Download citation
Download citation
link to html
In the title compound, C20H22N4O4·C2H6OS, two distinct hydrogen-bond systems connect oxal­amide groups in one pattern and primary amide groups in the other to form a two-dimensional network perpendicular to the c axis. These hydro­philic layers are joined to the three-dimensional structure through C-H...[pi] interactions. The hydrogen-bonded waved layers shape holes which are occupied by disordered di­methyl sulfoxide solvent mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101007041/sk1478sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101007041/sk1478Isup2.hkl
Contains datablock I

CCDC reference: 146382

Comment top

%T In recent years, there is an increased interest for the investigation of retro-bipeptides with an oxalamide unit (–NH–CO–CO–NH–) for two reasons: a) to modify peptides in order to gain peptidomimetics useful for medical treatment (Karle {ιt et al.}., 1994; Karle \& Ranganathan, 1995) and b) to model synthons which generate supramolecular aggregates (Coe {ιt et al.}., 1997; Nguyen {ιt et al.}., 1998). Our interest has been focused on the retro-bipeptides, which serve as gelators of many organic solvents and water (Joki\'{c} {ιt et al.}., 1995; Makarević {ιt et al.}., 2001). Gelling properties of these compounds depend on stereochemistry of amino acids substituted at the ends of the oxalamide units. Generally, it appears that retro-bipeptide containing amino acids of the same chirality are good gelators, whereas {ιt meso}-forms or racemates are found to be poor gelators or they are not gelators at all. Therefore, detailed analysis of hydrogen-bond systems in crystal structures of these retro-bipeptides and other molecules closely related to them is required. The analysis points out to the interactions responsible for the aggregation and to reveal holes, which can serve as the solvent traps during gel formation. σch

In this paper the molecular structure of the title compound, (I), is presented. The ORTEPII (Johnson, 1976) plot (Fig 1) shows that primary amide groups, as well as phenylalanine side chains, are oriented to the same side of the central oxalamide unit. The pairs of torsion angles ($πhi$,$πsi$) and ($πhi'$,$πsi'$) are close to those found in the parellel $βeta$-sheets in peptides (Table 1). Torsion angles $οmega$, $οmega'$, $πhi$, $πhi'$, $πsi$, $πsi'$, $χhi$ and $χhi'$ are labelled according to the literature (Karle {ιt et al.}., 1994). The large difference in the angles $χhi$ and $χhi'$ (Table 1), reveals perpendicular and parallel orientations of amino acid moieties toward the central oxalamide unit, respectively (Fig. 1).

Crystal packing is realised by hydrogen bonds connecting: a) oxalamide $χdots$ oxalamide units and b) terminal amide $χdots$ terminal amide groups [Table 2, Fig 2 a) and b), respectively]. The former hydrogen bonds form fourth level pattern with the graph-set descriptor $R_22(4)$ (Bernstein {ιt et al.}., 1995) connecting molecules translated along the axis $a$ (Fig. 2a). These interactions include two intramolecular hydrogen bonds N1–H1$χdots$O11 and N11–H11$χdots$O1, and two intermolecular hydogen bonds N1–H1$χdots$O1${i}$ and N11–H11$χdots$O11${ii}$ (Table 2). The pattern formed is also stabilised by $πi$$χdots$$πi$ interactions between the phenyl rings. The later hydrogen bond pattern involves terminal primary amide groups with both of their hydrogens {ιt syn} and {ιt anti}. {ιt Anti}-hydrogen atoms of both terminal amide groups act as proton donors to oxygen atoms of amide groups of the molecules translated along $a$ (N3–H32$χdots$O2${ii}$ and N31–H312$χdots$O21${i}$, Table 2). {ιt Syn}-hydrogen atoms participate in hydrogen bonds with oxygen atoms of primary amide groups operated by the symmetry $2_1$ along $b$ (N3–H31$χdots$O21${iii}$ and N31–H311$χdots$O2${iv}$, Table 2). The pattern described here is different to the one discused Chang {ιt et al.}., 1993, the one which is the most common hydrogen bonding pattern formed by primary amides (Lieserovitz \& Schmidt, 1969). However, fragmental similarity can be seen in the crystal structure of adipamide (Hospital \& Housty, 1966) with primary amide groups hydrogen bonded along the two-fold screw axis. On the contrary, in the title molecule the hydrogen-bonded pattern is perpendicular to the two-fold screw axis along $b$. The rest of adipamide molecule develops a centrosymmetric arrangement. In the crystal of the title molecule, the wave-shaped pattern of two-dimensional system of hydrogen bonds forms holes occupied by disordered dimethylsulphoxide molecules (Fig 3). Such packing also brings phenyl rings of neighbouring molecules in a perpendicular orientation enabling C–H$χdots$$πi$ interactions. One of these interactions [C81-H81$χdots$Ph(1), H$χdots$centroid, 3.286 AA] connects molecules along $b$ whereas C7–H7$χdots$Ph(1) [H$χdots$centroid 3.076 AA] and C101-H101$χdots$Ph(2) [H$χdots$centroid 3.116 AA] connect layers along $c$ (Fig. 3). Thus, C–H$χdots$$πi$ interactions complete the three-dimensional network.

Experimental top

%T Details of the synthesis of the title compound, (I), are described elsewhere (Makarević {ιt et al.}., 2001).

Refinement top

%T The Flack parameter [-0.1 (4); Flack, 1983] only weakly supports the absolute structure chosen on the basis of the known absolute configuration of the starting materials. The structure contains disordered molecules of dimethylsulphoxide. Electron density of dimethylsulphoxide was taken into account with the SQUEEZE procedure in PLATON (Spek, 1999), based on iterative difference Fourier syntheses (van der Sluis \& Spek, 1990). After two cycles of the SQUEEZE procedure and least-squares refinement, the convergence was reached. The total number of electrons in the solvent region (576 AA$3$ in one unit cell) is 173 electrons, calculated by SQUEEZE on data corrected for the absorption. This number of electrons is in agreement with the result of thermogravimetric analysis. The experimental weight loss by heating the sample from 323 to 510 K was 16.4°. It corresponds to one molecule of dimethylsulphoxide per formula unit. Thus, one molecule of dimethylsulphoxide was added in the chemical formula, chemical formula weight, crystal density and linear absorption coeficient ($µu$). The contribution of dimethylsulphoxide to the observed structure factors was removed by the SQUEEZE procedure and last refinement cycles were performed without atoms of dimethylsulphoxide. The H atoms were calculated at ideal positions and constrained to ride on atoms to which they are bonded. Exceptions are H atoms involved in hydrogen bonds which were refined without restraints. Final F$_o$, F$_c$ tables were calculated with the program PLATON (Spek, 1999) and include the solvent contribution.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf Nonius, 1992); cell refinement: CAD-4 EXPRESS; data reduction: HELENA (Spek, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) and PLATON (Spek, 1999); molecular graphics: PLATON; software used to prepare material for publication: PLATON.

Figures top
[Figure 1] Fig. 1. %T Fig. 1. The molecular structure of (I) showing 30° probability displacement ellipsoids.
[Figure 2] Fig. 2. Hydrogen-bonding patterns formed by a) oxalamide groups and b) primary amide groups.
[Figure 3] Fig. 3. The crystal packing of (I). Black dashed lines are hydrogen bonds and gray dashed lines mark the C–H$χdots$$πi$ T-shape interactions. Electron density of dimethylsulphoxide in voids, calculated by the SQUEEZE procedure (Spek, 1999), are also shown.
N,N'-oxalyl-bis(L-phenylalanine amide) dymethylsuphoxide solvate top
Crystal data top
C20H22N4O4·C2H6OSF(000) = 976
Mr = 460.54Dx = 1.309 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 21 reflections
a = 5.1830 (5) Åθ = 9.1–18.9°
b = 15.220 (3) ŵ = 1.57 mm1
c = 29.63 (1) ÅT = 295 K
V = 2337.4 (9) Å3Needle, colourless
Z = 40.32 × 0.14 × 0.04 mm
Data collection top
Enraf-Nonius CAD4
diffractometer
1888 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 74.2°, θmin = 3.0°
ω/2θ scansh = 06
Absorption correction: analytical
(PLATON; Spek, 1999)
k = 018
Tmin = 0.744, Tmax = 0.943l = 036
2786 measured reflections3 standard reflections every 180 min
2786 independent reflections intensity decay: 1%
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0722P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.120(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.15 e Å3
2786 reflectionsΔρmin = 0.19 e Å3
277 parameters
Crystal data top
C20H22N4O4·C2H6OSV = 2337.4 (9) Å3
Mr = 460.54Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 5.1830 (5) ŵ = 1.57 mm1
b = 15.220 (3) ÅT = 295 K
c = 29.63 (1) Å0.32 × 0.14 × 0.04 mm
Data collection top
Enraf-Nonius CAD4
diffractometer
1888 reflections with I > 2σ(I)
Absorption correction: analytical
(PLATON; Spek, 1999)
Rint = 0.000
Tmin = 0.744, Tmax = 0.9433 standard reflections every 180 min
2786 measured reflections intensity decay: 1%
2786 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.15 e Å3
2786 reflectionsΔρmin = 0.19 e Å3
277 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0101 (4)0.31193 (14)0.13748 (9)0.0480 (8)
O20.6532 (4)0.1835 (2)0.22139 (7)0.0540 (9)
O110.5276 (4)0.45631 (14)0.12294 (9)0.0489 (8)
O210.1323 (4)0.63358 (16)0.17801 (7)0.0434 (7)
N10.4386 (4)0.28348 (15)0.13896 (8)0.0290 (7)
N30.2207 (6)0.1868 (2)0.22616 (10)0.0491 (10)
N110.0978 (5)0.48334 (15)0.12064 (8)0.0301 (7)
N310.2990 (6)0.6309 (2)0.18461 (10)0.0475 (10)
C10.2362 (5)0.33556 (19)0.13436 (9)0.0303 (8)
C20.4142 (5)0.19069 (17)0.15207 (8)0.0300 (8)
C30.4399 (5)0.18538 (19)0.20337 (9)0.0329 (8)
C40.6154 (6)0.13388 (18)0.12854 (9)0.0353 (9)
C50.5664 (6)0.12703 (18)0.07820 (10)0.0362 (9)
C60.7188 (7)0.1702 (2)0.04730 (10)0.0510 (11)
C70.6720 (9)0.1657 (3)0.00190 (10)0.0627 (15)
C80.4676 (9)0.1158 (3)0.01395 (10)0.0592 (13)
C90.3123 (8)0.0710 (3)0.01630 (10)0.0557 (11)
C100.3626 (7)0.0766 (2)0.06209 (10)0.0486 (11)
C110.3027 (5)0.43168 (19)0.12493 (10)0.0315 (8)
C210.1134 (5)0.57889 (17)0.11512 (8)0.0272 (7)
C310.0821 (6)0.61840 (19)0.16235 (9)0.0315 (8)
C410.0924 (6)0.61047 (18)0.08178 (9)0.0337 (8)
C510.0968 (6)0.70878 (18)0.07470 (9)0.0332 (8)
C610.2827 (7)0.7602 (2)0.09371 (10)0.0553 (11)
C710.2928 (8)0.8508 (3)0.08571 (10)0.0643 (14)
C810.1131 (8)0.8889 (2)0.05805 (10)0.0553 (11)
C910.0727 (9)0.8389 (2)0.03904 (10)0.0607 (12)
C1010.0840 (8)0.7486 (2)0.04696 (10)0.0510 (11)
H10.597 (8)0.306 (3)0.1361 (11)0.054 (10)*
H20.242130.169870.143480.0360*
H60.857600.203340.057570.0611*
H70.776960.196020.018230.0753*
H80.434940.112360.044760.0711*
H90.174880.037300.005920.0667*
H100.258640.046250.082360.0584*
H110.049 (6)0.4596 (19)0.1248 (9)0.026 (7)*
H210.284380.594230.103390.0327*
H310.228 (6)0.181 (2)0.2545 (12)0.041 (9)*
H320.073 (10)0.179 (3)0.2131 (14)0.089 (16)*
H410.785200.158820.133530.0424*
H420.613280.075490.141650.0424*
H610.405480.734470.112400.0663*
H710.420600.884860.099090.0773*
H810.119050.948910.052380.0666*
H910.194900.865050.020400.0726*
H1010.213080.715030.033590.0610*
H3110.279 (7)0.645 (2)0.2138 (11)0.040 (9)*
H3120.440 (7)0.616 (2)0.1772 (10)0.037 (9)*
H4110.063160.582110.052910.0404*
H4120.260370.591920.092620.0404*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0220 (9)0.0357 (12)0.0864 (17)0.0024 (9)0.0024 (11)0.0123 (12)
O20.0279 (11)0.095 (2)0.0391 (12)0.0000 (12)0.0079 (9)0.0132 (13)
O110.0180 (10)0.0362 (11)0.0926 (18)0.0016 (9)0.0010 (11)0.0117 (11)
O210.0265 (11)0.0632 (15)0.0405 (12)0.0045 (10)0.0050 (9)0.0104 (11)
N10.0200 (11)0.0302 (12)0.0367 (12)0.0015 (10)0.0018 (11)0.0083 (10)
N30.0280 (14)0.084 (2)0.0352 (15)0.0043 (16)0.0029 (12)0.0048 (16)
N110.0211 (11)0.0273 (12)0.0420 (13)0.0029 (10)0.0016 (11)0.0031 (10)
N310.0261 (14)0.079 (2)0.0375 (16)0.0030 (15)0.0033 (12)0.0158 (16)
C10.0242 (14)0.0326 (14)0.0341 (14)0.0012 (12)0.0034 (12)0.0014 (12)
C20.0233 (12)0.0318 (14)0.0350 (14)0.0006 (13)0.0022 (12)0.0059 (11)
C30.0280 (14)0.0368 (15)0.0338 (14)0.0028 (14)0.0006 (12)0.0091 (12)
C40.0315 (15)0.0325 (14)0.0420 (16)0.0044 (13)0.0017 (14)0.0048 (12)
C50.0361 (16)0.0314 (14)0.0410 (15)0.0096 (14)0.0033 (14)0.0026 (12)
C60.0436 (18)0.056 (2)0.0533 (18)0.0052 (18)0.0095 (16)0.0019 (17)
C70.074 (3)0.070 (3)0.0440 (18)0.003 (2)0.0186 (19)0.0048 (19)
C80.077 (3)0.059 (2)0.0417 (18)0.007 (2)0.0023 (19)0.0088 (16)
C90.066 (2)0.051 (2)0.0500 (19)0.008 (2)0.0060 (19)0.0110 (17)
C100.057 (2)0.0403 (17)0.0484 (18)0.0065 (17)0.0061 (17)0.0021 (15)
C110.0248 (13)0.0290 (14)0.0406 (15)0.0002 (12)0.0013 (12)0.0031 (13)
C210.0226 (12)0.0258 (12)0.0332 (13)0.0006 (12)0.0013 (12)0.0008 (11)
C310.0287 (14)0.0323 (14)0.0335 (14)0.0012 (14)0.0001 (13)0.0013 (11)
C410.0316 (15)0.0294 (14)0.0400 (15)0.0007 (14)0.0050 (14)0.0014 (12)
C510.0298 (14)0.0344 (15)0.0354 (14)0.0033 (13)0.0059 (14)0.0039 (11)
C610.047 (2)0.0380 (18)0.081 (2)0.0034 (17)0.015 (2)0.0115 (18)
C710.053 (2)0.045 (2)0.095 (3)0.0110 (19)0.012 (2)0.007 (2)
C810.055 (2)0.0290 (16)0.082 (2)0.0021 (18)0.002 (2)0.0112 (16)
C910.062 (2)0.051 (2)0.069 (2)0.011 (2)0.014 (2)0.0143 (18)
C1010.053 (2)0.0436 (18)0.0563 (18)0.0005 (19)0.0103 (19)0.0042 (15)
Geometric parameters (Å, º) top
O1—C11.229 (3)C21—C411.531 (3)
O2—C31.228 (3)C21—C311.532 (4)
O11—C111.226 (3)C41—C511.511 (4)
O21—C311.226 (3)C51—C1011.386 (4)
N1—C11.322 (3)C51—C611.363 (4)
N1—C21.470 (3)C61—C711.400 (5)
N3—C31.322 (4)C71—C811.369 (5)
N11—C111.327 (4)C81—C911.350 (5)
N11—C211.466 (3)C91—C1011.395 (4)
N31—C311.317 (4)C2—H20.9801
N1—H10.89 (4)C4—H410.9698
N3—H320.87 (5)C4—H420.9699
N3—H310.85 (4)C6—H60.9298
N11—H110.85 (3)C7—H70.9299
N31—H3110.90 (3)C8—H80.9299
N31—H3120.80 (4)C9—H90.9300
C1—C111.529 (4)C10—H100.9297
C2—C41.524 (4)C21—H210.9801
C2—C31.528 (4)C41—H4110.9701
C4—C51.517 (3)C41—H4120.9699
C5—C101.390 (5)C61—H610.9301
C5—C61.376 (4)C71—H710.9299
C6—C71.369 (4)C81—H810.9292
C7—C81.386 (6)C91—H910.9298
C8—C91.384 (6)C101—H1010.9304
C9—C101.384 (4)
O1···N1i2.994 (3)C101···C61iii3.567 (5)
O1···N112.695 (3)C3···H311ii2.92 (3)
O1···C4i3.406 (4)C7···H7vii2.9759
O2···N13.085 (2)C8···H6vii3.0940
O2···N31ii2.909 (3)C9···H81viii3.0974
O2···N3iii2.945 (4)C10···H22.8672
O11···C41iii3.297 (4)C31···H31iv3.09 (3)
O11···N11iii2.985 (3)C91···H101ix2.9630
O11···N12.712 (3)C101···H213.0650
O21···N3iv2.988 (3)H1···O1iii2.14 (4)
O21···N113.089 (3)H1···O112.35 (5)
O21···C613.250 (4)H1···H412.4444
O21···N31i2.954 (4)H2···O12.4805
O21···C513.273 (4)H2···C102.8672
O1···H1i2.14 (4)H2···H322.2457
O1···H112.30 (3)H2···H41i2.3925
O1···H22.4805H6···H412.3802
O1···H41i2.6082H6···C8x3.0940
O2···H422.8858H7···C7x2.9759
O2···H412.7178H8···N11x2.8087
O2···H32iii2.19 (5)H9···H81viii2.4547
O2···H311ii2.04 (3)H10···H422.5813
O11···H11iii2.20 (3)H11···O12.30 (3)
O11···H412iii2.5050H11···O11i2.20 (3)
O11···H12.35 (5)H11···H4122.4830
O11···H212.5162H21···O112.5162
O21···H312i2.23 (4)H21···C1013.0650
O21···H4122.6915H21···H3122.3544
O21···H612.8534H21···H412iii2.3813
O21···H31iv2.18 (3)H31···O21v2.18 (3)
N1···O1iii2.994 (3)H31···C31v3.09 (3)
N1···O23.085 (2)H32···O2i2.19 (5)
N1···O112.712 (3)H32···H22.2457
N1···N33.181 (3)H41···O1iii2.6082
N3···O2i2.945 (4)H41···O22.7178
N3···N13.181 (3)H41···H12.4444
N3···O21v2.988 (3)H41···H2iii2.3925
N11···O12.695 (3)H41···H62.3802
N11···O11i2.985 (3)H42···O22.8858
N11···O213.089 (3)H42···H102.5813
N11···N313.118 (4)H61···O212.8534
N31···O2vi2.909 (3)H61···H4122.3699
N31···O21iii2.954 (4)H81···C9xi3.0974
N31···N113.118 (4)H81···H9xi2.4547
N11···H8vii2.8087H101···H4112.5437
C4···O1iii3.406 (4)H101···C91xii2.9630
C6···C9iii3.548 (6)H311···O2vi2.04 (3)
C9···C6i3.548 (6)H311···C3vi2.92 (3)
C31···C613.517 (4)H312···O21iii2.23 (4)
C41···O11i3.297 (4)H312···H212.3544
C51···O213.273 (4)H411···H1012.5437
C61···C101i3.567 (5)H412···O11i2.5050
C61···C313.517 (4)H412···O212.6915
C61···O213.250 (4)H412···H112.4830
C71···C91i3.572 (6)H412···H21i2.3813
C91···C71iii3.572 (6)H412···H612.3699
C1—N1—C2122.3 (2)C41—C51—C101120.3 (2)
C11—N11—C21123.7 (2)C51—C61—C71121.5 (3)
C2—N1—H1118 (3)C61—C71—C81119.5 (4)
C1—N1—H1119 (3)C71—C81—C91119.7 (3)
C3—N3—H32122 (3)C81—C91—C101121.0 (3)
C3—N3—H31118 (2)C51—C101—C91120.1 (3)
H31—N3—H32118 (4)N1—C2—H2108.68
C21—N11—H11119 (2)C3—C2—H2108.70
C11—N11—H11117 (2)C4—C2—H2108.69
H311—N31—H312116 (3)C2—C4—H41109.22
C31—N31—H311115 (2)C2—C4—H42109.21
C31—N31—H312127 (2)C5—C4—H41109.20
O1—C1—C11120.6 (2)C5—C4—H42109.21
O1—C1—N1125.0 (3)H41—C4—H42107.93
N1—C1—C11114.4 (2)C5—C6—H6119.04
N1—C2—C3107.83 (17)C7—C6—H6119.07
N1—C2—C4111.43 (17)C6—C7—H7120.13
C3—C2—C4111.44 (18)C8—C7—H7120.13
O2—C3—C2120.81 (18)C7—C8—H8120.18
N3—C3—C2115.6 (2)C9—C8—H8120.14
O2—C3—N3123.5 (3)C8—C9—H9120.19
C2—C4—C5112.0 (2)C10—C9—H9120.15
C4—C5—C6121.7 (3)C5—C10—H10119.53
C4—C5—C10120.2 (3)C9—C10—H10119.57
C6—C5—C10118.1 (3)N11—C21—H21109.01
C5—C6—C7121.9 (3)C31—C21—H21109.04
C6—C7—C8119.7 (3)C41—C21—H21109.04
C7—C8—C9119.7 (3)C21—C41—H411108.69
C8—C9—C10119.7 (4)C21—C41—H412108.68
C5—C10—C9120.9 (3)C51—C41—H411108.70
O11—C11—N11125.1 (3)C51—C41—H412108.70
O11—C11—C1121.1 (2)H411—C41—H412107.62
N11—C11—C1113.8 (2)C51—C61—H61119.21
C31—C21—C41113.1 (2)C71—C61—H61119.33
N11—C21—C31106.36 (13)C61—C71—H71120.23
N11—C21—C41110.18 (19)C81—C71—H71120.24
O21—C31—N31123.83 (16)C71—C81—H81120.12
O21—C31—C21121.0 (2)C91—C81—H81120.14
N31—C31—C21115.1 (3)C81—C91—H91119.49
C21—C41—C51114.3 (2)C101—C91—H91119.53
C61—C51—C101118.2 (3)C51—C101—H101119.90
C41—C51—C61121.5 (2)C91—C101—H101119.96
C2—N1—C1—O14.9 (4)C4—C5—C10—C9178.8 (3)
C11—C1—N1—C2174.50 (13)C4—C5—C6—C7178.6 (3)
C1—N1—C2—C392.83 (18)C5—C6—C7—C80.7 (6)
C1—N1—C2—C4144.6 (3)C6—C7—C8—C90.1 (7)
C21—N11—C11—O113.2 (3)C7—C8—C9—C100.1 (7)
C11—N11—C21—C41141.8 (2)C8—C9—C10—C50.3 (6)
O1—C1—C11—N110.2 (3)C31—C21—C41—C5159.6 (3)
N1—C1—C11—O111.4 (3)C41—C21—C31—N31147.9 (3)
O1—C1—C11—O11178.06 (16)N11—C21—C31—N3191.0 (3)
N1—C1—C11—N11179.64 (14)N11—C21—C41—C51178.46 (16)
C4—C2—C3—O239.4 (4)C41—C21—C31—O2134.6 (3)
N1—C2—C3—O283.2 (3)N11—C21—C31—O2186.5 (3)
N1—C2—C3—N394.1 (3)C21—C41—C51—C61104.3 (3)
C3—C2—C4—C5171.0 (2)C21—C41—C51—C10178.4 (2)
N1—C2—C4—C568.5 (3)C41—C51—C101—C91177.3 (3)
C1—C11—N11—C21174.95 (10)C61—C51—C101—C910.1 (4)
C11—N11—C21—C3195.3 (2)C41—C51—C61—C71177.4 (3)
C4—C2—C3—N3143.3 (3)C101—C51—C61—C710.0 (4)
C2—C4—C5—C1072.7 (3)C51—C61—C71—C810.3 (5)
C2—C4—C5—C6106.9 (3)C61—C71—C81—C910.4 (5)
C6—C5—C10—C90.9 (5)C71—C81—C91—C1010.3 (5)
C10—C5—C6—C71.1 (5)C81—C91—C101—C510.0 (5)
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+1/2; (iii) x+1, y, z; (iv) x, y+1/2, z+1/2; (v) x, y1/2, z+1/2; (vi) x+1, y+1/2, z+1/2; (vii) x1/2, y+1/2, z; (viii) x, y1, z; (ix) x1/2, y+3/2, z; (x) x+1/2, y+1/2, z; (xi) x, y+1, z; (xii) x+1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1iii0.89 (4)2.14 (4)2.994 (3)159 (4)
N1—H1···O110.89 (4)2.35 (5)2.712 (3)104 (3)
N11—H11···O10.85 (3)2.30 (3)2.695 (3)109 (2)
N11—H11···O11i0.85 (3)2.20 (3)2.985 (3)154 (3)
N3—H31···O21v0.85 (4)2.18 (3)2.988 (3)159 (3)
N3—H32···O2i0.87 (5)2.19 (5)2.945 (4)145 (4)
N31—H311···O2vi0.90 (3)2.04 (3)2.909 (3)163 (3)
N31—H312···O21iii0.80 (4)2.23 (4)2.954 (4)151 (3)
Symmetry codes: (i) x1, y, z; (iii) x+1, y, z; (v) x, y1/2, z+1/2; (vi) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H22N4O4·C2H6OS
Mr460.54
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)5.1830 (5), 15.220 (3), 29.63 (1)
V3)2337.4 (9)
Z4
Radiation typeCu Kα
µ (mm1)1.57
Crystal size (mm)0.32 × 0.14 × 0.04
Data collection
DiffractometerEnraf-Nonius CAD4
diffractometer
Absorption correctionAnalytical
(PLATON; Spek, 1999)
Tmin, Tmax0.744, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
2786, 2786, 1888
Rint0.000
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.120, 1.01
No. of reflections2786
No. of parameters277
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.19
Absolute structure parameter0.1 (4)

Computer programs: CAD-4 EXPRESS (Enraf Nonius, 1992), CAD-4 EXPRESS, HELENA (Spek, 1997), SIR97 (Altomare et al., 1997), SHELXL97 (Sheldrick, 1997) and PLATON (Spek, 1999), PLATON.

Selected torsion angles (º) top
C11—C1—N1—C2174.50 (13)C1—C11—N11—C21174.95 (10)
C1—N1—C2—C392.83 (18)C11—N11—C21—C3195.3 (2)
N1—C2—C3—N394.1 (3)N11—C21—C31—N3191.0 (3)
N1—C2—C4—C568.5 (3)N11—C21—C41—C51178.46 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.89 (4)2.14 (4)2.994 (3)159 (4)
N1—H1···O110.89 (4)2.35 (5)2.712 (3)104 (3)
N11—H11···O10.85 (3)2.30 (3)2.695 (3)109 (2)
N11—H11···O11ii0.85 (3)2.20 (3)2.985 (3)154 (3)
N3—H31···O21iii0.85 (4)2.18 (3)2.988 (3)159 (3)
N3—H32···O2ii0.87 (5)2.19 (5)2.945 (4)145 (4)
N31—H311···O2iv0.90 (3)2.04 (3)2.909 (3)163 (3)
N31—H312···O21i0.80 (4)2.23 (4)2.954 (4)151 (3)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x, y1/2, z+1/2; (iv) x+1, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds