Download citation
Download citation
link to html
The title compound, C26H23NO2, (Ia) and (Ib), shows polymorphism with crystals obtained from different solvents displaying different crystal structures. However, it is not the geometry of the single mol­ecules nor the hydrogen-bond pattern that is different in (Ia) and (Ib), but the way in which the hydrogen-bonded chains, running along the a-axis direction, are arranged with respect to each other.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101005546/sk1471sup1.cif
Contains datablocks Ia, Ib, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101005546/sk1471Iasup2.hkl
Contains datablock Ia

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101005546/sk1471Ibsup3.hkl
Contains datablock Ib

CCDC references: 167004; 167005

Comment top

The 1,4-dihydropyridine ring system is of biological importance because it occurs in the reduced forms of nicotinamide adenine dinucleotide (NADH) and NADPH (Kosower & Sorensen, 1962). Since very little information is available on the geometry of aryl-substituted 1,4-dihydropyridines, the title compound, (I), was synthesized and its conformation was determined by means of an X-ray structure analysis. Surprisingly, crystals of (I) obtained from two different solvents showed two different crystal structures, (Ia) and (Ib). Thus, compound (I) shows polymorphism. However, since only two polymorphs have been characterized to date, one might speak of dimorphism. \sch

Polymorphism is a well known phenomenon in crystallography (Mitscherlich, 1822) and it is extensively described in crystallographic textbooks (e.g. Dunitz, 1979; Glusker, 1994). In the case of (I), two polymorphs, (Ia) (Fig. 1) and (Ib) (Fig. 2), were obtained via crystallization from different solvents. Although both polymorphs crystallize in space group P1 (No. 2) with Z = 2, they have slightly different unit-cell volumes and their unit-cell dimensions, apart from the a axis, are significantly different.

The Niggli values (Spek, 1990; Table 5) demonstrate clearly that the reduced cells are definitely different. The molecular structures of (I) found in the two polymorphs are very similar, indeed nearly identical. A least-squares fit of all non-H atoms in (Ia) and (Ib) gives an r.m.s. deviation of 0.263 Å. Bond lengths and angles are typical of their types (Allen et al., 1987). The 1,4-dihydropyridine ring system is essentially planar [r.m.s. deviations 0.082 and 0.098 Å for (Ia) and (Ib), respectively]. The phenyl ring in the para position to the NH group is almost perpendicular to the heterocycle [80.54 (5)° in (Ia) and 87.13 (3)° in (Ib)]. The phenyl rings in the ortho positions with respect to the NH group enclose smaller dihedral angles with the central ring: C21—C26 71.37 (6)° in (Ia) and 68.07 (4)° in (Ib), and C61—C66 36.96 (9)° in (Ia) and 35.58 (5)° in (Ib). Since the aryl ring C21—C26 is in the ortho position with respect to the ester group, it is obvious that its dihedral angle with the heterocycle is increased due to steric repulsion with the ester group. This ester group is also planar [r.m.s. deviation 0.040 Å in (Ia) and 0.021 Å in (Ib)] and more or less coplanar with the heterocycle [17.6 (1)° in (Ia) and 7.57 (6)° in (Ib)].

In the crystal, the molecules form infinite chains which are stabilized by a hydrogen bond from the NH group to the carbonyl O atom. The remarkable feature of (Ia) and (Ib), however, is their different crystal packing (Figs. 3 and 4).

Experimental top

Compound (I) was synthesized according to the reaction described by Weiss (1952). Crystals of (Ia) were obtained from ethyl acetate and of (Ib) from acetone. Having discovered that (Ib) was a polymorph of (Ia), the cell parameters of several further crystals out of the charge of (Ib) were checked at room temperature and at 163 K. They all turned out to be identical with those found for the first crystal of (Ib).

Refinement top

All H atoms were located by difference Fourier synthesis and refined with fixed individual displacement parameters [U(H) = 1.5Ueq(Cmethyl), U(H) = 1.2Ueq(C) or U(H) = 1.2Ueq(N)] using a riding model with N—H = 0.86 for (Ia) and 0.88 for (Ib), C—H(aromatic) = 0.93 for (Ia) and 0.95 for (Ib), CH(methyl) = 0.96 for (Ia) and 0.98 for (Ib), C—H(secondary) = 0.97 for (Ia) and 0.99 for (Ib), and C—H(tertiary) = 0.98 for (Ia) and 1.00 Å for (Ib).

Computing details top

For both compounds, data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1990) and XP in SHELXTL-Plus (Siemens, 1991).

Figures top
[Figure 1] Fig. 1. The molecular structure of (Ia) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular structure of (Ib) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. The packing diagram of (Ia) viewed down the a axis.
[Figure 4] Fig. 4. The packing diagram of (Ib) viewed down the a axis.
(Ia) Ethyl 1,4-dihydro-2,4,6-triphenylpyridine-3-carboxylate top
Crystal data top
C26H23NO2Z = 2
Mr = 381.45F(000) = 404
Triclinic, P1Dx = 1.168 Mg m3
a = 7.5083 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.6140 (3) ÅCell parameters from 6287 reflections
c = 12.6644 (3) Åθ = 1–26°
α = 93.862 (1)°µ = 0.07 mm1
β = 98.759 (1)°T = 293 K
γ = 94.527 (1)°Block, colourless
V = 1084.53 (5) Å30.5 × 0.4 × 0.3 mm
Data collection top
Siemens CCD three-circle
diffractometer
3332 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
Highly oriented graphite crystal monochromatorθmax = 26.1°, θmin = 1.8°
ω scansh = 99
9841 measured reflectionsk = 1414
3961 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.051P)2 + 0.3729P]
where P = (Fo2 + 2Fc2)/3
3961 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C26H23NO2γ = 94.527 (1)°
Mr = 381.45V = 1084.53 (5) Å3
Triclinic, P1Z = 2
a = 7.5083 (2) ÅMo Kα radiation
b = 11.6140 (3) ŵ = 0.07 mm1
c = 12.6644 (3) ÅT = 293 K
α = 93.862 (1)°0.5 × 0.4 × 0.3 mm
β = 98.759 (1)°
Data collection top
Siemens CCD three-circle
diffractometer
3332 reflections with I > 2σ(I)
9841 measured reflectionsRint = 0.038
3961 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.10Δρmax = 0.22 e Å3
3961 reflectionsΔρmin = 0.28 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.61677 (19)0.39930 (13)0.67560 (12)0.0509 (4)
H10.73020.42240.68850.061*
C20.4994 (2)0.45399 (14)0.73286 (13)0.0409 (4)
C30.3233 (2)0.40740 (14)0.72714 (13)0.0427 (4)
C40.2561 (2)0.29000 (15)0.66396 (14)0.0472 (4)
H40.13840.29880.62120.057*
C50.3838 (2)0.25907 (16)0.58692 (14)0.0503 (4)
H50.34160.20430.52980.060*
C60.5557 (2)0.30705 (15)0.59695 (14)0.0464 (4)
C210.5803 (2)0.56875 (14)0.78956 (13)0.0407 (4)
C220.6013 (3)0.66294 (17)0.72779 (16)0.0558 (5)
H220.57120.65280.65360.067*
C230.6675 (3)0.77210 (18)0.7775 (2)0.0684 (6)
H230.67900.83470.73610.082*
C240.7160 (3)0.78797 (18)0.8874 (2)0.0661 (6)
H240.75890.86110.92000.079*
C250.7005 (3)0.69455 (19)0.94912 (16)0.0604 (5)
H250.73530.70481.02310.073*
C260.6326 (2)0.58501 (16)0.90038 (14)0.0482 (4)
H260.62220.52270.94210.058*
C310.1820 (2)0.46706 (15)0.77272 (15)0.0475 (4)
O310.01969 (17)0.43771 (14)0.74637 (13)0.0733 (5)
O320.24286 (16)0.55464 (12)0.84743 (12)0.0604 (4)
C330.1088 (3)0.6185 (2)0.8921 (2)0.0700 (6)
H33A0.02480.56560.92030.084*
H33B0.04080.65850.83670.084*
C340.2045 (4)0.7038 (2)0.9793 (3)0.0930 (9)
H34A0.11770.74661.00960.140*
H34B0.28660.75620.95060.140*
H34C0.27090.66351.03390.140*
C410.2283 (3)0.19255 (16)0.73806 (15)0.0537 (5)
C420.3725 (4)0.1390 (2)0.78806 (18)0.0744 (6)
H420.48980.16340.77900.089*
C430.3420 (6)0.0472 (3)0.8530 (2)0.1054 (11)
H430.43860.01040.88610.127*
C440.1649 (7)0.0123 (2)0.8666 (3)0.1127 (13)
H440.14360.04860.90860.135*
C450.0245 (6)0.0663 (3)0.8194 (3)0.1054 (11)
H450.09230.04350.83040.126*
C460.0531 (3)0.1550 (2)0.7551 (2)0.0763 (7)
H460.04530.19060.72240.092*
C610.6873 (2)0.27183 (17)0.52594 (14)0.0501 (4)
C620.6968 (3)0.1548 (2)0.49578 (19)0.0735 (6)
H620.62450.09870.52270.088*
C630.8136 (4)0.1207 (2)0.4257 (2)0.0938 (9)
H630.81710.04260.40560.113*
C640.9238 (4)0.2031 (3)0.3864 (2)0.0886 (8)
H641.00180.18030.34010.106*
C650.9179 (3)0.3189 (2)0.41596 (17)0.0727 (6)
H650.99220.37410.38940.087*
C660.8012 (3)0.35408 (19)0.48547 (15)0.0575 (5)
H660.79880.43250.50510.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0318 (7)0.0595 (9)0.0578 (9)0.0026 (6)0.0069 (6)0.0137 (7)
C20.0329 (8)0.0443 (9)0.0440 (9)0.0016 (7)0.0032 (7)0.0025 (7)
C30.0346 (8)0.0447 (9)0.0482 (9)0.0005 (7)0.0056 (7)0.0047 (7)
C40.0361 (9)0.0528 (10)0.0494 (10)0.0051 (7)0.0023 (7)0.0009 (8)
C50.0485 (10)0.0536 (10)0.0445 (9)0.0073 (8)0.0043 (8)0.0052 (8)
C60.0442 (9)0.0492 (10)0.0434 (9)0.0014 (7)0.0053 (7)0.0026 (7)
C210.0277 (8)0.0453 (9)0.0485 (9)0.0012 (6)0.0075 (7)0.0008 (7)
C220.0548 (11)0.0554 (11)0.0559 (11)0.0014 (9)0.0066 (9)0.0066 (9)
C230.0686 (13)0.0469 (11)0.0895 (16)0.0041 (9)0.0153 (12)0.0090 (11)
C240.0550 (12)0.0522 (12)0.0877 (16)0.0058 (9)0.0167 (11)0.0197 (11)
C250.0459 (10)0.0775 (14)0.0547 (11)0.0002 (9)0.0109 (9)0.0180 (10)
C260.0387 (9)0.0574 (11)0.0488 (10)0.0023 (7)0.0101 (7)0.0016 (8)
C310.0347 (9)0.0500 (10)0.0579 (10)0.0009 (7)0.0080 (7)0.0069 (8)
O310.0321 (7)0.0855 (10)0.0982 (11)0.0025 (6)0.0097 (7)0.0135 (9)
O320.0353 (7)0.0631 (8)0.0817 (9)0.0061 (6)0.0132 (6)0.0143 (7)
C330.0470 (11)0.0807 (15)0.0856 (15)0.0173 (10)0.0212 (11)0.0077 (12)
C340.0763 (16)0.0746 (16)0.125 (2)0.0246 (13)0.0133 (15)0.0283 (15)
C410.0658 (12)0.0431 (10)0.0503 (10)0.0060 (9)0.0132 (9)0.0067 (8)
C420.1002 (18)0.0671 (14)0.0591 (13)0.0189 (13)0.0157 (12)0.0078 (11)
C430.177 (3)0.0748 (18)0.0718 (17)0.043 (2)0.0237 (19)0.0114 (14)
C440.210 (4)0.0534 (15)0.084 (2)0.007 (2)0.063 (2)0.0066 (14)
C450.149 (3)0.0641 (17)0.106 (2)0.0335 (18)0.055 (2)0.0029 (16)
C460.0807 (15)0.0646 (14)0.0821 (16)0.0237 (11)0.0275 (13)0.0025 (12)
C610.0467 (10)0.0588 (11)0.0423 (9)0.0014 (8)0.0065 (8)0.0062 (8)
C620.0780 (15)0.0637 (13)0.0785 (15)0.0060 (11)0.0269 (12)0.0148 (11)
C630.102 (2)0.0826 (18)0.0974 (19)0.0040 (15)0.0378 (16)0.0349 (15)
C640.0774 (16)0.117 (2)0.0708 (15)0.0010 (15)0.0312 (13)0.0280 (15)
C650.0607 (13)0.1041 (19)0.0523 (12)0.0090 (12)0.0167 (10)0.0001 (12)
C660.0521 (11)0.0664 (12)0.0517 (11)0.0023 (9)0.0073 (8)0.0010 (9)
Geometric parameters (Å, º) top
N1—C21.388 (2)C33—H33A0.9700
N1—C61.411 (2)C33—H33B0.9700
N1—H10.8600C34—H34A0.9600
C2—C31.378 (2)C34—H34B0.9600
C2—C211.507 (2)C34—H34C0.9600
C3—C311.479 (2)C41—C421.382 (3)
C3—C41.541 (2)C41—C461.406 (3)
C4—C51.514 (3)C42—C431.415 (4)
C4—C411.540 (3)C42—H420.9300
C4—H40.9800C43—C441.399 (5)
C5—C61.349 (2)C43—H430.9300
C5—H50.9300C44—C451.351 (5)
C6—C611.496 (2)C44—H440.9300
C21—C261.394 (2)C45—C461.380 (4)
C21—C221.400 (2)C45—H450.9300
C22—C231.396 (3)C46—H460.9300
C22—H220.9300C61—C621.397 (3)
C23—C241.381 (3)C61—C661.406 (3)
C23—H230.9300C62—C631.398 (3)
C24—C251.387 (3)C62—H620.9300
C24—H240.9300C63—C641.383 (4)
C25—C261.398 (3)C63—H630.9300
C25—H250.9300C64—C651.377 (4)
C26—H260.9300C64—H640.9300
C31—O311.228 (2)C65—C661.397 (3)
C31—O321.343 (2)C65—H650.9300
O32—C331.455 (2)C66—H660.9300
C33—C341.488 (3)
C2—N1—C6122.03 (14)O32—C33—H33B110.0
C2—N1—H1119.0C34—C33—H33B110.0
C6—N1—H1119.0H33A—C33—H33B108.4
C3—C2—N1120.25 (15)C33—C34—H34A109.5
C3—C2—C21126.23 (15)C33—C34—H34B109.5
N1—C2—C21113.31 (13)H34A—C34—H34B109.5
C2—C3—C31124.07 (15)C33—C34—H34C109.5
C2—C3—C4121.10 (15)H34A—C34—H34C109.5
C31—C3—C4114.69 (14)H34B—C34—H34C109.5
C5—C4—C41111.36 (15)C42—C41—C46118.4 (2)
C5—C4—C3110.26 (13)C42—C41—C4121.51 (19)
C41—C4—C3112.34 (14)C46—C41—C4120.1 (2)
C5—C4—H4107.6C41—C42—C43120.2 (3)
C41—C4—H4107.6C41—C42—H42119.9
C3—C4—H4107.6C43—C42—H42119.9
C6—C5—C4123.29 (16)C44—C43—C42119.2 (3)
C6—C5—H5118.4C44—C43—H43120.4
C4—C5—H5118.4C42—C43—H43120.4
C5—C6—N1119.41 (16)C45—C44—C43120.5 (3)
C5—C6—C61123.93 (16)C45—C44—H44119.8
N1—C6—C61116.60 (14)C43—C44—H44119.8
C26—C21—C22118.99 (16)C44—C45—C46120.6 (3)
C26—C21—C2122.84 (15)C44—C45—H45119.7
C22—C21—C2118.16 (15)C46—C45—H45119.7
C23—C22—C21120.08 (19)C45—C46—C41121.1 (3)
C23—C22—H22120.0C45—C46—H46119.5
C21—C22—H22120.0C41—C46—H46119.5
C24—C23—C22120.6 (2)C62—C61—C66118.00 (18)
C24—C23—H23119.7C62—C61—C6120.26 (17)
C22—C23—H23119.7C66—C61—C6121.73 (17)
C23—C24—C25119.81 (19)C61—C62—C63120.9 (2)
C23—C24—H24120.1C61—C62—H62119.5
C25—C24—H24120.1C63—C62—H62119.5
C24—C25—C26120.14 (19)C64—C63—C62120.1 (2)
C24—C25—H25119.9C64—C63—H63119.9
C26—C25—H25119.9C62—C63—H63119.9
C21—C26—C25120.37 (18)C65—C64—C63119.8 (2)
C21—C26—H26119.8C65—C64—H64120.1
C25—C26—H26119.8C63—C64—H64120.1
O31—C31—O32121.66 (17)C64—C65—C66120.6 (2)
O31—C31—C3122.81 (17)C64—C65—H65119.7
O32—C31—C3115.51 (14)C66—C65—H65119.7
C31—O32—C33117.53 (14)C65—C66—C61120.5 (2)
O32—C33—C34108.48 (17)C65—C66—H66119.8
O32—C33—H33A110.0C61—C66—H66119.8
C34—C33—H33A110.0
C6—N1—C2—C310.7 (3)C2—C3—C31—O3218.9 (3)
C6—N1—C2—C21164.16 (15)C4—C3—C31—O32165.37 (15)
N1—C2—C3—C31171.19 (16)O31—C31—O32—C333.5 (3)
C21—C2—C3—C313.0 (3)C3—C31—O32—C33177.98 (17)
N1—C2—C3—C44.3 (2)C31—O32—C33—C34175.0 (2)
C21—C2—C3—C4178.47 (15)C5—C4—C41—C4245.6 (2)
C2—C3—C4—C517.8 (2)C3—C4—C41—C4278.6 (2)
C31—C3—C4—C5158.05 (15)C5—C4—C41—C46133.53 (18)
C2—C3—C4—C41107.03 (19)C3—C4—C41—C46102.2 (2)
C31—C3—C4—C4177.11 (19)C46—C41—C42—C431.2 (3)
C41—C4—C5—C6106.0 (2)C4—C41—C42—C43177.97 (19)
C3—C4—C5—C619.4 (2)C41—C42—C43—C440.6 (4)
C4—C5—C6—N16.9 (3)C42—C43—C44—C450.7 (4)
C4—C5—C6—C61175.76 (17)C43—C44—C45—C461.4 (5)
C2—N1—C6—C59.6 (3)C44—C45—C46—C410.9 (4)
C2—N1—C6—C61167.91 (16)C42—C41—C46—C450.4 (3)
C3—C2—C21—C2678.1 (2)C4—C41—C46—C45178.7 (2)
N1—C2—C21—C26107.36 (18)C5—C6—C61—C6241.7 (3)
C3—C2—C21—C22101.1 (2)N1—C6—C61—C62140.9 (2)
N1—C2—C21—C2273.4 (2)C5—C6—C61—C66136.7 (2)
C26—C21—C22—C232.4 (3)N1—C6—C61—C6640.7 (2)
C2—C21—C22—C23176.90 (17)C66—C61—C62—C631.3 (3)
C21—C22—C23—C241.2 (3)C6—C61—C62—C63177.2 (2)
C22—C23—C24—C250.6 (3)C61—C62—C63—C641.0 (4)
C23—C24—C25—C261.3 (3)C62—C63—C64—C650.3 (4)
C22—C21—C26—C251.7 (2)C63—C64—C65—C660.0 (4)
C2—C21—C26—C25177.54 (15)C64—C65—C66—C610.3 (3)
C24—C25—C26—C210.1 (3)C62—C61—C66—C650.9 (3)
C2—C3—C31—O31162.60 (19)C6—C61—C66—C65177.53 (18)
C4—C3—C31—O3113.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O31i0.862.173.0103 (19)164
Symmetry code: (i) x+1, y, z.
(Ib) Ethyl 1,4-dihydro-2,4,6-triphenylpyridine-3-carboxylate top
Crystal data top
C26H23NO2Z = 2
Mr = 381.45F(000) = 404
Triclinic, P1Dx = 1.215 Mg m3
a = 7.5178 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.0669 (2) ÅCell parameters from 5616 reflections
c = 14.6364 (2) Åθ = 1–25°
α = 73.534 (1)°µ = 0.08 mm1
β = 80.826 (1)°T = 163 K
γ = 81.478 (1)°Block, colourless
V = 1042.46 (3) Å30.6 × 0.4 × 0.2 mm
Data collection top
Siemens CCD three-circle
diffractometer
3545 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Highly oriented graphite crystal monochromatorθmax = 26.5°, θmin = 2.1°
ω scansh = 99
15858 measured reflectionsk = 1212
4188 independent reflectionsl = 1817
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0462P)2 + 0.2564P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4188 reflectionsΔρmax = 0.27 e Å3
263 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.017 (2)
Crystal data top
C26H23NO2γ = 81.478 (1)°
Mr = 381.45V = 1042.46 (3) Å3
Triclinic, P1Z = 2
a = 7.5178 (1) ÅMo Kα radiation
b = 10.0669 (2) ŵ = 0.08 mm1
c = 14.6364 (2) ÅT = 163 K
α = 73.534 (1)°0.6 × 0.4 × 0.2 mm
β = 80.826 (1)°
Data collection top
Siemens CCD three-circle
diffractometer
3545 reflections with I > 2σ(I)
15858 measured reflectionsRint = 0.022
4188 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.03Δρmax = 0.27 e Å3
4188 reflectionsΔρmin = 0.15 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.17355 (12)0.42261 (10)0.29186 (7)0.0258 (2)
H10.06660.45060.27160.031*
C20.32475 (14)0.47502 (11)0.23455 (8)0.0220 (2)
C30.49454 (14)0.41688 (11)0.25628 (8)0.0217 (2)
C40.52015 (14)0.28176 (11)0.33604 (8)0.0226 (2)
H40.61900.29000.37180.027*
C50.34763 (15)0.26333 (11)0.40605 (8)0.0235 (2)
H50.35510.20550.46940.028*
C60.18528 (15)0.32570 (11)0.38167 (8)0.0231 (2)
C210.27833 (14)0.60015 (11)0.15455 (8)0.0215 (2)
C220.29812 (15)0.59304 (12)0.05950 (8)0.0268 (3)
H220.34060.50710.04450.032*
C230.25585 (16)0.71133 (14)0.01315 (9)0.0322 (3)
H230.26950.70610.07770.039*
C240.19353 (16)0.83754 (13)0.00826 (9)0.0332 (3)
H240.16770.91890.04180.040*
C250.16920 (17)0.84427 (12)0.10285 (9)0.0318 (3)
H250.12440.93000.11770.038*
C260.21028 (15)0.72589 (12)0.17599 (8)0.0263 (2)
H260.19190.73070.24080.032*
C310.66345 (14)0.47569 (11)0.20746 (8)0.0228 (2)
O310.81311 (10)0.42368 (9)0.22958 (6)0.0332 (2)
O320.64183 (10)0.59177 (8)0.13489 (6)0.0315 (2)
C330.80527 (15)0.64381 (12)0.07695 (9)0.0286 (3)
H33A0.87840.57070.04970.034*
H33B0.87980.67290.11640.034*
C340.74374 (18)0.76695 (14)0.00232 (10)0.0394 (3)
H34A0.84990.80620.04340.059*
H34B0.67090.83800.02580.059*
H34C0.67050.73650.04080.059*
C410.57537 (15)0.15349 (11)0.29692 (8)0.0239 (2)
C420.46160 (17)0.11522 (13)0.24453 (9)0.0309 (3)
H420.35080.17130.23080.037*
C430.5083 (2)0.00404 (14)0.21212 (10)0.0387 (3)
H430.43010.02810.17580.046*
C440.6678 (2)0.08763 (14)0.23247 (10)0.0440 (4)
H440.69850.17000.21130.053*
C450.7820 (2)0.05047 (17)0.28364 (11)0.0528 (4)
H450.89220.10730.29750.063*
C460.73683 (19)0.06995 (15)0.31525 (10)0.0406 (3)
H460.81750.09510.34970.049*
C610.01142 (15)0.30883 (12)0.44657 (8)0.0247 (2)
C620.02433 (17)0.17820 (13)0.50662 (9)0.0322 (3)
H620.06140.09930.50450.039*
C630.18452 (19)0.16211 (16)0.56968 (10)0.0431 (3)
H630.20830.07240.60940.052*
C640.30907 (18)0.27711 (17)0.57435 (9)0.0433 (4)
H640.41770.26650.61760.052*
C650.27432 (17)0.40758 (16)0.51558 (10)0.0396 (3)
H650.35860.48660.51950.048*
C660.11695 (16)0.42351 (13)0.45090 (9)0.0312 (3)
H660.09640.51280.40940.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0158 (4)0.0282 (5)0.0289 (5)0.0036 (4)0.0056 (4)0.0017 (4)
C20.0196 (5)0.0214 (5)0.0248 (5)0.0039 (4)0.0038 (4)0.0046 (4)
C30.0192 (5)0.0215 (5)0.0242 (5)0.0022 (4)0.0044 (4)0.0047 (4)
C40.0189 (5)0.0240 (5)0.0242 (5)0.0013 (4)0.0067 (4)0.0036 (4)
C50.0250 (6)0.0224 (5)0.0215 (5)0.0019 (4)0.0038 (4)0.0028 (4)
C60.0229 (5)0.0214 (5)0.0245 (5)0.0043 (4)0.0030 (4)0.0043 (4)
C210.0134 (5)0.0236 (5)0.0264 (6)0.0045 (4)0.0035 (4)0.0028 (4)
C220.0193 (5)0.0317 (6)0.0291 (6)0.0028 (5)0.0023 (4)0.0081 (5)
C230.0244 (6)0.0455 (7)0.0237 (6)0.0080 (5)0.0025 (5)0.0022 (5)
C240.0246 (6)0.0318 (6)0.0346 (7)0.0077 (5)0.0088 (5)0.0100 (5)
C250.0279 (6)0.0227 (6)0.0432 (7)0.0027 (5)0.0100 (5)0.0030 (5)
C260.0248 (6)0.0266 (6)0.0279 (6)0.0033 (5)0.0062 (5)0.0060 (5)
C310.0198 (5)0.0232 (5)0.0264 (6)0.0018 (4)0.0054 (4)0.0070 (4)
O310.0174 (4)0.0396 (5)0.0373 (5)0.0029 (3)0.0077 (3)0.0007 (4)
O320.0170 (4)0.0291 (4)0.0404 (5)0.0055 (3)0.0041 (3)0.0053 (4)
C330.0184 (5)0.0309 (6)0.0344 (6)0.0085 (5)0.0021 (5)0.0033 (5)
C340.0313 (7)0.0372 (7)0.0436 (8)0.0130 (6)0.0081 (6)0.0055 (6)
C410.0246 (6)0.0230 (5)0.0196 (5)0.0019 (4)0.0008 (4)0.0002 (4)
C420.0275 (6)0.0311 (6)0.0336 (6)0.0055 (5)0.0034 (5)0.0068 (5)
C430.0468 (8)0.0372 (7)0.0346 (7)0.0146 (6)0.0019 (6)0.0125 (6)
C440.0646 (10)0.0311 (7)0.0326 (7)0.0026 (6)0.0033 (6)0.0114 (6)
C450.0571 (10)0.0500 (9)0.0484 (9)0.0269 (7)0.0154 (7)0.0202 (7)
C460.0373 (7)0.0455 (8)0.0401 (7)0.0134 (6)0.0147 (6)0.0169 (6)
C610.0223 (6)0.0300 (6)0.0234 (5)0.0048 (5)0.0039 (4)0.0083 (5)
C620.0312 (6)0.0342 (6)0.0275 (6)0.0054 (5)0.0009 (5)0.0027 (5)
C630.0377 (7)0.0570 (9)0.0291 (7)0.0164 (7)0.0026 (6)0.0007 (6)
C640.0256 (6)0.0776 (11)0.0300 (7)0.0129 (7)0.0046 (5)0.0201 (7)
C650.0238 (6)0.0575 (9)0.0463 (8)0.0007 (6)0.0052 (5)0.0298 (7)
C660.0241 (6)0.0339 (6)0.0388 (7)0.0025 (5)0.0069 (5)0.0138 (5)
Geometric parameters (Å, º) top
N1—C21.3773 (14)C33—H33A0.9900
N1—C61.4042 (14)C33—H33B0.9900
N1—H10.8800C34—H34A0.9800
C2—C31.3696 (15)C34—H34B0.9800
C2—C211.4979 (15)C34—H34C0.9800
C3—C311.4722 (15)C41—C461.3878 (17)
C3—C41.5310 (15)C41—C421.3936 (17)
C4—C51.5186 (15)C42—C431.3909 (18)
C4—C411.5336 (15)C42—H420.9500
C4—H41.0000C43—C441.381 (2)
C5—C61.3401 (15)C43—H430.9500
C5—H50.9500C44—C451.377 (2)
C6—C611.4893 (15)C44—H440.9500
C21—C261.3944 (16)C45—C461.395 (2)
C21—C221.3964 (16)C45—H450.9500
C22—C231.3884 (17)C46—H460.9500
C22—H220.9500C61—C621.3958 (17)
C23—C241.3909 (19)C61—C661.4000 (16)
C23—H230.9500C62—C631.3953 (18)
C24—C251.3870 (19)C62—H620.9500
C24—H240.9500C63—C641.387 (2)
C25—C261.3909 (17)C63—H630.9500
C25—H250.9500C64—C651.387 (2)
C26—H260.9500C64—H640.9500
C31—O311.2208 (13)C65—C661.3910 (18)
C31—O321.3473 (14)C65—H650.9500
O32—C331.4526 (13)C66—H660.9500
C33—C341.5109 (17)
C2—N1—C6121.81 (9)O32—C33—H33B110.4
C2—N1—H1119.1C34—C33—H33B110.4
C6—N1—H1119.1H33A—C33—H33B108.6
C3—C2—N1120.25 (10)C33—C34—H34A109.5
C3—C2—C21127.01 (10)C33—C34—H34B109.5
N1—C2—C21112.67 (9)H34A—C34—H34B109.5
C2—C3—C31124.43 (10)C33—C34—H34C109.5
C2—C3—C4120.69 (9)H34A—C34—H34C109.5
C31—C3—C4114.88 (9)H34B—C34—H34C109.5
C5—C4—C3109.82 (9)C46—C41—C42118.20 (11)
C5—C4—C41110.29 (9)C46—C41—C4121.04 (10)
C3—C4—C41112.55 (9)C42—C41—C4120.73 (10)
C5—C4—H4108.0C43—C42—C41120.80 (12)
C3—C4—H4108.0C43—C42—H42119.6
C41—C4—H4108.0C41—C42—H42119.6
C6—C5—C4122.36 (10)C44—C43—C42120.36 (13)
C6—C5—H5118.8C44—C43—H43119.8
C4—C5—H5118.8C42—C43—H43119.8
C5—C6—N1119.72 (10)C45—C44—C43119.40 (13)
C5—C6—C61124.64 (10)C45—C44—H44120.3
N1—C6—C61115.47 (9)C43—C44—H44120.3
C26—C21—C22119.36 (10)C44—C45—C46120.46 (13)
C26—C21—C2119.07 (10)C44—C45—H45119.8
C22—C21—C2121.56 (10)C46—C45—H45119.8
C23—C22—C21120.14 (11)C41—C46—C45120.76 (13)
C23—C22—H22119.9C41—C46—H46119.6
C21—C22—H22119.9C45—C46—H46119.6
C22—C23—C24120.24 (11)C62—C61—C66118.59 (11)
C22—C23—H23119.9C62—C61—C6120.36 (10)
C24—C23—H23119.9C66—C61—C6121.02 (10)
C25—C24—C23119.80 (11)C63—C62—C61120.77 (12)
C25—C24—H24120.1C63—C62—H62119.6
C23—C24—H24120.1C61—C62—H62119.6
C24—C25—C26120.19 (11)C64—C63—C62120.00 (13)
C24—C25—H25119.9C64—C63—H63120.0
C26—C25—H25119.9C62—C63—H63120.0
C25—C26—C21120.22 (11)C63—C64—C65119.73 (12)
C25—C26—H26119.9C63—C64—H64120.1
C21—C26—H26119.9C65—C64—H64120.1
O31—C31—O32121.74 (10)C64—C65—C66120.44 (13)
O31—C31—C3123.24 (10)C64—C65—H65119.8
O32—C31—C3115.01 (9)C66—C65—H65119.8
C31—O32—C33117.01 (8)C65—C66—C61120.43 (12)
O32—C33—C34106.40 (9)C65—C66—H66119.8
O32—C33—H33A110.4C61—C66—H66119.8
C34—C33—H33A110.4
C6—N1—C2—C310.91 (16)C2—C3—C31—O322.43 (16)
C6—N1—C2—C21166.12 (10)C4—C3—C31—O32177.66 (9)
N1—C2—C3—C31171.75 (10)O31—C31—O32—C336.75 (16)
C21—C2—C3—C314.81 (18)C3—C31—O32—C33172.58 (9)
N1—C2—C3—C48.15 (16)C31—O32—C33—C34176.21 (10)
C21—C2—C3—C4175.28 (10)C5—C4—C41—C46116.43 (12)
C2—C3—C4—C523.09 (14)C3—C4—C41—C46120.54 (12)
C31—C3—C4—C5156.82 (9)C5—C4—C41—C4261.48 (13)
C2—C3—C4—C41100.19 (12)C3—C4—C41—C4261.54 (13)
C31—C3—C4—C4179.90 (11)C46—C41—C42—C430.43 (18)
C3—C4—C5—C622.45 (14)C4—C41—C42—C43177.54 (11)
C41—C4—C5—C6102.16 (12)C41—C42—C43—C440.80 (19)
C4—C5—C6—N16.51 (16)C42—C43—C44—C451.2 (2)
C4—C5—C6—C61178.54 (10)C43—C44—C45—C460.4 (2)
C2—N1—C6—C511.92 (16)C42—C41—C46—C451.3 (2)
C2—N1—C6—C61163.47 (10)C4—C41—C46—C45176.71 (13)
C3—C2—C21—C26105.30 (13)C44—C45—C46—C410.9 (2)
N1—C2—C21—C2671.48 (13)C5—C6—C61—C6240.99 (16)
C3—C2—C21—C2276.02 (15)N1—C6—C61—C62143.87 (11)
N1—C2—C21—C22107.19 (12)C5—C6—C61—C66137.09 (12)
C26—C21—C22—C232.07 (16)N1—C6—C61—C6638.05 (15)
C2—C21—C22—C23179.26 (10)C66—C61—C62—C630.01 (18)
C21—C22—C23—C240.02 (17)C6—C61—C62—C63178.12 (11)
C22—C23—C24—C251.65 (18)C61—C62—C63—C641.1 (2)
C23—C24—C25—C261.25 (18)C62—C63—C64—C650.5 (2)
C24—C25—C26—C210.81 (17)C63—C64—C65—C661.1 (2)
C22—C21—C26—C252.46 (16)C64—C65—C66—C612.19 (18)
C2—C21—C26—C25178.83 (10)C62—C61—C66—C651.64 (17)
C2—C3—C31—O31178.25 (11)C6—C61—C66—C65176.48 (11)
C4—C3—C31—O311.66 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O31i0.882.172.9912 (12)155
Symmetry code: (i) x1, y, z.

Experimental details

(Ia)(Ib)
Crystal data
Chemical formulaC26H23NO2C26H23NO2
Mr381.45381.45
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)293163
a, b, c (Å)7.5083 (2), 11.6140 (3), 12.6644 (3)7.5178 (1), 10.0669 (2), 14.6364 (2)
α, β, γ (°)93.862 (1), 98.759 (1), 94.527 (1)73.534 (1), 80.826 (1), 81.478 (1)
V3)1084.53 (5)1042.46 (3)
Z22
Radiation typeMo KαMo Kα
µ (mm1)0.070.08
Crystal size (mm)0.5 × 0.4 × 0.30.6 × 0.4 × 0.2
Data collection
DiffractometerSiemens CCD three-circle
diffractometer
Siemens CCD three-circle
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9841, 3961, 3332 15858, 4188, 3545
Rint0.0380.022
(sin θ/λ)max1)0.6190.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.141, 1.10 0.036, 0.095, 1.03
No. of reflections39614188
No. of parameters262263
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.280.27, 0.15

Computer programs: SMART (Siemens, 1995), SMART, SAINT (Siemens, 1995), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1990) and XP in SHELXTL-Plus (Siemens, 1991).

Selected geometric parameters (Å, º) for (Ia) top
N1—C21.388 (2)C3—C41.541 (2)
N1—C61.411 (2)C4—C51.514 (3)
C2—C31.378 (2)C5—C61.349 (2)
C2—N1—C6122.03 (14)C5—C4—C3110.26 (13)
C3—C2—N1120.25 (15)C6—C5—C4123.29 (16)
C2—C3—C4121.10 (15)C5—C6—N1119.41 (16)
Hydrogen-bond geometry (Å, º) for (Ia) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O31i0.862.173.0103 (19)163.8
Symmetry code: (i) x+1, y, z.
Selected geometric parameters (Å, º) for (Ib) top
N1—C21.3773 (14)C3—C41.5310 (15)
N1—C61.4042 (14)C4—C51.5186 (15)
C2—C31.3696 (15)C5—C61.3401 (15)
C2—N1—C6121.81 (9)C5—C4—C3109.82 (9)
C3—C2—N1120.25 (10)C6—C5—C4122.36 (10)
C2—C3—C4120.69 (9)C5—C6—N1119.72 (10)
Hydrogen-bond geometry (Å, º) for (Ib) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O31i0.882.172.9912 (12)155.2
Symmetry code: (i) x1, y, z.
Comparative table of reduced (Niggli) cell parameters of the two polymorphs top
Polymorpha.ab.bc.cb.ca.ca.b
(Ia)56.370134.890160.390-9.905-14.480-6.885
(Ib)56.520101.340214.22041.76517.54511.215
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds