Download citation
Download citation
link to html
During the synthesis of a series of square-planar [TeCl2(stu)2] complexes, where stu represents bulky di- or tetrasubstituted thio­ureas, the title compound, [TeCl{(C6H11NH)2CS}3]Cl or C39H72ClN6S3Te+·Cl-, was the unexpected result when stu was N,N'-di­cyclo­hexyl­thio­urea. The complex is square planar, with Te-S distances of 2.5803 (4), 2.6211 (4) and 2.8214 (4) Å, and a Te-Cl distance of 2.6485 (4) Å, indicating a small trans influence of the thio­urea ligand.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010100659X/sk1475sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010100659X/sk1475Isup2.hkl
Contains datablock I

CCDC reference: 169952

Comment top

The expected reaction between thioureas and TeO2 dissolved in HCl are Te4+ + 4stu + 4Cl- = [TeCl2(stu)2] + (stu)2Cl2 (Foss & Hauge, 1959; Husebye, 1983). In the present case, a third stu ligand has displaced one of the two chloride ligands to give the [TeCl(stu)3]Cl product, (I), where stu = (C6H11NH)2CS. \sch

The structure of the cation in (I) is square planar, with a TeClS3 coordination sphere. This is the first time such coordination has been observed for tellurium. The two thioureas trans to each other point up from the coordination plane, whereas the third points down. This is a conformation with a minimized steric interaction between the ligands (Fig. 1).

The SCN2 units of the thiourea ligands are approximately planar and the SCN2 units trans to each other (S1 and S3) form angles with the coordination plane of 67.80 (3) and 74.75 (3)°, respectively. The remaining thiourea assumes a corresponding angle of 74.31 (3)°. Angles around 70° seem to be common for trans-[TeCl2(stu)2] complexes (Husebye et al., 2001).

The interplanar SCN2/SCN2 angle is 54.69 (6)° for the two trans-related thioureas. This is a rather large angle compared with the values in the trans complexes mentioned above, which are around 13° (Husebye et al., 2001). An analogous bromide, [TeBr(stu)3]Br, has been synthesized and its structure reported by Kumar et al. (1990). Here, stu is 1-methylimidazole-2(3H)-thione, an N,N'-dimethyl-substituted ethylenethiourea ligand. In this complex, two adjacent thioureas point to the same side of the coordination plane, whereas the third points to the opposite side. This is a geometry that brings the thiourea ligands into closer contact compared with the geometry of the present chloride analogue, but then the bulk of the thiourea ligand is smaller in the bromide.

The Te—S bond lengths in (I) vary considerably. Bonding in square planar TeII complexes is of the three-centre four-electron (3c-4 e) type, with a bond order of 0.5. In the near linear S1—Te—S3 sequence, Te—S1 is 2.5803 (4) and Te—S3 2.8214 (4) Å. Asymmetry in two such weak and chemically equivalent bonds is not uncommon in TeII compounds. The average bond length of 2.7009 Å is slightly longer than 2.68 Å, the average found for such 3c-4 e systems (Husebye, 1983). However, great asymmetry in the two Te—S bond lengths is often seen to give an increase in average bond lengths in linear S—Te—S systems (Husebye, 1983). It is interesting to note that the corresponding average Te—S bond length in the bromide complex with a nearly symmetric S—Te—S sequence is 2.701 Å (Kumar et al., 1990), the same value as that found in the chloride. The Te—S2 bond length in (I) is 2.6211 (4) Å and it is positioned trans to Te—Cl1, which has a bond length of 2.6485 (4) Å, indicating a weak trans influence of the N,N'-dicyclohexylthiourea ligand. However, this influence is still greater than that of the Cl-, indicated by the shortening of the Te—S bond at the expense of the Te—Cl bond, which lengthens relative to the average found in Cl—Te—Cl 3c-4 e systems (Husebye et al., 2001).

In the ligands, the CS bond lengths are C1S1 1.7576 (17), C14S2 1.7504 (14) and C27S3 1.7336 (14) Å. These values may be compared with the corresponding length of 1.681 (20) Å found in free thioureas (Allen et al., 1987) and reflect a normal lengthening upon coordination, a long Te—S bond corresponding to a short CS bond and vice versa. The C—N bond length within the SCN2 group of the three thioureas has an average of 1.328 Å. This indicates partial double-bond character through transfer of charge from N to S.

The Cl- anion is connected to the S2 thiourea by an N4—H4···Cl2 hydrogen bond. The Cl- ligand forms an intramolecular N2—H2···Cl1 bond with the S1 thiourea; this is reflected in a small S1—C1—N2 angle of only 117.57 (13)°. There is also a possible weak intramolecular N3—H3···S3 hydrogen bond. Intermolecular N—H···Cl hydrogen bonds connect the ions into a three-dimensional network, shown in Fig. 2. Data for the hydrogen bonds are given in Table 2.

Experimental top

N,N'-dicyclohexylthiourea was obtained from Lancaster. The synthesis of the tellurium complex followed a modification of the literature method of Foss & Hauge (1959, 1961). TeO2 (1.603 g, 10 mmol) was dissolved in hot concentrated HCl (20 ml). This solution was added rapidly with stirring to N,N'-dicyclohexylthiourea (9.62 g, 40 mmol) dissolved in hot 95% ethanol (110 ml). Upon cooling the resulting red-brown solution to room temperature, small yellow crystals of (I) and some red lumps formed. The latter were discarded and the rest was filtered and washed with cold ethanol to which a few drops of concentrated HCl were added [yield 6.1 g, 66.7%; m.p. 415–417 K (decomposition)]. Analysis, found: Cl 7.75, S 10.45%; calculated for C39H72Cl2N6S3Te: Cl 7.73, S 10.49%.

Refinement top

All H atoms were treated as riding, with N—H = 0.88, C—H (CH) = 1.00 and C—H (CH2) = 0.99 Å. The isotropic displacement parameters of the H atoms were fixed at 1.2Ueq of their parent atoms. The maximum residual peak was located 0.82 Å from Te.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXTL (Sheldrick, 2001); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms in the cyclohexyl groups have been omitted for clarity; H atoms on N are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular packing in (I), with hydrogen bonds indicated by dotted lines. For clarity, only the C atoms (dotted circles) joined to the main structural unit in the cyclohexyl groups are shown [symmetry codes: (iii) 1 - x, y - 1/2, 1/2 - z; (iv) x, 1/2 - y, 1/2 + z].
Chlorotris(N,N'-dicyclohexylthiorea-S)tellurium(II) chloride top
Crystal data top
C39H72ClN6S3Te+·ClDx = 1.290 Mg m3
Mr = 919.71Melting point = 415–417 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
a = 20.1931 (5) ÅCell parameters from 8192 reflections
b = 20.2156 (4) Åθ = 1.7–32.9°
c = 23.1990 (4) ŵ = 0.91 mm1
V = 9470.2 (3) Å3T = 173 K
Z = 8Octahedron, yellow
F(000) = 38560.37 × 0.25 × 0.22 mm
Data collection top
Bruker SMART 2K CCD
diffractometer
17005 independent reflections
Radiation source: normal-focus sealed tube10136 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ω scansθmax = 32.9°, θmin = 1.7°
Absorption correction: numerical
(SHELXTL; Sheldrick, 2001)
h = 3030
Tmin = 0.809, Tmax = 0.831k = 3029
124117 measured reflectionsl = 3433
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.0322P)2]
where P = (Fo2 + 2Fc2)/3
17005 reflections(Δ/σ)max = 0.005
460 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C39H72ClN6S3Te+·ClV = 9470.2 (3) Å3
Mr = 919.71Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 20.1931 (5) ŵ = 0.91 mm1
b = 20.2156 (4) ÅT = 173 K
c = 23.1990 (4) Å0.37 × 0.25 × 0.22 mm
Data collection top
Bruker SMART 2K CCD
diffractometer
17005 independent reflections
Absorption correction: numerical
(SHELXTL; Sheldrick, 2001)
10136 reflections with I > 2σ(I)
Tmin = 0.809, Tmax = 0.831Rint = 0.055
124117 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 0.92Δρmax = 0.47 e Å3
17005 reflectionsΔρmin = 0.29 e Å3
460 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Dihedral angles from final SHELXL refinement run:

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

10.9408 (0.0018) x - 5.7535 (0.0020) y + 18.3469 (0.0015) z = 7.6008 (0.0015)

* 0.2023 (0.0002) S1 * -0.1688 (0.0002) S2 * 0.1771 (0.0002) S3 * -0.1652 (0.0002) Cl1 * -0.0454 (0.0002) Te

Rms deviation of fitted atoms = 0.1613

3.3802 (0.0146) x + 15.2531 (0.0060) y + 14.7214 (0.0102) z = 13.0364 (0.0083)

Angle to previous plane (with approximate e.s.d.) = 67.80 (0.03)

* 0.0033 (0.0003) S1 * -0.0122 (0.0013) C1 * 0.0045 (0.0005) N1 * 0.0044 (0.0005) N2

Rms deviation of fitted atoms = 0.0070

10.9408 (0.0018) x - 5.7535 (0.0020) y + 18.3469 (0.0015) z = 7.6008 (0.0015)

Angle to previous plane (with approximate e.s.d.) = 67.80 (0.03)

* 0.2023 (0.0002) S1 * -0.1688 (0.0002) S2 * 0.1771 (0.0002) S3 * -0.1652 (0.0002) Cl1 * -0.0454 (0.0002) Te

Rms deviation of fitted atoms = 0.1613

9.5563 (0.0129) x + 16.6390 (0.0056) y + 7.2840 (0.0130) z = 12.2906 (0.0043)

Angle to previous plane (with approximate e.s.d.) = 74.31 (0.03)

* -0.0010 (0.0003) S2 * 0.0037 (0.0012) C14 * -0.0013 (0.0004) N3 * -0.0014 (0.0005) N4

Rms deviation of fitted atoms = 0.0021

10.9408 (0.0018) x - 5.7535 (0.0020) y + 18.3469 (0.0015) z = 7.6008 (0.0015)

Angle to previous plane (with approximate e.s.d.) = 74.31 (0.03)

* 0.2023 (0.0002) S1 * -0.1688 (0.0002) S2 * 0.1771 (0.0002) S3 * -0.1652 (0.0002) Cl1 * -0.0454 (0.0002) Te

Rms deviation of fitted atoms = 0.1613

14.1347 (0.0104) x - 12.3804 (0.0140) y - 8.5232 (0.0107) z = 5.4869 (0.0114)

Angle to previous plane (with approximate e.s.d.) = 74.75 (0.03)

* 0.0006 (0.0004) S3 * -0.0021 (0.0013) C27 * 0.0007 (0.0005) N5 * 0.0007 (0.0005) N6

Rms deviation of fitted atoms = 0.0012

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Te0.656148 (5)0.419956 (5)0.152223 (4)0.03465 (3)
S10.60668 (2)0.50599 (2)0.222202 (16)0.04977 (11)
S20.558814 (19)0.33958 (2)0.178341 (16)0.04086 (9)
S30.722615 (18)0.31793 (2)0.092726 (15)0.03654 (9)
Cl10.74515 (2)0.50907 (2)0.120565 (17)0.04852 (10)
Cl20.584896 (19)0.186503 (19)0.390211 (14)0.03861 (8)
N10.50470 (7)0.57313 (6)0.17613 (5)0.0422 (3)
H1A0.49030.60880.15840.051*
C10.56897 (9)0.56059 (8)0.17323 (6)0.0419 (4)
N20.60757 (7)0.59019 (6)0.13482 (6)0.0450 (3)
H2A0.65050.58970.14150.054*
C20.45503 (8)0.53249 (8)0.20658 (6)0.0411 (4)
H2B0.47820.50630.23710.049*
N30.65212 (6)0.26522 (6)0.22576 (5)0.0385 (3)
H3A0.66430.26010.18960.046*
C30.42358 (8)0.48461 (9)0.16450 (7)0.0471 (4)
H3B0.45820.45520.14850.056*
H3C0.40380.50970.13210.056*
N40.56410 (6)0.28963 (6)0.28545 (5)0.0384 (3)
H4A0.57960.25960.30940.046*
C40.37006 (10)0.44279 (10)0.19335 (8)0.0635 (5)
H4B0.34810.41480.16400.076*
H4C0.39080.41320.22220.076*
N50.69269 (6)0.35750 (6)0.01440 (5)0.0433 (3)
H5A0.66900.35290.04600.052*
C50.31860 (10)0.48602 (12)0.22278 (8)0.0698 (6)
H5B0.29400.51160.19340.084*
H5C0.28660.45770.24360.084*
N60.63414 (7)0.26871 (7)0.01749 (5)0.0473 (3)
H6A0.61700.26860.01740.057*
C60.35123 (11)0.53330 (10)0.26491 (9)0.0688 (6)
H6B0.37200.50770.29650.083*
H6C0.31710.56240.28210.083*
C70.40392 (11)0.57586 (9)0.23543 (9)0.0709 (7)
H7A0.38270.60470.20630.085*
H7B0.42580.60450.26440.085*
C80.58495 (8)0.62394 (8)0.08183 (6)0.0402 (4)
H8A0.55080.65760.09240.048*
C90.55427 (9)0.57453 (8)0.03950 (7)0.0464 (4)
H9A0.58670.53920.03080.056*
H9B0.51490.55370.05730.056*
C100.53408 (9)0.60916 (9)0.01627 (7)0.0512 (4)
H10A0.49860.64160.00790.061*
H10B0.51620.57610.04370.061*
C110.59288 (9)0.64478 (9)0.04386 (7)0.0531 (5)
H11A0.62640.61190.05600.064*
H11B0.57780.66880.07860.064*
C120.62396 (9)0.69325 (9)0.00183 (8)0.0536 (5)
H12A0.59200.72910.00660.064*
H12B0.66360.71340.01980.064*
C130.64395 (8)0.65927 (9)0.05464 (8)0.0497 (4)
H13A0.67960.62680.04690.060*
H13B0.66140.69270.08190.060*
C140.59426 (7)0.29470 (8)0.23501 (6)0.0349 (3)
C150.69785 (7)0.24027 (8)0.27046 (6)0.0370 (3)
H15A0.67330.20870.29590.044*
C160.75419 (8)0.20343 (9)0.24123 (8)0.0526 (4)
H16A0.77700.23340.21390.063*
H16B0.73620.16560.21910.063*
C170.80408 (10)0.17791 (11)0.28630 (9)0.0684 (6)
H17A0.78260.14360.31040.082*
H17B0.84210.15720.26630.082*
C180.82896 (9)0.23336 (11)0.32477 (9)0.0674 (6)
H18A0.85800.21460.35500.081*
H18B0.85570.26460.30150.081*
C190.77275 (9)0.27026 (10)0.35276 (7)0.0557 (5)
H19A0.79060.30760.37560.067*
H19B0.74880.24030.37940.067*
C200.72465 (8)0.29678 (8)0.30747 (7)0.0456 (4)
H20A0.68740.31960.32680.055*
H20B0.74770.32930.28260.055*
C210.50724 (7)0.32912 (8)0.30557 (6)0.0374 (3)
H21A0.49460.36060.27420.045*
C220.44834 (8)0.28519 (9)0.31802 (7)0.0464 (4)
H22A0.46100.25110.34660.056*
H22B0.43470.26230.28220.056*
C230.39024 (9)0.32563 (10)0.34138 (8)0.0568 (5)
H23A0.37430.35610.31100.068*
H23B0.35340.29540.35140.068*
C240.40961 (10)0.36528 (10)0.39410 (8)0.0635 (5)
H24A0.42020.33480.42620.076*
H24B0.37190.39330.40620.076*
C250.46926 (10)0.40882 (10)0.38163 (9)0.0668 (6)
H25A0.48300.43140.41760.080*
H25B0.45660.44320.35330.080*
C260.52773 (9)0.36913 (9)0.35791 (8)0.0528 (4)
H26A0.56400.39970.34720.063*
H26B0.54460.33900.38820.063*
C270.68024 (7)0.31447 (8)0.02781 (6)0.0362 (3)
C280.74112 (7)0.41152 (7)0.01438 (6)0.0367 (3)
H28A0.74800.42640.02630.044*
C290.71280 (8)0.46861 (9)0.04848 (8)0.0546 (5)
H29A0.67110.48360.03020.066*
H29B0.70230.45360.08800.066*
C300.76150 (9)0.52635 (9)0.05136 (9)0.0630 (5)
H30A0.74240.56190.07550.076*
H30B0.76830.54430.01210.076*
C310.82687 (10)0.50572 (11)0.07596 (9)0.0675 (6)
H31A0.85800.54350.07510.081*
H31B0.82110.49190.11660.081*
C320.85528 (9)0.44852 (11)0.04109 (11)0.0756 (7)
H32A0.86470.46380.00140.091*
H32B0.89760.43410.05860.091*
C330.80722 (9)0.38965 (9)0.03875 (9)0.0585 (5)
H33A0.80080.37160.07800.070*
H33B0.82610.35430.01430.070*
C340.60891 (8)0.21889 (8)0.05719 (7)0.0404 (4)
H34A0.62120.23240.09720.048*
C350.53411 (8)0.21638 (8)0.05333 (9)0.0534 (5)
H35A0.52090.20530.01340.064*
H35B0.51560.26040.06280.064*
C360.50584 (10)0.16501 (9)0.09468 (10)0.0675 (6)
H36A0.51520.17870.13480.081*
H36B0.45720.16280.08980.081*
C370.53518 (9)0.09730 (9)0.08417 (11)0.0700 (6)
H37A0.52170.08130.04560.084*
H37B0.51800.06590.11330.084*
C380.61008 (10)0.09982 (10)0.08767 (11)0.0725 (6)
H38A0.62840.05560.07850.087*
H38B0.62350.11130.12750.087*
C390.63862 (9)0.15079 (9)0.04575 (9)0.0591 (5)
H39A0.68730.15280.05030.071*
H39B0.62880.13720.00570.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te0.03150 (5)0.04802 (6)0.02443 (4)0.00137 (4)0.00503 (4)0.00449 (4)
S10.0625 (3)0.0582 (3)0.02862 (18)0.0089 (2)0.00225 (18)0.00049 (18)
S20.03182 (19)0.0584 (3)0.03241 (18)0.00061 (18)0.00359 (15)0.01299 (17)
S30.02987 (19)0.0475 (2)0.03225 (17)0.00064 (17)0.00586 (14)0.00238 (16)
Cl10.0380 (2)0.0654 (3)0.0421 (2)0.0145 (2)0.00347 (16)0.00345 (19)
Cl20.03915 (19)0.0488 (2)0.02788 (15)0.00325 (17)0.00153 (14)0.00699 (15)
N10.0515 (8)0.0399 (8)0.0351 (6)0.0019 (6)0.0102 (6)0.0044 (6)
C10.0535 (11)0.0408 (9)0.0313 (7)0.0009 (8)0.0067 (7)0.0057 (6)
N20.0464 (8)0.0474 (8)0.0412 (7)0.0000 (6)0.0067 (6)0.0025 (6)
C20.0515 (10)0.0415 (9)0.0305 (7)0.0014 (7)0.0065 (7)0.0064 (6)
N30.0360 (7)0.0507 (8)0.0288 (6)0.0055 (6)0.0010 (5)0.0041 (5)
C30.0457 (10)0.0584 (11)0.0371 (8)0.0016 (8)0.0066 (7)0.0030 (7)
N40.0328 (7)0.0472 (8)0.0352 (6)0.0067 (6)0.0033 (5)0.0137 (6)
C40.0646 (12)0.0775 (14)0.0483 (10)0.0218 (11)0.0059 (9)0.0041 (10)
N50.0471 (8)0.0523 (9)0.0305 (6)0.0137 (7)0.0109 (6)0.0037 (6)
C50.0503 (11)0.1038 (18)0.0552 (11)0.0003 (12)0.0127 (9)0.0257 (12)
N60.0528 (8)0.0538 (9)0.0355 (7)0.0170 (7)0.0109 (6)0.0034 (6)
C60.0828 (15)0.0656 (13)0.0580 (12)0.0075 (11)0.0406 (11)0.0079 (10)
C70.0963 (17)0.0523 (12)0.0643 (12)0.0012 (11)0.0509 (12)0.0038 (9)
C80.0467 (9)0.0334 (8)0.0405 (8)0.0028 (7)0.0133 (7)0.0006 (6)
C90.0665 (11)0.0343 (9)0.0384 (8)0.0046 (8)0.0132 (8)0.0014 (7)
C100.0711 (12)0.0454 (10)0.0371 (8)0.0002 (9)0.0101 (8)0.0006 (7)
C110.0668 (12)0.0488 (11)0.0437 (9)0.0103 (9)0.0196 (8)0.0096 (8)
C120.0539 (11)0.0420 (10)0.0650 (11)0.0014 (9)0.0224 (9)0.0152 (9)
C130.0470 (10)0.0455 (10)0.0566 (10)0.0024 (8)0.0146 (8)0.0061 (8)
C140.0328 (8)0.0398 (9)0.0321 (7)0.0031 (7)0.0019 (6)0.0048 (6)
C150.0341 (8)0.0406 (9)0.0365 (7)0.0021 (7)0.0004 (6)0.0106 (6)
C160.0476 (10)0.0601 (12)0.0502 (10)0.0153 (9)0.0065 (8)0.0072 (9)
C170.0557 (12)0.0766 (15)0.0727 (13)0.0312 (11)0.0079 (10)0.0204 (11)
C180.0418 (11)0.0916 (17)0.0689 (13)0.0041 (10)0.0095 (9)0.0272 (12)
C190.0464 (10)0.0683 (13)0.0523 (10)0.0061 (9)0.0139 (8)0.0099 (9)
C200.0403 (9)0.0483 (10)0.0482 (9)0.0010 (8)0.0067 (7)0.0075 (8)
C210.0339 (8)0.0429 (9)0.0352 (7)0.0056 (7)0.0032 (6)0.0114 (6)
C220.0344 (9)0.0550 (11)0.0497 (9)0.0044 (8)0.0004 (7)0.0040 (8)
C230.0363 (9)0.0774 (14)0.0566 (11)0.0026 (9)0.0085 (8)0.0059 (10)
C240.0610 (12)0.0832 (15)0.0462 (10)0.0198 (11)0.0152 (9)0.0048 (10)
C250.0728 (14)0.0576 (13)0.0700 (13)0.0121 (11)0.0039 (11)0.0189 (10)
C260.0451 (10)0.0457 (10)0.0676 (12)0.0036 (8)0.0048 (8)0.0094 (9)
C270.0329 (8)0.0432 (9)0.0326 (7)0.0005 (7)0.0019 (6)0.0031 (6)
C280.0357 (8)0.0426 (9)0.0317 (7)0.0048 (7)0.0014 (6)0.0019 (6)
C290.0396 (10)0.0565 (12)0.0677 (12)0.0004 (8)0.0008 (8)0.0182 (9)
C300.0570 (12)0.0521 (12)0.0800 (14)0.0012 (9)0.0037 (10)0.0189 (10)
C310.0641 (13)0.0747 (15)0.0636 (12)0.0232 (11)0.0189 (10)0.0002 (11)
C320.0384 (11)0.0733 (15)0.1151 (19)0.0036 (10)0.0181 (11)0.0105 (14)
C330.0435 (10)0.0539 (12)0.0779 (13)0.0032 (9)0.0089 (9)0.0100 (10)
C340.0395 (9)0.0400 (9)0.0416 (8)0.0051 (7)0.0043 (7)0.0020 (7)
C350.0411 (10)0.0371 (10)0.0820 (13)0.0053 (8)0.0013 (9)0.0073 (9)
C360.0424 (11)0.0504 (12)0.1096 (17)0.0014 (9)0.0146 (11)0.0081 (11)
C370.0517 (12)0.0391 (11)0.1193 (19)0.0017 (9)0.0037 (12)0.0146 (11)
C380.0526 (12)0.0464 (11)0.1185 (19)0.0123 (9)0.0041 (12)0.0187 (12)
C390.0374 (10)0.0574 (12)0.0825 (14)0.0085 (8)0.0032 (9)0.0002 (10)
Geometric parameters (Å, º) top
Te—S12.5803 (4)C16—H16B0.9900
Te—S22.6211 (4)C17—C181.518 (3)
Te—S32.8214 (4)C17—H17A0.9900
Te—Cl12.6485 (4)C17—H17B0.9900
S1—C11.7576 (17)C18—C191.505 (3)
N1—C11.324 (2)C18—H18A0.9900
N1—H1A0.8800C18—H18B0.9900
N1—C21.4766 (19)C19—C201.528 (2)
N2—C11.326 (2)C19—H19A0.9900
N2—C81.478 (2)C19—H19B0.9900
N2—H2A0.8800C20—H20A0.9900
S2—C141.7504 (14)C20—H20B0.9900
N3—C141.3290 (18)C21—C221.512 (2)
N3—H3A0.8800C21—C261.517 (2)
N3—C151.4774 (17)C21—H21A1.0000
S3—C271.7336 (14)C22—C231.529 (2)
N4—C141.3232 (17)C22—H22A0.9900
N4—C211.4743 (19)C22—H22B0.9900
N4—H4A0.8800C23—C241.514 (3)
N5—C271.3337 (18)C23—H23A0.9900
N5—C281.4660 (19)C23—H23B0.9900
N5—H5A0.8800C24—C251.520 (3)
N6—C271.3341 (19)C24—H24A0.9900
N6—C341.4568 (19)C24—H24B0.9900
N6—H6A0.8800C25—C261.530 (3)
C2—C71.511 (2)C25—H25A0.9900
C2—C31.514 (2)C25—H25B0.9900
C2—H2B1.0000C26—H26A0.9900
C3—C41.527 (2)C26—H26B0.9900
C3—H3B0.9900C28—C291.511 (2)
C3—H3C0.9900C28—C331.516 (2)
C4—C51.520 (3)C28—H28A1.0000
C4—H4B0.9900C29—C301.528 (2)
C4—H4C0.9900C29—H29A0.9900
C5—C61.518 (3)C29—H29B0.9900
C5—H5B0.9900C30—C311.497 (3)
C5—H5C0.9900C30—H30A0.9900
C6—C71.530 (2)C30—H30B0.9900
C6—H6B0.9900C31—C321.523 (3)
C6—H6C0.9900C31—H31A0.9900
C7—H7A0.9900C31—H31B0.9900
C7—H7B0.9900C32—C331.537 (3)
C8—C131.526 (2)C32—H32A0.9900
C8—C91.532 (2)C32—H32B0.9900
C8—H8A1.0000C33—H33A0.9900
C9—C101.527 (2)C33—H33B0.9900
C9—H9A0.9900C34—C351.514 (2)
C9—H9B0.9900C34—C391.525 (2)
C10—C111.529 (2)C34—H34A1.0000
C10—H10A0.9900C35—C361.525 (2)
C10—H10B0.9900C35—H35A0.9900
C11—C121.518 (3)C35—H35B0.9900
C11—H11A0.9900C36—C371.511 (3)
C11—H11B0.9900C36—H36A0.9900
C12—C131.533 (2)C36—H36B0.9900
C12—H12A0.9900C37—C381.515 (3)
C12—H12B0.9900C37—H37A0.9900
C13—H13A0.9900C37—H37B0.9900
C13—H13B0.9900C38—C391.530 (3)
C15—C161.519 (2)C38—H38A0.9900
C15—C201.528 (2)C38—H38B0.9900
C15—H15A1.0000C39—H39A0.9900
C16—C171.541 (2)C39—H39B0.9900
C16—H16A0.9900
S1—Te—S288.971 (15)C19—C18—H18B109.3
S1—Te—S3169.951 (12)C17—C18—H18B109.3
S1—Te—Cl188.782 (15)H18A—C18—H18B107.9
S2—Te—S390.956 (13)C18—C19—C20110.88 (15)
S2—Te—Cl1174.031 (13)C18—C19—H19A109.5
S3—Te—Cl192.220 (13)C20—C19—H19A109.5
Te—S1—C1100.63 (5)C18—C19—H19B109.5
Te—S2—C14100.85 (5)C20—C19—H19B109.5
Te—S3—C27102.70 (5)H19A—C19—H19B108.1
S1—C1—N1120.81 (12)C15—C20—C19110.44 (14)
S1—C1—N2117.57 (13)C15—C20—H20A109.6
N1—C1—N2121.58 (15)C19—C20—H20A109.6
C1—N1—C2125.70 (14)C15—C20—H20B109.6
C1—N1—H1A117.1C19—C20—H20B109.6
C2—N1—H1A117.1H20A—C20—H20B108.1
C1—N2—C8125.82 (15)N4—C21—C22110.80 (13)
C1—N2—H2A117.1N4—C21—C26109.25 (13)
C8—N2—H2A117.1C22—C21—C26112.02 (13)
N1—C2—C7110.67 (13)N4—C21—H21A108.2
N1—C2—C3109.39 (12)C22—C21—H21A108.2
C7—C2—C3111.73 (16)C26—C21—H21A108.2
N1—C2—H2B108.3C21—C22—C23110.93 (14)
C7—C2—H2B108.3C21—C22—H22A109.5
C3—C2—H2B108.3C23—C22—H22A109.5
C14—N3—C15126.10 (12)C21—C22—H22B109.5
C14—N3—H3A117.0C23—C22—H22B109.5
C15—N3—H3A117.0H22A—C22—H22B108.0
C2—C3—C4111.60 (13)C24—C23—C22111.79 (15)
C2—C3—H3B109.3C24—C23—H23A109.3
C4—C3—H3B109.3C22—C23—H23A109.3
C2—C3—H3C109.3C24—C23—H23B109.3
C4—C3—H3C109.3C22—C23—H23B109.3
H3B—C3—H3C108.0H23A—C23—H23B107.9
C14—N4—C21126.62 (12)C23—C24—C25110.95 (15)
C14—N4—H4A116.7C23—C24—H24A109.5
C21—N4—H4A116.7C25—C24—H24A109.5
C5—C4—C3111.25 (17)C23—C24—H24B109.5
C5—C4—H4B109.4C25—C24—H24B109.5
C3—C4—H4B109.4H24A—C24—H24B108.0
C5—C4—H4C109.4C24—C25—C26112.12 (16)
C3—C4—H4C109.4C24—C25—H25A109.2
H4B—C4—H4C108.0C26—C25—H25A109.2
C27—N5—C28127.69 (12)C24—C25—H25B109.2
C27—N5—H5A116.2C26—C25—H25B109.2
C28—N5—H5A116.2H25A—C25—H25B107.9
C6—C5—C4110.77 (17)C21—C26—C25110.92 (15)
C6—C5—H5B109.5C21—C26—H26A109.5
C4—C5—H5B109.5C25—C26—H26A109.5
C6—C5—H5C109.5C21—C26—H26B109.5
C4—C5—H5C109.5C25—C26—H26B109.5
H5B—C5—H5C108.1H26A—C26—H26B108.0
C27—N6—C34127.59 (13)S3—C27—N5121.23 (12)
C27—N6—H6A116.2S3—C27—N6121.90 (12)
C34—N6—H6A116.2N5—C27—N6116.87 (13)
C5—C6—C7111.61 (16)N5—C28—C29108.43 (12)
C5—C6—H6B109.3N5—C28—C33111.72 (13)
C7—C6—H6B109.3C29—C28—C33111.14 (14)
C5—C6—H6C109.3N5—C28—H28A108.5
C7—C6—H6C109.3C29—C28—H28A108.5
H6B—C6—H6C108.0C33—C28—H28A108.5
C2—C7—C6110.28 (15)C28—C29—C30111.27 (14)
C2—C7—H7A109.6C28—C29—H29A109.4
C6—C7—H7A109.6C30—C29—H29A109.4
C2—C7—H7B109.6C28—C29—H29B109.4
C6—C7—H7B109.6C30—C29—H29B109.4
H7A—C7—H7B108.1H29A—C29—H29B108.0
N2—C8—C13108.58 (13)C31—C30—C29111.80 (17)
N2—C8—C9110.93 (12)C31—C30—H30A109.3
C13—C8—C9110.86 (13)C29—C30—H30A109.3
N2—C8—H8A108.8C31—C30—H30B109.3
C13—C8—H8A108.8C29—C30—H30B109.3
C9—C8—H8A108.8H30A—C30—H30B107.9
C10—C9—C8110.63 (13)C30—C31—C32109.94 (16)
C10—C9—H9A109.5C30—C31—H31A109.7
C8—C9—H9A109.5C32—C31—H31A109.7
C10—C9—H9B109.5C30—C31—H31B109.7
C8—C9—H9B109.5C32—C31—H31B109.7
H9A—C9—H9B108.1H31A—C31—H31B108.2
C9—C10—C11111.30 (15)C31—C32—C33111.64 (17)
C9—C10—H10A109.4C31—C32—H32A109.3
C11—C10—H10A109.4C33—C32—H32A109.3
C9—C10—H10B109.4C31—C32—H32B109.3
C11—C10—H10B109.4C33—C32—H32B109.3
H10A—C10—H10B108.0H32A—C32—H32B108.0
C12—C11—C10110.86 (13)C28—C33—C32110.08 (15)
C12—C11—H11A109.5C28—C33—H33A109.6
C10—C11—H11A109.5C32—C33—H33A109.6
C12—C11—H11B109.5C28—C33—H33B109.6
C10—C11—H11B109.5C32—C33—H33B109.6
H11A—C11—H11B108.1H33A—C33—H33B108.2
C11—C12—C13111.62 (14)N6—C34—C35109.56 (13)
C11—C12—H12A109.3N6—C34—C39112.11 (14)
C13—C12—H12A109.3C35—C34—C39110.62 (14)
C11—C12—H12B109.3N6—C34—H34A108.1
C13—C12—H12B109.3C35—C34—H34A108.1
H12A—C12—H12B108.0C39—C34—H34A108.1
C8—C13—C12110.94 (14)C34—C35—C36111.05 (14)
C8—C13—H13A109.5C34—C35—H35A109.4
C12—C13—H13A109.5C36—C35—H35A109.4
C8—C13—H13B109.5C34—C35—H35B109.4
C12—C13—H13B109.5C36—C35—H35B109.4
H13A—C13—H13B108.0H35A—C35—H35B108.0
N3—C14—N4120.85 (13)C37—C36—C35111.63 (17)
S2—C14—N3118.07 (11)C37—C36—H36A109.3
S2—C14—N4121.08 (11)C35—C36—H36A109.3
N3—C15—C16108.79 (12)C37—C36—H36B109.3
N3—C15—C20111.13 (12)C35—C36—H36B109.3
C16—C15—C20110.61 (13)H36A—C36—H36B108.0
N3—C15—H15A108.8C36—C37—C38110.62 (16)
C16—C15—H15A108.8C36—C37—H37A109.5
C20—C15—H15A108.8C38—C37—H37A109.5
C15—C16—C17110.54 (14)C36—C37—H37B109.5
C15—C16—H16A109.5C38—C37—H37B109.5
C17—C16—H16A109.5H37A—C37—H37B108.1
C15—C16—H16B109.5C37—C38—C39111.39 (16)
C17—C16—H16B109.5C37—C38—H38A109.3
H16A—C16—H16B108.1C39—C38—H38A109.3
C18—C17—C16111.59 (16)C37—C38—H38B109.3
C18—C17—H17A109.3C39—C38—H38B109.3
C16—C17—H17A109.3H38A—C38—H38B108.0
C18—C17—H17B109.3C34—C39—C38110.44 (15)
C16—C17—H17B109.3C34—C39—H39A109.6
H17A—C17—H17B108.0C38—C39—H39A109.6
C19—C18—C17111.71 (16)C34—C39—H39B109.6
C19—C18—H18A109.3C38—C39—H39B109.6
C17—C18—H18A109.3H39A—C39—H39B108.1
S2—Te—S1—C1102.77 (6)C20—C15—C16—C1756.32 (19)
Cl1—Te—S1—C171.70 (6)C15—C16—C17—C1854.5 (2)
S3—Te—S1—C1167.56 (9)C16—C17—C18—C1954.4 (2)
S1—Te—S2—C1492.25 (5)C17—C18—C19—C2055.8 (2)
Cl1—Te—S2—C14160.16 (13)N3—C15—C20—C19179.01 (13)
S3—Te—S2—C1477.70 (5)C16—C15—C20—C1958.06 (18)
S1—Te—S3—C27167.79 (9)C18—C19—C20—C1557.5 (2)
S2—Te—S3—C2778.29 (6)C14—N4—C21—C22119.06 (16)
Cl1—Te—S3—C2796.66 (6)C14—N4—C21—C26117.05 (17)
C2—N1—C1—N2164.29 (14)N4—C21—C22—C23177.54 (13)
C2—N1—C1—S118.0 (2)C26—C21—C22—C2355.26 (18)
Te—S1—C1—N1121.89 (12)C21—C22—C23—C2455.4 (2)
Te—S1—C1—N260.32 (13)C22—C23—C24—C2554.9 (2)
N1—C1—N2—C818.4 (2)C23—C24—C25—C2654.4 (2)
S1—C1—N2—C8163.83 (12)N4—C21—C26—C25177.76 (14)
C1—N1—C2—C7141.83 (17)C22—C21—C26—C2554.6 (2)
C1—N1—C2—C394.65 (18)C24—C25—C26—C2154.1 (2)
N1—C2—C3—C4178.12 (14)C28—N5—C27—N6179.12 (14)
C7—C2—C3—C455.2 (2)C28—N5—C27—S30.5 (2)
C2—C3—C4—C554.4 (2)C34—N6—C27—N5176.22 (15)
C3—C4—C5—C654.8 (2)C34—N6—C27—S34.2 (2)
C4—C5—C6—C756.2 (2)Te—S3—C27—N580.20 (13)
N1—C2—C7—C6177.85 (16)Te—S3—C27—N6100.19 (14)
C3—C2—C7—C655.7 (2)C27—N5—C28—C29145.37 (16)
C5—C6—C7—C256.5 (2)C27—N5—C28—C3391.81 (19)
C1—N2—C8—C13172.13 (15)N5—C28—C29—C30178.76 (15)
C1—N2—C8—C965.8 (2)C33—C28—C29—C3055.6 (2)
N2—C8—C9—C10177.28 (13)C28—C29—C30—C3156.2 (2)
C13—C8—C9—C1056.55 (19)C29—C30—C31—C3256.1 (2)
C8—C9—C10—C1156.54 (19)C30—C31—C32—C3356.7 (2)
C9—C10—C11—C1255.90 (19)N5—C28—C33—C32176.88 (16)
C10—C11—C12—C1355.2 (2)C29—C28—C33—C3255.6 (2)
N2—C8—C13—C12177.99 (13)C31—C32—C33—C2856.5 (2)
C9—C8—C13—C1255.89 (19)C27—N6—C34—C35134.77 (17)
C11—C12—C13—C855.56 (19)C27—N6—C34—C39102.0 (2)
C21—N4—C14—N3167.52 (14)N6—C34—C35—C36179.60 (15)
C21—N4—C14—S213.2 (2)C39—C34—C35—C3656.3 (2)
C15—N3—C14—N417.5 (2)C34—C35—C36—C3756.1 (2)
C15—N3—C14—S2163.20 (12)C35—C36—C37—C3855.5 (3)
Te—S2—C14—N4126.50 (12)C36—C37—C38—C3955.9 (3)
Te—S2—C14—N354.17 (12)N6—C34—C39—C38179.12 (15)
C14—N3—C15—C16173.70 (15)C35—C34—C39—C3856.5 (2)
C14—N3—C15—C2064.28 (19)C37—C38—C39—C3456.6 (2)
N3—C15—C16—C17178.65 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl10.882.563.2431 (15)135
N3—H3A···S30.882.793.5618 (12)147
N1—H1A···Cl2i0.882.463.3007 (14)160
N4—H4A···Cl20.882.393.2294 (12)160
N5—H5A···Cl2ii0.882.393.2290 (13)160
N6—H6A···Cl2ii0.882.423.2445 (13)157
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC39H72ClN6S3Te+·Cl
Mr919.71
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)173
a, b, c (Å)20.1931 (5), 20.2156 (4), 23.1990 (4)
V3)9470.2 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.91
Crystal size (mm)0.37 × 0.25 × 0.22
Data collection
DiffractometerBruker SMART 2K CCD
diffractometer
Absorption correctionNumerical
(SHELXTL; Sheldrick, 2001)
Tmin, Tmax0.809, 0.831
No. of measured, independent and
observed [I > 2σ(I)] reflections
124117, 17005, 10136
Rint0.055
(sin θ/λ)max1)0.764
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.066, 0.92
No. of reflections17005
No. of parameters460
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.29

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1998), SAINT, SHELXS86 (Sheldrick, 1990), SHELXTL (Sheldrick, 2001), SHELXTL.

Selected geometric parameters (Å, º) top
Te—S12.5803 (4)N3—C141.3290 (18)
Te—S22.6211 (4)N3—C151.4774 (17)
Te—S32.8214 (4)S3—C271.7336 (14)
Te—Cl12.6485 (4)N4—C141.3232 (17)
S1—C11.7576 (17)N4—C211.4743 (19)
N1—C11.324 (2)N5—C271.3337 (18)
N1—C21.4766 (19)N5—C281.4660 (19)
N2—C11.326 (2)N6—C271.3341 (19)
N2—C81.478 (2)N6—C341.4568 (19)
S2—C141.7504 (14)
S1—Te—S288.971 (15)S1—C1—N1120.81 (12)
S1—Te—S3169.951 (12)S1—C1—N2117.57 (13)
S1—Te—Cl188.782 (15)N1—C1—N2121.58 (15)
S2—Te—S390.956 (13)N3—C14—N4120.85 (13)
S2—Te—Cl1174.031 (13)S2—C14—N3118.07 (11)
S3—Te—Cl192.220 (13)S2—C14—N4121.08 (11)
Te—S1—C1100.63 (5)S3—C27—N5121.23 (12)
Te—S2—C14100.85 (5)S3—C27—N6121.90 (12)
Te—S3—C27102.70 (5)N5—C27—N6116.87 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl10.882.563.2431 (15)135
N3—H3A···S30.882.793.5618 (12)147
N1—H1A···Cl2i0.882.463.3007 (14)160
N4—H4A···Cl20.882.393.2294 (12)160
N5—H5A···Cl2ii0.882.393.2290 (13)160
N6—H6A···Cl2ii0.882.423.2445 (13)157
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds