0365 (9)
O80.3094 (6)0.0809 (2)0.6224 (3)0.0383 (9)
C10.1755 (6)0.2250 (3)0.0438 (3)0.0206 (9)
H1A0.09810.23630.09920.025*
H1B0.27390.26760.04590.025*
C20.3516 (7)0.1227 (3)0.1399 (4)0.0236 (10)
H2A0.44380.16800.14880.028*
H2B0.27000.12630.19480.028*
C30.4383 (6)0.0323 (3)0.1399 (3)0.0225 (10)
H3A0.50300.02160.20260.027*
H3B0.52510.02960.08740.027*
C40.3663 (7)0.1225 (3)0.1351 (4)0.0234 (10)
H4A0.43950.13850.07850.028*
H4B0.44360.12700.19550.028*
C50.2060 (6)0.1840 (3)0.1415 (3)0.0223 (10)
H5A0.13250.16700.19680.027*
H5B0.24810.24380.15240.027*
C60.0655 (6)0.2336 (3)0.0540 (3)0.0168 (9)
H6A0.03110.29460.06460.020*
H6B0.13880.21510.10870.020*
C70.1684 (5)0.0467 (3)0.2621 (3)0.0141 (9)
C80.2086 (6)0.1204 (3)0.3275 (3)0.0203 (9)
H8A0.21100.17920.29940.024*
C90.2418 (6)0.1110 (3)0.4267 (3)0.0211 (9)
H9A0.27080.16190.46650.025*
C100.2354 (6)0.0256 (3)0.4697 (3)0.0164 (9)
C110.1942 (5)0.0477 (3)0.4137 (3)0.0163 (9)
H11A0.18890.10540.44440.020*
C120.1607 (5)0.0391 (3)0.3133 (3)0.0158 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.0155 (3)0.0105 (3)0.0113 (3)0.00006 (11)0.00364 (16)0.00219 (11)
N10.0204 (18)0.0196 (19)0.0160 (18)0.0003 (15)0.0016 (15)0.0022 (15)
N20.030 (2)0.026 (2)0.006 (2)0.0006 (17)0.0012 (18)0.0023 (16)
O10.0248 (16)0.0129 (14)0.0151 (14)0.0003 (12)0.0070 (12)0.0002 (12)
O20.0187 (16)0.0152 (16)0.0292 (18)0.0014 (13)0.0105 (13)0.0033 (14)
O30.0211 (14)0.0163 (14)0.0084 (13)0.0016 (12)0.0023 (11)0.0031 (11)
O40.0301 (17)0.0239 (16)0.0148 (16)0.0015 (13)0.0039 (13)0.0033 (13)
O50.066 (2)0.0265 (18)0.0167 (17)0.0066 (17)0.0068 (17)0.0061 (14)
O60.056 (2)0.0124 (16)0.0355 (19)0.0061 (15)0.0069 (17)0.0026 (15)
O70.069 (3)0.023 (2)0.0173 (17)0.0010 (18)0.0076 (17)0.0075 (15)
O80.064 (3)0.029 (2)0.0220 (18)0.0082 (18)0.0015 (17)0.0057 (16)
C10.028 (2)0.011 (2)0.022 (2)0.0013 (17)0.0059 (19)0.0015 (18)
C20.025 (2)0.022 (3)0.023 (2)0.0032 (19)0.014 (2)0.001 (2)
C30.019 (2)0.026 (2)0.022 (2)0.003 (2)0.0101 (19)0.002 (2)
C40.021 (2)0.018 (2)0.030 (3)0.0059 (19)0.009 (2)0.003 (2)
C50.022 (2)0.018 (2)0.026 (2)0.0056 (18)0.0055 (19)0.0070 (19)
C60.025 (2)0.0141 (19)0.0116 (19)0.0021 (17)0.0018 (17)0.0026 (16)
C70.013 (2)0.017 (2)0.012 (2)0.0040 (16)0.0014 (16)0.0009 (17)
C80.025 (2)0.013 (2)0.022 (2)0.0002 (17)0.0007 (19)0.0023 (18)
C90.025 (2)0.015 (2)0.023 (2)0.0021 (17)0.0001 (19)0.0049 (18)
C100.022 (2)0.021 (2)0.006 (2)0.000 (2)0.0016 (17)0.0005 (18)
C110.017 (2)0.012 (2)0.020 (2)0.0024 (16)0.0038 (17)0.0019 (17)
C120.013 (2)0.013 (2)0.022 (2)0.0019 (16)0.0041 (17)0.0002 (19)
Geometric parameters (Å, º) top
Ba1—O42.689 (3)C1—H1A0.9601
Ba1—O4i2.689 (3)C1—H1B0.9600
Ba1—O2i2.732 (3)C2—C31.498 (7)
Ba1—O22.732 (3)C2—H2A0.9600
Ba1—O12.804 (3)C2—H2B0.9600
Ba1—O1i2.804 (3)C3—H3A0.9600
Ba1—O3i2.864 (3)C3—H3B0.9600
Ba1—O32.864 (3)C4—C51.492 (6)
Ba1—O5i2.995 (3)C4—H4A0.9700
Ba1—O52.995 (3)C4—H4B0.9700
N1—O61.229 (4)C5—H5A0.9599
N1—O51.242 (4)C5—H5B0.9600
N1—C121.431 (5)C6—C1i1.514 (6)
N2—O71.212 (5)C6—H6A0.9600
N2—O81.218 (5)C6—H6B0.9600
N2—C101.456 (6)C7—C81.448 (6)
O1—C21.409 (5)C7—C121.459 (6)
O1—C11.432 (5)C8—C91.363 (6)
O2—C31.422 (6)C8—H8A0.9600
O2—C41.436 (5)C9—C101.407 (6)
O3—C51.430 (5)C9—H9A0.9600
O3—C61.434 (5)C10—C111.370 (6)
O4—C71.252 (5)C11—C121.378 (6)
C1—C6i1.514 (6)C11—H11A0.9600
O4—Ba1—O4i180.00 (17)C5—O3—Ba1111.7 (2)
O4—Ba1—O2i75.65 (9)C6—O3—Ba1110.3 (2)
O4i—Ba1—O2i104.35 (9)C7—O4—Ba1148.4 (3)
O4—Ba1—O2104.35 (9)N1—O5—Ba1140.4 (3)
O4i—Ba1—O275.65 (9)O1—C1—C6i108.3 (3)
O2i—Ba1—O2180.00 (11)O1—C1—H1A110.2
O4—Ba1—O172.30 (8)C6i—C1—H1A110.2
O4i—Ba1—O1107.70 (8)O1—C1—H1B110.0
O2i—Ba1—O1120.31 (9)C6i—C1—H1B109.9
O2—Ba1—O159.69 (9)H1A—C1—H1B108.3
O4—Ba1—O1i107.70 (8)O1—C2—C3110.3 (4)
O4i—Ba1—O1i72.30 (8)O1—C2—H2A110.3
O2i—Ba1—O1i59.69 (9)C3—C2—H2A110.6
O2—Ba1—O1i120.31 (9)O1—C2—H2B108.6
O1—Ba1—O1i180.00 (7)C3—C2—H2B108.8
O4—Ba1—O3i65.81 (8)H2A—C2—H2B108.2
O4i—Ba1—O3i114.19 (8)O2—C3—C2109.3 (4)
O2i—Ba1—O3i60.10 (8)O2—C3—H3A110.0
O2—Ba1—O3i119.90 (8)C2—C3—H3A110.2
O1—Ba1—O3i61.10 (8)O2—C3—H3B109.8
O1i—Ba1—O3i118.90 (8)C2—C3—H3B109.1
O4—Ba1—O3114.19 (8)H3A—C3—H3B108.4
O4i—Ba1—O365.81 (8)O2—C4—C5108.9 (4)
O2i—Ba1—O3119.90 (8)O2—C4—H4A109.9
O2—Ba1—O360.10 (8)C5—C4—H4A109.9
O1—Ba1—O3118.90 (8)O2—C4—H4B109.9
O1i—Ba1—O361.10 (8)C5—C4—H4B109.9
O3i—Ba1—O3180.00 (11)H4A—C4—H4B108.3
O4—Ba1—O5i124.48 (7)O3—C5—C4109.6 (3)
O4i—Ba1—O5i55.52 (7)O3—C5—H5A109.5
O2i—Ba1—O5i95.86 (10)C4—C5—H5A109.5
O2—Ba1—O5i84.14 (10)O3—C5—H5B109.8
O1—Ba1—O5i65.52 (9)C4—C5—H5B110.1
O1i—Ba1—O5i114.48 (9)H5A—C5—H5B108.3
O3i—Ba1—O5i62.92 (8)O3—C6—C1i109.6 (3)
O3—Ba1—O5i117.08 (8)O3—C6—H6A109.6
O4—Ba1—O555.52 (7)C1i—C6—H6A109.6
O4i—Ba1—O5124.48 (7)O3—C6—H6B109.8
O2i—Ba1—O584.15 (10)C1i—C6—H6B110.0
O2—Ba1—O595.86 (10)H6A—C6—H6B108.2
O1—Ba1—O5114.48 (9)O4—C7—C8121.1 (4)
O1i—Ba1—O565.52 (9)O4—C7—C12125.4 (4)
O3i—Ba1—O5117.08 (8)C8—C7—C12113.5 (4)
O3—Ba1—O562.92 (8)C9—C8—C7123.6 (4)
O5i—Ba1—O5180.00 (18)C9—C8—H8A118.3
O6—N1—O5120.8 (3)C7—C8—H8A118.1
O6—N1—C12119.2 (3)C8—C9—C10119.2 (4)
O5—N1—C12119.9 (3)C8—C9—H9A120.3
O7—N2—O8125.1 (4)C10—C9—H9A120.5
O7—N2—C10117.8 (4)C11—C10—C9121.0 (4)
O8—N2—C10117.0 (4)C11—C10—N2119.1 (4)
C2—O1—C1112.0 (3)C9—C10—N2119.9 (4)
C2—O1—Ba1114.4 (2)C10—C11—C12120.4 (4)
C1—O1—Ba1115.5 (2)C10—C11—H11A119.9
C3—O2—C4113.2 (3)C12—C11—H11A119.7
C3—O2—Ba1120.9 (3)C11—C12—N1116.8 (4)
C4—O2—Ba1119.7 (3)C11—C12—C7122.3 (4)
C5—O3—C6112.3 (3)N1—C12—C7120.9 (4)
O4—Ba1—O1—C2142.4 (3)O3i—Ba1—O4—C7128.3 (5)
O4i—Ba1—O1—C237.6 (3)O3—Ba1—O4—C751.7 (5)
O2i—Ba1—O1—C2156.8 (3)O5i—Ba1—O4—C7152.2 (5)
O2—Ba1—O1—C223.2 (3)O5—Ba1—O4—C727.8 (5)
O3i—Ba1—O1—C2145.9 (3)O6—N1—O5—Ba1144.6 (3)
O3—Ba1—O1—C234.1 (3)C12—N1—O5—Ba136.6 (6)
O5i—Ba1—O1—C274.6 (3)O4—Ba1—O5—N134.9 (4)
O5—Ba1—O1—C2105.4 (3)O4i—Ba1—O5—N1145.1 (4)
O4—Ba1—O1—C185.4 (3)O2i—Ba1—O5—N141.7 (4)
O4i—Ba1—O1—C194.6 (3)O2—Ba1—O5—N1138.3 (4)
O2i—Ba1—O1—C124.7 (3)O1—Ba1—O5—N179.0 (5)
O2—Ba1—O1—C1155.3 (3)O1i—Ba1—O5—N1101.0 (5)
O3i—Ba1—O1—C113.8 (2)O3i—Ba1—O5—N110.4 (5)
O3—Ba1—O1—C1166.2 (2)O3—Ba1—O5—N1169.6 (5)
O5i—Ba1—O1—C157.5 (2)C2—O1—C1—C6i179.2 (3)
O5—Ba1—O1—C1122.5 (2)Ba1—O1—C1—C6i45.9 (4)
O4—Ba1—O2—C351.4 (3)C1—O1—C2—C3175.4 (4)
O4i—Ba1—O2—C3128.6 (3)Ba1—O1—C2—C350.8 (4)
O1—Ba1—O2—C37.7 (3)C4—O2—C3—C2172.4 (4)
O1i—Ba1—O2—C3172.3 (3)Ba1—O2—C3—C235.2 (5)
O3i—Ba1—O2—C318.7 (3)O1—C2—C3—O255.9 (5)
O3—Ba1—O2—C3161.3 (3)C3—O2—C4—C5166.3 (4)
O5i—Ba1—O2—C372.7 (3)Ba1—O2—C4—C540.9 (5)
O5—Ba1—O2—C3107.3 (3)C6—O3—C5—C4176.8 (3)
O4—Ba1—O2—C499.3 (3)Ba1—O3—C5—C452.3 (4)
O4i—Ba1—O2—C480.7 (3)O2—C4—C5—O361.8 (5)
O1—Ba1—O2—C4158.4 (3)C5—O3—C6—C1i179.4 (3)
O1i—Ba1—O2—C421.6 (3)Ba1—O3—C6—C1i54.1 (3)
O3i—Ba1—O2—C4169.3 (3)Ba1—O4—C7—C8157.7 (4)
O3—Ba1—O2—C410.7 (3)Ba1—O4—C7—C1222.4 (8)
O5i—Ba1—O2—C4136.6 (3)O4—C7—C8—C9178.0 (4)
O5—Ba1—O2—C443.4 (3)C12—C7—C8—C91.9 (6)
O4—Ba1—O3—C5115.4 (2)C7—C8—C9—C100.7 (7)
O4i—Ba1—O3—C564.6 (2)C8—C9—C10—C110.8 (7)
O2i—Ba1—O3—C5157.8 (2)C8—C9—C10—N2178.4 (4)
O2—Ba1—O3—C522.2 (2)O7—N2—C10—C111.7 (7)
O1—Ba1—O3—C533.0 (3)O8—N2—C10—C11179.3 (4)
O1i—Ba1—O3—C5147.0 (3)O7—N2—C10—C9177.6 (5)
O5i—Ba1—O3—C542.5 (3)O8—N2—C10—C91.4 (7)
O5—Ba1—O3—C5137.5 (3)C9—C10—C11—C121.0 (6)
O4—Ba1—O3—C6118.9 (2)N2—C10—C11—C12178.3 (4)
O4i—Ba1—O3—C661.1 (2)C10—C11—C12—N1179.0 (4)
O2i—Ba1—O3—C632.1 (2)C10—C11—C12—C70.4 (6)
O2—Ba1—O3—C6147.9 (2)O6—N1—C12—C119.4 (6)
O1—Ba1—O3—C6158.7 (2)O5—N1—C12—C11169.5 (4)
O1i—Ba1—O3—C621.3 (2)O6—N1—C12—C7172.0 (4)
O5i—Ba1—O3—C683.1 (2)O5—N1—C12—C79.1 (6)
O5—Ba1—O3—C696.9 (2)O4—C7—C12—C11178.2 (4)
O2i—Ba1—O4—C765.0 (5)C8—C7—C12—C111.8 (5)
O2—Ba1—O4—C7115.0 (5)O4—C7—C12—N10.3 (6)
O1—Ba1—O4—C7166.1 (5)C8—C7—C12—N1179.7 (4)
O1i—Ba1—O4—C713.9 (5)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formulaC24H30BaN4O16
Mr767.86
Crystal system, space groupMonoclinic, P21/n
Temperature (K)183
a, b, c (Å)7.2679 (3), 15.0351 (7), 13.3607 (6)
β (°) 91.921 (1)
V3)1459.1 (1)
Z2
Radiation typeMo Kα
µ (mm1)1.45
Crystal size (mm)0.44 × 0.16 × 0.12
Data collection
DiffractometerSiemens SMART CCD area detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
SADABS (Sheldrick, 1996)
Tmin, Tmax0.569, 0.846
No. of measured, independent and
observed [I > 2σ(I)] reflections
7712, 2486, 2043
Rint0.071
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.121, 1.04
No. of reflections2486
No. of parameters206
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.14, 1.32

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Selected geometric parameters (Å, º) top
Ba1—O42.689 (3)O2—C41.436 (5)
Ba1—O22.732 (3)O3—C51.430 (5)
Ba1—O12.804 (3)O3—C61.434 (5)
Ba1—O32.864 (3)O4—C71.252 (5)
Ba1—O52.995 (3)C1—C6i1.514 (6)
N1—O61.229 (4)C2—C31.498 (7)
N1—O51.242 (4)C4—C51.492 (6)
N1—C121.431 (5)C7—C81.448 (6)
N2—O71.212 (5)C7—C121.459 (6)
N2—O81.218 (5)C8—C91.363 (6)
N2—C101.456 (6)C9—C101.407 (6)
O1—C21.409 (5)C10—C111.370 (6)
O1—C11.432 (5)C11—C121.378 (6)
O2—C31.422 (6)
O4—Ba1—O2104.35 (9)O2—Ba1—O360.10 (8)
O4—Ba1—O172.30 (8)O2—Ba1—O595.86 (10)
O2—Ba1—O159.69 (9)O1—Ba1—O5114.48 (9)
O4—Ba1—O3114.19 (8)O3—Ba1—O562.92 (8)
C2—O1—C1—C6i179.2 (3)C3—O2—C4—C5166.3 (4)
C1—O1—C2—C3175.4 (4)C6—O3—C5—C4176.8 (3)
C4—O2—C3—C2172.4 (4)O2—C4—C5—O361.8 (5)
O1—C2—C3—O255.9 (5)C5—O3—C6—C1i179.4 (3)
Symmetry code: (i) x, y, z.
Geometries (Å, °) of hydrogen bonding interactions top
D···HH···AD···AD-H···A
C1-H1A···O5i
300K0.962.553.199 (8)125
183K0.962.563.172 (5)122
C2-H2B···O8ii
300K0.962.523.275 (7)136
183K0.962.553.266 (7)132
C5-H5A···O4i
300K0.962.623.231 (7)122
183K0.962.603.198 (5)121
C6-H6A···O8iii
300K0.962.573.468 (7)155
183K0.962.573.460 (6)154
C6-H6B···O4i
300K0.962.563.180 (6)123
183K0.962.493.119 (5)123
Symmetry codes: (i)-x,-y,-z, (ii)1/2-x,1/2+y,-1/2-z, (iii)x,y,1+z, 300 K: unpublished data.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds