Download citation
Download citation
link to html
The title compounds, tetrakis([mu]-benzoato-O:O')­bis(2,6-di­amino­pyridine)-1[kappa]N,2[kappa]N-dicopper(II)-aceto­nitrile (1/2), [Cu2(C7H5O2)4(C5H7N3)2]·2C2H3N, (I), and bis­(aceto­nitrile)-1[kappa]N,2[kappa]N-tetrakis([mu]-benzoato-O:O')­dicopper(II)-aceto­nitrile (1/1.5), [Cu2(C7H5O2)4(C2H3N)2]·1.5C2H3N, (II), crystallize as aceto­nitrile solvates exhibiting different stability. They have similar molecular structures with discrete dimeric units located at crystallographic inversion centres. The copper ions are bridged by four benzoate groups and neutral N-donor ligands, viz. 2,6-di­amino­pyridine in (I) and aceto­nitrile in (II), are coordinated at apical positions. The diverse stability is probably due to hydrogen-bond interactions of the solvated aceto­nitrile mol­ecules with neighbouring dimers in compound (I).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101003183/sk1448sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101003183/sk1448Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101003183/sk1448IIsup3.hkl
Contains datablock II

CCDC references: 164634; 164635

Comment top

Copper carboxylate complexes have properties of importance in various areas and accordingly have been extensively studied (Sundberg et al., 1996, and references therein). In this series mononuclear, dinuclear as well as polymeric complexes are known. In continuation of our research on metal carboxylates with increased fungicidal activity two dimeric forms of CuII benzoates with 2,6 diaminopyridine and acetonitrile as axially coordinated ligands were prepared. Both compounds crystallize as acetonitrile solvates with markedly different stability. While compound (I) is stable on air, crystals of compound (II) decompose rapidly when taken from the mother liquor. In this context, the crystal structures of the title compounds are presented here. \sch

In the unit cell, two crystallographically independent dimeric units are present in both structures with an inversion center located between the copper ions. The Cu atom is five coordinated in square pyramidal fashion: four equatorial O atoms belong to bridging carboxyl groups and nitrogen atom on apical position belongs to 2,6-diaminopyridine in (I) (Fig. 1) and to acetonitrile in (II) (Fig. 2). Geometrical parameters are comparable to the values reported previously for similar type of compounds (Speier et al., 1989; Kawata et al., 1992; Leban et al., 1997; Marsh, 1999). As reported by Sundberg et al. (1996), the longer the Cu—Cu distance within the dimer, the higher the Cu out-of-plane deviation. The Cu—Cu separations for (I) are 2.711 (1) and 2.713 (1) Å with the deviations of Cu from the basal plane of 0.244 (2) Å for both dimeric units. In compound (II), the corresponding values are 2.6323 (5) and 2.6202 (5) Å for the Cu—Cu separations and 0.1958 (7), 0.1901 (6) Å for out of plane displacement, respectively.

The main reason for quite different stability of the two solvates could be ascribed to hydrogen bonds present in compound (I). Due to the presence of hydrogen donors (amino groups) the extensive hydrogen bonding was expected. Beside the intramolecular contacts of N—H···O type the solvated acetonitrile molecules are held in the crystal by N—H···N hydrogen bonds. One acetonitrile molecule is hydrogen bonded to one amino group of 2,6-diaminopyridine [N12···N8 3.139 (9) Å] while the other one is linked to two NH2 groups of the different neighbouring dimers [N11···N7 3.2798 Å and N22···N7 at -x + 2, -y + 1, -z, 3.490 (8) Å]. Detailed geometrical parameters for hydrogen bonds in (I) are presented in Table 2. For compound (II) no classic hydrogen bonds were detected.

Related literature top

For related literature, see: Kawata et al. (1992); Leban et al. (1997); Marsh (1999); Sheldrick (1997); Speier & Fulop (1989); Sundberg et al. (1996).

Experimental top

Complex (I) was obtained by mixing acetonitrile solutions of copper benzoate and 2,6-diaminopyridine in 1:2 molar ratio. Crystals were deposited at room temperature from the saturated solution. Crystals of compound (II) were obtained from saturated solution of copper benzoate in acetonitrile after standing in the refrigerator for 2 d.

Refinement top

For compound (II) one solvated acetonitrile molecule was found to be disordered through an inversion center with methyl C atom from one disordered molecule and cyano C atom from the other one sharing the same site. H atoms were included at calculated positions in both structures using SHELXL97 (Sheldrick, 1997) and refined as a riding model with isotropic displacement parameters taken from the attached heavy atoms and multiplied by 1.2 for aromatic and amino H atoms and by 1.5 for methyl H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1994) for (I); Collect Software (Nonius, 1998) for (II). Cell refinement: PARAM in X-RAY76 (Stewart et al., 1976) for (I); DENZO and SCALEPACK (Otwinowski & Minor, 1997) for (II). Data reduction: XCAD4 (Harms & Wocadlo, 1995) for (I); DENZO and SCALEPACK for (II). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The structure of one dimeric unit of (I) with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The structure of one dimeric unit of (II) with displacement ellipsoids drawn at the 50% probability level.
(I) 'tetrakis(benzoato-O,O')bis(2,6-diaminopyridine-N)dicopper(II)acetonitrile solvat' top
Crystal data top
[Cu2(C7H5O2)4(C5H7N3)2]·2C2H3NZ = 2
Mr = 911.92F(000) = 940
Triclinic, P1Dx = 1.422 Mg m3
a = 10.690 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.822 (3) ÅCell parameters from 75 reflections
c = 16.485 (2) Åθ = 8.1–14.6°
α = 85.24 (1)°µ = 1.06 mm1
β = 71.24 (1)°T = 293 K
γ = 85.87 (1)°Prismatic, green
V = 2129.7 (6) Å30.40 × 0.19 × 0.11 mm
Data collection top
NONIUS CAD-4
diffractometer
4333 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 26.0°, θmin = 1.3°
ω/θ scansh = 130
Absorption correction: gaussian
(PLATON; Spek, 1998)
k = 1515
Tmin = 0.61, Tmax = 0.88l = 2019
8494 measured reflections3 standard reflections every 600 reflections
8365 independent reflections intensity decay: 17%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0852P)2]
where P = (Fo2 + 2Fc2)/3
8365 reflections(Δ/σ)max = 0.001
543 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.75 e Å3
Crystal data top
[Cu2(C7H5O2)4(C5H7N3)2]·2C2H3Nγ = 85.87 (1)°
Mr = 911.92V = 2129.7 (6) Å3
Triclinic, P1Z = 2
a = 10.690 (1) ÅMo Kα radiation
b = 12.822 (3) ŵ = 1.06 mm1
c = 16.485 (2) ÅT = 293 K
α = 85.24 (1)°0.40 × 0.19 × 0.11 mm
β = 71.24 (1)°
Data collection top
NONIUS CAD-4
diffractometer
4333 reflections with I > 2σ(I)
Absorption correction: gaussian
(PLATON; Spek, 1998)
Rint = 0.017
Tmin = 0.61, Tmax = 0.883 standard reflections every 600 reflections
8494 measured reflections intensity decay: 17%
8365 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 0.99Δρmax = 0.68 e Å3
8365 reflectionsΔρmin = 0.75 e Å3
543 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.94096 (5)0.41611 (5)0.48619 (4)0.03578 (18)
N10.8649 (4)0.2719 (3)0.4507 (3)0.0399 (10)
N110.8314 (5)0.3610 (4)0.3323 (3)0.0634 (14)
H11A0.82650.41840.35690.076*
H11B0.82280.36240.28210.076*
N120.8697 (6)0.1834 (4)0.5776 (3)0.0756 (17)
H12A0.86550.24290.59910.091*
H12B0.87320.12630.60830.091*
C20.8524 (5)0.2687 (4)0.3724 (4)0.0455 (13)
C30.8581 (6)0.1755 (5)0.3339 (4)0.0616 (17)
H30.85360.17550.27850.074*
C40.8706 (6)0.0839 (5)0.3794 (5)0.0699 (19)
H40.87670.02060.35440.084*
C50.8742 (5)0.0842 (5)0.4614 (4)0.0608 (16)
H50.87890.02170.49350.073*
C60.8706 (5)0.1795 (4)0.4955 (4)0.0468 (13)
O111.1953 (3)0.4791 (3)0.5284 (2)0.0510 (10)
O121.0959 (3)0.3415 (3)0.5067 (2)0.0484 (9)
C101.1894 (5)0.3843 (4)0.5208 (3)0.0393 (12)
C111.3022 (5)0.3120 (4)0.5284 (3)0.0400 (12)
C121.4192 (5)0.3545 (5)0.5272 (3)0.0533 (14)
H121.42540.42690.52320.064*
C131.5262 (6)0.2899 (6)0.5320 (4)0.0676 (18)
H131.60460.31830.53040.081*
C141.5153 (6)0.1831 (7)0.5390 (4)0.076 (2)
H141.58730.13920.54160.092*
C151.3987 (7)0.1399 (5)0.5422 (4)0.0713 (19)
H151.39140.06770.54860.086*
C161.2933 (5)0.2052 (5)0.5358 (4)0.0568 (15)
H161.21550.17640.53660.068*
O210.9484 (4)0.5444 (3)0.6319 (2)0.0497 (9)
O220.8491 (3)0.4071 (3)0.6112 (2)0.0484 (9)
C200.8727 (5)0.4703 (4)0.6577 (3)0.0373 (11)
C210.8064 (5)0.4558 (4)0.7533 (3)0.0442 (12)
C220.7047 (6)0.3894 (4)0.7870 (4)0.0569 (15)
H220.67740.35180.75030.068*
C230.6424 (7)0.3774 (5)0.8743 (4)0.0719 (19)
H230.57450.33130.89640.086*
C240.6811 (9)0.4340 (6)0.9284 (5)0.096 (3)
H240.63690.42910.98710.116*
C250.7856 (10)0.4978 (7)0.8953 (4)0.118 (4)
H250.81480.53350.93210.142*
C260.8480 (8)0.5096 (5)0.8075 (4)0.082 (2)
H260.91790.55390.78550.099*
Cu20.54701 (6)0.92077 (5)0.04365 (4)0.03689 (18)
N20.6355 (4)0.7889 (3)0.1091 (3)0.0424 (10)
N210.4889 (5)0.8312 (4)0.2406 (3)0.0738 (16)
H21A0.46270.88600.21550.089*
H21B0.45410.81860.29500.089*
N220.7886 (6)0.7491 (4)0.0213 (3)0.0848 (19)
H22A0.76030.80430.04470.102*
H22B0.85150.70960.05190.102*
C2'0.5845 (6)0.7650 (4)0.1945 (4)0.0509 (14)
C3'0.6272 (7)0.6769 (5)0.2360 (4)0.0702 (19)
H3'0.59020.66290.29480.084*
C4'0.7234 (8)0.6128 (5)0.1882 (5)0.081 (2)
H4'0.75060.55210.21410.097*
C5'0.7816 (7)0.6356 (5)0.1022 (5)0.0709 (19)
H5'0.85110.59320.07000.085*
C6'0.7337 (6)0.7243 (5)0.0642 (4)0.0560 (15)
O310.5267 (4)0.8394 (3)0.0468 (2)0.0534 (10)
O320.4508 (4)0.9701 (3)0.1197 (2)0.0522 (10)
C300.4837 (4)0.8764 (4)0.1069 (3)0.0391 (12)
C310.4755 (4)0.8002 (4)0.1692 (3)0.0403 (12)
C320.4466 (5)0.8353 (5)0.2435 (3)0.0511 (14)
H320.43110.90640.25490.061*
C330.4411 (6)0.7633 (6)0.3005 (4)0.0665 (18)
H330.42160.78660.35030.080*
C340.4638 (6)0.6585 (6)0.2845 (4)0.0701 (19)
H340.46050.61110.32340.084*
C350.4918 (6)0.6230 (5)0.2104 (4)0.0650 (17)
H350.50650.55170.19900.078*
C360.4976 (5)0.6938 (4)0.1534 (3)0.0498 (14)
H360.51670.66990.10370.060*
O410.3588 (3)0.9016 (3)0.1077 (2)0.0493 (9)
O420.2826 (3)1.0316 (3)0.0357 (3)0.0570 (10)
C400.2668 (5)0.9574 (4)0.0915 (3)0.0404 (12)
C410.1277 (5)0.9297 (4)0.1401 (3)0.0415 (12)
C420.1015 (6)0.8504 (5)0.2046 (4)0.0569 (15)
H420.17070.81570.22000.068*
C430.0271 (7)0.8227 (6)0.2462 (4)0.0743 (19)
H430.04400.76940.28970.089*
C440.1293 (6)0.8728 (6)0.2241 (4)0.073 (2)
H440.21550.85390.25260.088*
C450.1053 (6)0.9513 (6)0.1598 (5)0.077 (2)
H450.17490.98470.14390.093*
C460.0232 (5)0.9805 (5)0.1186 (4)0.0594 (16)
H460.03921.03490.07620.071*
N70.8933 (7)0.3528 (6)0.1247 (4)0.098 (2)
C710.8799 (7)0.3018 (6)0.0770 (5)0.077 (2)
C720.8684 (9)0.2333 (7)0.0139 (5)0.109 (3)
H72A0.94990.23070.03280.164*
H72B0.79790.25990.00740.164*
H72C0.84980.16410.04030.164*
C810.7720 (7)0.1034 (6)0.6867 (5)0.083 (2)
C820.7989 (7)0.2138 (6)0.6855 (6)0.113 (3)
H82A0.71720.24870.70200.169*
H82B0.84630.23580.72500.169*
H82C0.85150.23130.62860.169*
N80.7485 (8)0.0191 (6)0.6864 (6)0.132 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0327 (3)0.0390 (4)0.0391 (4)0.0047 (3)0.0154 (3)0.0031 (3)
N10.037 (2)0.042 (3)0.045 (3)0.0042 (18)0.0183 (19)0.007 (2)
N110.086 (4)0.064 (3)0.063 (3)0.017 (3)0.052 (3)0.003 (3)
N120.126 (5)0.052 (3)0.068 (4)0.029 (3)0.056 (4)0.016 (3)
C20.038 (3)0.054 (3)0.054 (3)0.003 (2)0.025 (3)0.014 (3)
C30.061 (4)0.072 (4)0.064 (4)0.000 (3)0.031 (3)0.028 (4)
C40.067 (4)0.054 (4)0.100 (6)0.002 (3)0.034 (4)0.040 (4)
C50.053 (4)0.049 (4)0.087 (5)0.000 (3)0.028 (3)0.016 (3)
C60.039 (3)0.045 (3)0.060 (4)0.007 (2)0.021 (3)0.005 (3)
O110.049 (2)0.047 (2)0.067 (3)0.0029 (18)0.032 (2)0.012 (2)
O120.041 (2)0.047 (2)0.065 (2)0.0005 (17)0.0273 (18)0.0043 (19)
C100.036 (3)0.047 (3)0.034 (3)0.002 (2)0.010 (2)0.004 (2)
C110.033 (3)0.054 (3)0.031 (3)0.007 (2)0.009 (2)0.003 (2)
C120.041 (3)0.071 (4)0.047 (3)0.003 (3)0.014 (3)0.006 (3)
C130.040 (3)0.101 (6)0.063 (4)0.010 (3)0.018 (3)0.018 (4)
C140.049 (4)0.121 (7)0.056 (4)0.035 (4)0.020 (3)0.010 (4)
C150.071 (4)0.062 (4)0.072 (5)0.022 (4)0.018 (4)0.006 (3)
C160.043 (3)0.065 (4)0.061 (4)0.001 (3)0.016 (3)0.002 (3)
O210.055 (2)0.055 (2)0.039 (2)0.0204 (19)0.0127 (17)0.0007 (18)
O220.050 (2)0.053 (2)0.040 (2)0.0165 (18)0.0073 (17)0.0092 (18)
C200.033 (3)0.037 (3)0.042 (3)0.002 (2)0.013 (2)0.002 (2)
C210.049 (3)0.039 (3)0.042 (3)0.003 (2)0.010 (2)0.001 (2)
C220.057 (3)0.057 (4)0.050 (4)0.013 (3)0.006 (3)0.002 (3)
C230.073 (4)0.063 (4)0.061 (4)0.019 (3)0.003 (4)0.015 (4)
C240.137 (7)0.081 (5)0.046 (4)0.019 (5)0.005 (4)0.012 (4)
C250.193 (10)0.113 (7)0.037 (4)0.082 (7)0.007 (5)0.001 (4)
C260.116 (6)0.082 (5)0.047 (4)0.055 (4)0.015 (4)0.006 (3)
Cu20.0368 (3)0.0442 (4)0.0313 (3)0.0028 (3)0.0146 (3)0.0000 (3)
N20.044 (2)0.044 (3)0.042 (3)0.008 (2)0.020 (2)0.003 (2)
N210.093 (4)0.090 (4)0.032 (3)0.024 (3)0.018 (3)0.000 (3)
N220.086 (4)0.090 (4)0.057 (4)0.046 (3)0.007 (3)0.003 (3)
C2'0.063 (4)0.054 (4)0.043 (3)0.004 (3)0.027 (3)0.004 (3)
C3'0.100 (5)0.059 (4)0.059 (4)0.004 (4)0.042 (4)0.015 (3)
C4'0.111 (6)0.064 (4)0.077 (5)0.020 (4)0.052 (5)0.007 (4)
C5'0.082 (5)0.052 (4)0.083 (5)0.023 (3)0.039 (4)0.001 (4)
C6'0.060 (4)0.056 (4)0.059 (4)0.003 (3)0.031 (3)0.001 (3)
O310.074 (3)0.050 (2)0.045 (2)0.0092 (19)0.033 (2)0.0084 (18)
O320.069 (3)0.051 (2)0.047 (2)0.006 (2)0.034 (2)0.0038 (19)
C300.029 (2)0.054 (3)0.034 (3)0.004 (2)0.009 (2)0.003 (3)
C310.031 (3)0.055 (3)0.034 (3)0.002 (2)0.009 (2)0.008 (2)
C320.050 (3)0.065 (4)0.043 (3)0.002 (3)0.021 (3)0.004 (3)
C330.066 (4)0.097 (5)0.050 (4)0.012 (4)0.034 (3)0.013 (4)
C340.064 (4)0.086 (5)0.068 (4)0.009 (4)0.022 (3)0.034 (4)
C350.069 (4)0.062 (4)0.064 (4)0.007 (3)0.018 (3)0.016 (3)
C360.054 (3)0.055 (4)0.040 (3)0.004 (3)0.013 (3)0.007 (3)
O410.0386 (19)0.064 (2)0.042 (2)0.0027 (18)0.0106 (16)0.0078 (18)
O420.039 (2)0.066 (3)0.059 (2)0.0008 (19)0.0117 (18)0.015 (2)
C400.043 (3)0.044 (3)0.033 (3)0.001 (2)0.011 (2)0.005 (3)
C410.036 (3)0.055 (3)0.034 (3)0.004 (2)0.009 (2)0.008 (3)
C420.049 (3)0.068 (4)0.052 (4)0.007 (3)0.013 (3)0.001 (3)
C430.065 (4)0.085 (5)0.060 (4)0.024 (4)0.002 (3)0.012 (4)
C440.048 (4)0.100 (6)0.067 (5)0.023 (4)0.005 (3)0.013 (4)
C450.041 (3)0.116 (6)0.079 (5)0.000 (4)0.024 (3)0.009 (5)
C460.042 (3)0.077 (4)0.058 (4)0.000 (3)0.016 (3)0.002 (3)
N70.103 (5)0.118 (6)0.081 (5)0.006 (4)0.033 (4)0.036 (4)
C710.068 (4)0.099 (6)0.063 (4)0.024 (4)0.022 (4)0.021 (4)
C720.113 (7)0.125 (7)0.105 (7)0.013 (6)0.050 (6)0.048 (6)
C810.061 (4)0.072 (5)0.095 (6)0.016 (4)0.011 (4)0.017 (5)
C820.049 (4)0.091 (6)0.164 (9)0.004 (4)0.018 (5)0.024 (6)
N80.128 (6)0.066 (5)0.151 (7)0.017 (5)0.031 (5)0.011 (5)
Geometric parameters (Å, º) top
Cu1—O121.963 (3)Cu2—Cu2ii2.7130 (12)
Cu1—O11i1.968 (3)N2—C6'1.347 (7)
Cu1—O21i1.971 (4)N2—C2'1.352 (7)
Cu1—O221.975 (3)N21—C2'1.351 (7)
Cu1—N12.263 (4)N21—H21A0.8600
Cu1—Cu1i2.7114 (12)N21—H21B0.8600
N1—C21.345 (6)N22—C6'1.360 (7)
N1—C61.352 (7)N22—H22A0.8600
N11—C21.346 (7)N22—H22B0.8600
N11—H11A0.8600C2'—C3'1.397 (8)
N11—H11B0.8600C3'—C4'1.349 (9)
N12—C61.356 (7)C3'—H3'0.9300
N12—H12A0.8600C4'—C5'1.368 (9)
N12—H12B0.8600C4'—H4'0.9300
C2—C31.388 (7)C5'—C6'1.398 (8)
C3—C41.362 (9)C5'—H5'0.9300
C3—H30.9300O31—C301.266 (6)
C4—C51.364 (9)O32—C301.248 (6)
C4—H40.9300O32—Cu2ii1.961 (3)
C5—C61.380 (7)C30—C311.502 (7)
C5—H50.9300C31—C361.385 (7)
O11—C101.240 (6)C31—C321.388 (7)
O11—Cu1i1.968 (3)C32—C331.389 (8)
O12—C101.265 (6)C32—H320.9300
C10—C111.499 (7)C33—C341.367 (9)
C11—C161.373 (8)C33—H330.9300
C11—C121.394 (7)C34—C351.383 (9)
C12—C131.382 (8)C34—H340.9300
C12—H120.9300C35—C361.378 (7)
C13—C141.375 (9)C35—H350.9300
C13—H130.9300C36—H360.9300
C14—C151.384 (9)O41—C401.259 (6)
C14—H140.9300O42—C401.248 (6)
C15—C161.380 (8)O42—Cu2ii1.974 (4)
C15—H150.9300C40—C411.497 (7)
C16—H160.9300C41—C461.382 (7)
O21—C201.250 (6)C41—C421.382 (7)
O21—Cu1i1.971 (4)C42—C431.383 (8)
O22—C201.251 (5)C42—H420.9300
C20—C211.507 (7)C43—C441.362 (9)
C21—C261.369 (8)C43—H430.9300
C21—C221.371 (7)C44—C451.374 (10)
C22—C231.380 (8)C44—H440.9300
C22—H220.9300C45—C461.385 (8)
C23—C241.371 (10)C45—H450.9300
C23—H230.9300C46—H460.9300
C24—C251.371 (11)N7—C711.113 (8)
C24—H240.9300C71—C721.454 (9)
C25—C261.386 (9)C72—H72A0.9600
C25—H250.9300C72—H72B0.9600
C26—H260.9300C72—H72C0.9600
Cu2—O32ii1.961 (3)C81—N81.092 (9)
Cu2—O311.964 (3)C81—C821.425 (10)
Cu2—O411.971 (3)C82—H82A0.9600
Cu2—O42ii1.974 (4)C82—H82B0.9600
Cu2—N22.245 (4)C82—H82C0.9600
O12—Cu1—O11i165.98 (14)O31—Cu2—N296.62 (15)
O12—Cu1—O21i89.16 (16)O41—Cu2—N298.67 (15)
O11i—Cu1—O21i88.83 (16)O42ii—Cu2—N295.58 (16)
O12—Cu1—O2289.13 (15)O32ii—Cu2—Cu2ii84.13 (11)
O11i—Cu1—O2289.41 (15)O31—Cu2—Cu2ii81.97 (11)
O21i—Cu1—O22165.74 (14)O41—Cu2—Cu2ii84.37 (11)
O12—Cu1—N194.48 (14)O42ii—Cu2—Cu2ii81.38 (11)
O11i—Cu1—N199.51 (14)N2—Cu2—Cu2ii176.64 (12)
O21i—Cu1—N194.97 (15)C6'—N2—C2'116.9 (5)
O22—Cu1—N199.28 (15)C6'—N2—Cu2121.5 (4)
O12—Cu1—Cu1i81.77 (10)C2'—N2—Cu2121.4 (3)
O11i—Cu1—Cu1i84.22 (11)C2'—N21—H21A120.0
O21i—Cu1—Cu1i79.44 (10)C2'—N21—H21B120.0
O22—Cu1—Cu1i86.31 (10)H21A—N21—H21B120.0
N1—Cu1—Cu1i173.26 (11)C6'—N22—H22A120.0
C2—N1—C6117.3 (4)C6'—N22—H22B120.0
C2—N1—Cu1120.0 (4)H22A—N22—H22B120.0
C6—N1—Cu1119.6 (3)N21—C2'—N2117.4 (5)
C2—N11—H11A120.0N21—C2'—C3'119.5 (6)
C2—N11—H11B120.0N2—C2'—C3'123.1 (5)
H11A—N11—H11B120.0C4'—C3'—C2'118.1 (6)
C6—N12—H12A120.0C4'—C3'—H3'121.0
C6—N12—H12B120.0C2'—C3'—H3'121.0
H12A—N12—H12B120.0C3'—C4'—C5'121.0 (6)
N1—C2—N11117.0 (4)C3'—C4'—H4'119.5
N1—C2—C3122.5 (6)C5'—C4'—H4'119.5
N11—C2—C3120.5 (5)C4'—C5'—C6'118.2 (6)
C4—C3—C2118.3 (6)C4'—C5'—H5'120.9
C4—C3—H3120.9C6'—C5'—H5'120.9
C2—C3—H3120.9N2—C6'—N22117.5 (5)
C3—C4—C5120.7 (5)N2—C6'—C5'122.6 (6)
C3—C4—H4119.7N22—C6'—C5'119.8 (6)
C5—C4—H4119.7C30—O31—Cu2125.0 (3)
C4—C5—C6118.3 (6)C30—O32—Cu2ii123.0 (3)
C4—C5—H5120.8O32—C30—O31125.9 (5)
C6—C5—H5120.8O32—C30—C31117.8 (4)
N1—C6—N12117.1 (5)O31—C30—C31116.3 (5)
N1—C6—C5122.7 (5)C36—C31—C32119.2 (5)
N12—C6—C5120.3 (6)C36—C31—C30120.2 (5)
C10—O11—Cu1i122.6 (3)C32—C31—C30120.6 (5)
C10—O12—Cu1125.3 (3)C31—C32—C33119.4 (6)
O11—C10—O12126.0 (5)C31—C32—H32120.3
O11—C10—C11118.2 (4)C33—C32—H32120.3
O12—C10—C11115.8 (5)C34—C33—C32120.8 (6)
C16—C11—C12119.4 (5)C34—C33—H33119.6
C16—C11—C10121.6 (5)C32—C33—H33119.6
C12—C11—C10119.1 (5)C33—C34—C35120.0 (6)
C13—C12—C11120.5 (6)C33—C34—H34120.0
C13—C12—H12119.8C35—C34—H34120.0
C11—C12—H12119.8C36—C35—C34119.6 (6)
C14—C13—C12119.2 (6)C36—C35—H35120.2
C14—C13—H13120.4C34—C35—H35120.2
C12—C13—H13120.4C35—C36—C31120.9 (5)
C13—C14—C15120.9 (6)C35—C36—H36119.6
C13—C14—H14119.5C31—C36—H36119.6
C15—C14—H14119.5C40—O41—Cu2122.7 (3)
C16—C15—C14119.4 (6)C40—O42—Cu2ii126.5 (3)
C16—C15—H15120.3O42—C40—O41125.0 (5)
C14—C15—H15120.3O42—C40—C41117.4 (5)
C11—C16—C15120.7 (6)O41—C40—C41117.6 (5)
C11—C16—H16119.7C46—C41—C42118.8 (5)
C15—C16—H16119.7C46—C41—C40120.2 (5)
C20—O21—Cu1i128.7 (3)C42—C41—C40121.0 (5)
C20—O22—Cu1120.0 (3)C41—C42—C43120.2 (6)
O21—C20—O22125.5 (5)C41—C42—H42119.9
O21—C20—C21116.6 (4)C43—C42—H42119.9
O22—C20—C21117.9 (5)C44—C43—C42120.5 (7)
C26—C21—C22119.4 (5)C44—C43—H43119.8
C26—C21—C20119.6 (5)C42—C43—H43119.8
C22—C21—C20121.0 (5)C43—C44—C45120.2 (6)
C21—C22—C23121.0 (6)C43—C44—H44119.9
C21—C22—H22119.5C45—C44—H44119.9
C23—C22—H22119.5C44—C45—C46119.6 (6)
C24—C23—C22119.6 (6)C44—C45—H45120.2
C24—C23—H23120.2C46—C45—H45120.2
C22—C23—H23120.2C41—C46—C45120.7 (6)
C25—C24—C23119.6 (7)C41—C46—H46119.7
C25—C24—H24120.2C45—C46—H46119.7
C23—C24—H24120.2N7—C71—C72177.5 (8)
C24—C25—C26120.7 (7)C71—C72—H72A109.5
C24—C25—H25119.7C71—C72—H72B109.5
C26—C25—H25119.7H72A—C72—H72B109.5
C21—C26—C25119.7 (6)C71—C72—H72C109.5
C21—C26—H26120.2H72A—C72—H72C109.5
C25—C26—H26120.2H72B—C72—H72C109.5
O32ii—Cu2—O31166.09 (14)N8—C81—C82177.8 (11)
O32ii—Cu2—O4189.65 (16)C81—C82—H82A109.5
O31—Cu2—O4188.44 (16)C81—C82—H82B109.5
O32ii—Cu2—O42ii88.87 (17)H82A—C82—H82B109.5
O31—Cu2—O42ii89.59 (17)C81—C82—H82C109.5
O41—Cu2—O42ii165.75 (15)H82A—C82—H82C109.5
O32ii—Cu2—N297.29 (15)H82B—C82—H82C109.5
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···O11i0.862.333.137 (6)156
N11—H11A···O21i0.862.552.964 (5)110
N11—H11B···N70.862.473.279 (8)157
N12—H12A···O220.862.122.946 (6)161
N12—H12B···N80.862.403.139 (9)144
N21—H21A···O32ii0.862.363.073 (7)140
N21—H21A···O410.862.373.000 (6)130
N22—H22A···O42ii0.862.132.871 (7)144
N22—H22A···O310.862.523.093 (6)125
N22—H22B···N7iii0.862.693.490 (8)154
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+2, z; (iii) x+2, y+1, z.
(II) 'tetrakis(ν-benzoato)bis(acetonitrile)dicopper(II) 1.5 acetonitrile solvat' top
Crystal data top
[Cu2(C7H5O2)4(C2H3N)2]·1.5C2H3NZ = 1
Mr = 755.21F(000) = 774
Triclinic, P1Dx = 1.466 Mg m3
a = 9.875 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.707 (1) ÅCell parameters from 13906 reflections
c = 18.046 (2) Åθ = 2.1–26.5°
α = 75.86 (1)°µ = 1.30 mm1
β = 79.69 (1)°T = 150 K
γ = 68.28 (1)°Prismatic, blue
V = 1710.5 (3) Å30.22 × 0.20 × 0.20 mm
Data collection top
Nonius Kappa-CCD
diffractometer
6315 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 26.5°, θmin = 2.1°
ω scansh = 1212
13906 measured reflectionsk = 1313
7102 independent reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0398P)2 + 0.5602P]
where P = (Fo2 + 2Fc2)/3
7102 reflections(Δ/σ)max = 0.021
449 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Cu2(C7H5O2)4(C2H3N)2]·1.5C2H3Nγ = 68.28 (1)°
Mr = 755.21V = 1710.5 (3) Å3
Triclinic, P1Z = 1
a = 9.875 (1) ÅMo Kα radiation
b = 10.707 (1) ŵ = 1.30 mm1
c = 18.046 (2) ÅT = 150 K
α = 75.86 (1)°0.22 × 0.20 × 0.20 mm
β = 79.69 (1)°
Data collection top
Nonius Kappa-CCD
diffractometer
6315 reflections with I > 2σ(I)
13906 measured reflectionsRint = 0.024
7102 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.11Δρmax = 0.40 e Å3
7102 reflectionsΔρmin = 0.50 e Å3
449 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.93988 (2)0.00009 (2)0.440550 (11)0.01761 (7)
Cu20.90105 (2)0.581996 (19)0.046085 (11)0.01559 (7)
O210.75920 (14)0.12300 (13)0.48684 (7)0.0247 (3)
O420.90078 (15)0.72169 (12)0.00693 (7)0.0251 (3)
O110.98958 (15)0.16265 (13)0.38755 (7)0.0259 (3)
O220.86099 (14)0.11654 (14)0.59002 (8)0.0292 (3)
O121.09087 (15)0.16178 (13)0.48947 (7)0.0275 (3)
O310.75672 (14)0.53332 (13)0.03430 (7)0.0256 (3)
O320.92551 (13)0.39655 (13)0.11416 (7)0.0245 (3)
C310.6785 (2)0.41420 (17)0.15267 (10)0.0212 (4)
C200.7553 (2)0.15746 (17)0.54962 (10)0.0219 (4)
N10.84266 (18)0.02986 (16)0.34995 (9)0.0277 (3)
C400.98722 (19)0.69851 (17)0.05615 (9)0.0196 (3)
C410.9858 (2)0.81891 (17)0.08525 (9)0.0208 (4)
C111.06734 (19)0.34737 (18)0.38505 (10)0.0214 (4)
C210.6146 (2)0.25514 (18)0.57919 (11)0.0225 (4)
C101.04897 (19)0.21286 (17)0.42338 (10)0.0205 (4)
C300.79576 (19)0.45091 (17)0.09625 (10)0.0196 (3)
N20.76428 (17)0.73733 (16)0.13225 (9)0.0252 (3)
C161.03628 (19)0.40496 (19)0.30943 (10)0.0232 (4)
H161.00770.35680.28080.028*
C320.7117 (2)0.33455 (18)0.22496 (11)0.0240 (4)
H320.80940.30130.23840.029*
C260.6019 (2)0.28483 (19)0.65150 (11)0.0261 (4)
H260.68150.24120.68220.031*
C421.0988 (2)0.80698 (19)0.12545 (10)0.0254 (4)
H421.17580.72160.13600.031*
C330.6018 (2)0.3040 (2)0.27733 (12)0.0307 (4)
H330.62410.25020.32680.037*
C460.8733 (2)0.94391 (19)0.07031 (11)0.0283 (4)
H460.79620.95290.04230.034*
C20.7388 (2)0.81910 (18)0.18641 (10)0.0233 (4)
C360.5355 (2)0.45991 (19)0.13301 (12)0.0272 (4)
H360.51280.51270.08340.033*
C431.0993 (2)0.9196 (2)0.15015 (11)0.0310 (4)
H431.17760.91140.17700.037*
C121.1098 (3)0.4182 (2)0.42617 (11)0.0327 (5)
H121.13390.37840.47730.039*
C340.4592 (2)0.3517 (2)0.25768 (13)0.0352 (5)
H340.38410.33140.29390.042*
C440.9865 (2)1.0438 (2)0.13589 (11)0.0321 (5)
H440.98681.12070.15320.038*
C141.0862 (2)0.6040 (2)0.31765 (11)0.0325 (4)
H141.09170.69210.29470.039*
C1110.7873 (2)0.0675 (2)0.31477 (11)0.0276 (4)
C450.8735 (3)1.0555 (2)0.09626 (12)0.0337 (5)
H450.79561.14050.08670.040*
C220.4972 (2)0.3194 (2)0.53477 (13)0.0327 (4)
H220.50430.29910.48550.039*
C151.0469 (2)0.5322 (2)0.27582 (11)0.0278 (4)
H151.02710.57050.22390.033*
C350.4264 (2)0.4286 (2)0.18559 (13)0.0334 (5)
H350.32900.46010.17200.040*
C131.1173 (3)0.5475 (2)0.39271 (12)0.0394 (5)
H131.14370.59690.42150.047*
O411.07580 (14)0.58261 (12)0.08289 (7)0.0240 (3)
C250.4737 (2)0.3777 (2)0.67906 (13)0.0336 (5)
H250.46540.39710.72860.040*
C240.3584 (2)0.4418 (2)0.63435 (15)0.0409 (5)
H240.27070.50590.65300.049*
C2'0.7078 (3)0.9233 (2)0.25613 (11)0.0371 (5)
H21A0.79960.93350.28310.056*
H21B0.64261.01080.24270.056*
H21C0.66030.89560.28950.056*
C230.3700 (2)0.4129 (2)0.56225 (15)0.0425 (6)
H230.29030.45740.53150.051*
C3'0.4755 (3)0.8098 (3)0.01139 (15)0.0552 (7)
H31A0.38160.79460.01900.083*
H31B0.55500.72620.00110.083*
H31C0.47470.88530.03230.083*
C30.4979 (3)0.8444 (3)0.08014 (17)0.0530 (7)
C1120.7148 (3)0.1165 (3)0.27021 (15)0.0544 (7)
H11A0.65430.16520.30510.082*
H11B0.78870.17900.23960.082*
H11C0.65270.03840.23600.082*
N30.5132 (3)0.8726 (3)0.13337 (18)0.0815 (8)
C4'0.488 (3)0.026 (3)0.4607 (15)0.0321 (18)0.50
H'10.38640.08960.46300.048*0.50
H'20.49700.04370.43200.048*0.50
H'30.55320.07720.43480.048*0.50
C40.527 (3)0.039 (3)0.5381 (16)0.0321 (18)0.50
N40.5503 (5)0.0798 (4)0.5992 (2)0.0457 (10)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01659 (12)0.01807 (12)0.02080 (11)0.00800 (9)0.00137 (8)0.00557 (8)
Cu20.01643 (11)0.01364 (11)0.01595 (11)0.00457 (8)0.00236 (8)0.00185 (8)
O210.0200 (6)0.0263 (7)0.0283 (7)0.0068 (5)0.0000 (5)0.0100 (5)
O420.0321 (7)0.0178 (6)0.0265 (6)0.0052 (5)0.0100 (5)0.0062 (5)
O110.0314 (7)0.0285 (7)0.0251 (6)0.0195 (6)0.0009 (5)0.0052 (5)
O220.0191 (7)0.0329 (7)0.0357 (7)0.0026 (6)0.0032 (5)0.0163 (6)
O120.0345 (8)0.0233 (6)0.0299 (7)0.0160 (6)0.0100 (6)0.0002 (5)
O310.0199 (6)0.0298 (7)0.0235 (6)0.0082 (5)0.0006 (5)0.0001 (5)
O320.0190 (6)0.0254 (7)0.0251 (6)0.0078 (5)0.0006 (5)0.0005 (5)
C310.0209 (9)0.0168 (8)0.0270 (9)0.0078 (7)0.0028 (7)0.0077 (7)
C200.0204 (9)0.0169 (8)0.0301 (9)0.0102 (7)0.0017 (7)0.0046 (7)
N10.0273 (9)0.0284 (8)0.0300 (8)0.0093 (7)0.0064 (7)0.0079 (7)
C400.0241 (9)0.0190 (8)0.0166 (8)0.0108 (7)0.0034 (7)0.0035 (7)
C410.0288 (10)0.0181 (8)0.0174 (8)0.0119 (7)0.0008 (7)0.0033 (6)
C110.0192 (9)0.0222 (9)0.0240 (8)0.0096 (7)0.0011 (7)0.0050 (7)
C210.0191 (9)0.0179 (8)0.0328 (9)0.0092 (7)0.0016 (7)0.0073 (7)
C100.0167 (8)0.0195 (8)0.0256 (9)0.0073 (7)0.0025 (7)0.0067 (7)
C300.0204 (9)0.0169 (8)0.0228 (8)0.0070 (7)0.0009 (7)0.0075 (7)
N20.0239 (8)0.0245 (8)0.0260 (8)0.0063 (7)0.0060 (6)0.0035 (7)
C160.0190 (9)0.0263 (9)0.0253 (9)0.0085 (7)0.0001 (7)0.0074 (7)
C320.0221 (9)0.0192 (9)0.0285 (9)0.0058 (7)0.0023 (7)0.0060 (7)
C260.0236 (9)0.0220 (9)0.0340 (10)0.0089 (8)0.0004 (8)0.0080 (8)
C420.0318 (10)0.0206 (9)0.0255 (9)0.0115 (8)0.0035 (8)0.0027 (7)
C330.0308 (11)0.0224 (9)0.0326 (10)0.0091 (8)0.0069 (8)0.0010 (8)
C460.0320 (11)0.0215 (9)0.0314 (10)0.0072 (8)0.0053 (8)0.0067 (8)
C20.0210 (9)0.0226 (9)0.0246 (9)0.0040 (7)0.0034 (7)0.0063 (8)
C360.0249 (10)0.0238 (9)0.0346 (10)0.0119 (8)0.0005 (8)0.0050 (8)
C430.0391 (12)0.0300 (10)0.0321 (10)0.0187 (9)0.0068 (9)0.0072 (8)
C120.0490 (13)0.0332 (11)0.0246 (9)0.0259 (10)0.0064 (9)0.0002 (8)
C340.0284 (11)0.0272 (10)0.0468 (12)0.0149 (9)0.0120 (9)0.0044 (9)
C440.0480 (13)0.0238 (10)0.0312 (10)0.0193 (9)0.0005 (9)0.0097 (8)
C140.0416 (12)0.0257 (10)0.0315 (10)0.0179 (9)0.0000 (9)0.0005 (8)
C1110.0273 (10)0.0310 (10)0.0248 (9)0.0109 (8)0.0040 (8)0.0037 (8)
C450.0423 (12)0.0191 (9)0.0375 (11)0.0054 (9)0.0050 (9)0.0087 (8)
C220.0277 (10)0.0316 (11)0.0415 (11)0.0074 (9)0.0071 (9)0.0137 (9)
C150.0271 (10)0.0309 (10)0.0235 (9)0.0119 (8)0.0017 (7)0.0005 (8)
C350.0212 (10)0.0269 (10)0.0526 (13)0.0113 (8)0.0005 (9)0.0069 (9)
C130.0654 (16)0.0352 (11)0.0314 (11)0.0332 (11)0.0071 (10)0.0040 (9)
O410.0308 (7)0.0165 (6)0.0256 (6)0.0065 (5)0.0075 (5)0.0047 (5)
C250.0306 (11)0.0316 (11)0.0419 (11)0.0115 (9)0.0065 (9)0.0188 (9)
C240.0215 (10)0.0363 (12)0.0667 (15)0.0049 (9)0.0050 (10)0.0276 (11)
C2'0.0467 (13)0.0293 (11)0.0261 (10)0.0065 (9)0.0076 (9)0.0036 (8)
C230.0235 (11)0.0387 (12)0.0657 (15)0.0001 (9)0.0144 (10)0.0203 (11)
C3'0.0468 (15)0.0403 (14)0.0518 (15)0.0059 (11)0.0024 (12)0.0007 (11)
C30.0411 (14)0.0441 (14)0.0588 (17)0.0079 (11)0.0091 (12)0.0034 (13)
C1120.0594 (17)0.0812 (19)0.0461 (14)0.0427 (15)0.0103 (12)0.0217 (13)
N30.074 (2)0.092 (2)0.079 (2)0.0234 (17)0.0044 (16)0.0319 (17)
C4'0.028 (5)0.039 (4)0.0326 (14)0.018 (4)0.000 (2)0.0049 (19)
C40.028 (5)0.039 (4)0.0326 (14)0.018 (4)0.000 (2)0.0049 (19)
N40.049 (2)0.057 (3)0.036 (2)0.030 (2)0.0034 (18)0.0000 (19)
Geometric parameters (Å, º) top
Cu1—O111.9602 (13)C46—C451.387 (3)
Cu1—O22i1.9644 (13)C46—H460.9500
Cu1—O12i1.9666 (13)C2—C2'1.456 (3)
Cu1—O211.9704 (13)C36—C351.385 (3)
Cu1—N12.1770 (16)C36—H360.9500
Cu1—Cu1i2.6323 (5)C43—C441.384 (3)
Cu2—O41ii1.9542 (12)C43—H430.9500
Cu2—O421.9615 (12)C12—C131.392 (3)
Cu2—O311.9616 (13)C12—H120.9500
Cu2—O32ii1.9737 (13)C34—C351.381 (3)
Cu2—N22.1986 (15)C34—H340.9500
Cu2—Cu2ii2.6202 (5)C44—C451.382 (3)
O21—C201.265 (2)C44—H440.9500
O42—C401.259 (2)C14—C131.381 (3)
O11—C101.261 (2)C14—C151.386 (3)
O22—C201.261 (2)C14—H140.9500
O22—Cu1i1.9643 (13)C111—C1121.458 (3)
O12—C101.258 (2)C45—H450.9500
O12—Cu1i1.9666 (13)C22—C231.384 (3)
O31—C301.264 (2)C22—H220.9500
O32—C301.261 (2)C15—H150.9500
O32—Cu2ii1.9737 (13)C35—H350.9500
C31—C321.392 (3)C13—H130.9500
C31—C361.394 (3)O41—Cu2ii1.9542 (12)
C31—C301.500 (2)C25—C241.378 (3)
C20—C211.497 (3)C25—H250.9500
N1—C1111.130 (2)C24—C231.385 (3)
C40—O411.262 (2)C24—H240.9500
C40—C411.501 (2)C2'—H21A0.9800
C41—C421.388 (3)C2'—H21B0.9800
C41—C461.389 (3)C2'—H21C0.9800
C11—C121.387 (3)C23—H230.9500
C11—C161.391 (2)C3'—C31.452 (4)
C11—C101.499 (2)C3'—H31A0.9800
C21—C221.390 (3)C3'—H31B0.9800
C21—C261.391 (3)C3'—H31C0.9800
N2—C21.137 (2)C3—N31.124 (4)
C16—C151.383 (3)C112—H11A0.9800
C16—H160.9500C112—H11B0.9800
C32—C331.387 (3)C112—H11C0.9800
C32—H320.9500C4'—C41.452 (4)
C26—C251.387 (3)C4'—H'10.9800
C26—H260.9500C4'—H'20.9800
C42—C431.385 (3)C4'—H'30.9800
C33—C341.388 (3)C4—N41.11 (3)
C33—H330.9500
O11—Cu1—O22i89.51 (6)C43—C42—H42120.0
O11—Cu1—O12i168.58 (5)C41—C42—H42120.0
O22i—Cu1—O12i88.99 (6)C32—C33—C34120.19 (19)
O11—Cu1—O2187.97 (6)C32—C33—H33119.9
O22i—Cu1—O21168.45 (5)C34—C33—H33119.9
O12i—Cu1—O2191.26 (6)C45—C46—C41119.94 (18)
O11—Cu1—N199.99 (6)C45—C46—H46120.0
O22i—Cu1—N194.25 (6)C41—C46—H46120.0
O12i—Cu1—N191.41 (6)N2—C2—C2'179.4 (2)
O21—Cu1—N197.28 (6)C35—C36—C31120.22 (18)
O11—Cu1—Cu1i87.80 (4)C35—C36—H36119.9
O22i—Cu1—Cu1i83.49 (4)C31—C36—H36119.9
O12i—Cu1—Cu1i80.78 (4)C44—C43—C42120.36 (19)
O21—Cu1—Cu1i85.16 (4)C44—C43—H43119.8
N1—Cu1—Cu1i171.89 (4)C42—C43—H43119.8
O41ii—Cu2—O42168.70 (5)C11—C12—C13120.23 (18)
O41ii—Cu2—O3186.96 (6)C11—C12—H12119.9
O42—Cu2—O3190.19 (6)C13—C12—H12119.9
O41ii—Cu2—O32ii90.85 (6)C35—C34—C33120.18 (18)
O42—Cu2—O32ii89.85 (6)C35—C34—H34119.9
O31—Cu2—O32ii168.86 (5)C33—C34—H34119.9
O41ii—Cu2—N299.23 (6)C45—C44—C43119.63 (18)
O42—Cu2—N292.07 (6)C45—C44—H44120.2
O31—Cu2—N2103.14 (6)C43—C44—H44120.2
O32ii—Cu2—N287.99 (6)C13—C14—C15119.97 (18)
O41ii—Cu2—Cu2ii85.32 (4)C13—C14—H14120.0
O42—Cu2—Cu2ii83.58 (4)C15—C14—H14120.0
O31—Cu2—Cu2ii86.20 (4)N1—C111—C112179.3 (2)
O32ii—Cu2—Cu2ii82.74 (4)C44—C45—C46120.39 (19)
N2—Cu2—Cu2ii169.75 (4)C44—C45—H45119.8
C20—O21—Cu1121.76 (12)C46—C45—H45119.8
C40—O42—Cu2123.44 (11)C23—C22—C21120.0 (2)
C10—O11—Cu1118.73 (11)C23—C22—H22120.0
C20—O22—Cu1i124.04 (12)C21—C22—H22120.0
C10—O12—Cu1i126.71 (11)C16—C15—C14120.21 (17)
C30—O31—Cu2121.17 (12)C16—C15—H15119.9
C30—O32—Cu2ii124.63 (11)C14—C15—H15119.9
C32—C31—C36119.60 (17)C34—C35—C36119.99 (19)
C32—C31—C30120.29 (16)C34—C35—H35120.0
C36—C31—C30120.11 (16)C36—C35—H35120.0
O22—C20—O21125.39 (17)C14—C13—C12119.95 (19)
O22—C20—C21116.50 (16)C14—C13—H13120.0
O21—C20—C21118.11 (16)C12—C13—H13120.0
C111—N1—Cu1165.21 (16)C40—O41—Cu2ii121.81 (11)
O42—C40—O41125.60 (16)C24—C25—C26119.8 (2)
O42—C40—C41117.38 (15)C24—C25—H25120.1
O41—C40—C41117.02 (15)C26—C25—H25120.1
C42—C41—C46119.66 (16)C25—C24—C23120.1 (2)
C42—C41—C40120.24 (16)C25—C24—H24119.9
C46—C41—C40120.08 (16)C23—C24—H24119.9
C12—C11—C16119.43 (17)C2—C2'—H21A109.5
C12—C11—C10119.86 (16)C2—C2'—H21B109.5
C16—C11—C10120.66 (16)H21A—C2'—H21B109.5
C22—C21—C26119.27 (18)C2—C2'—H21C109.5
C22—C21—C20121.05 (17)H21A—C2'—H21C109.5
C26—C21—C20119.67 (17)H21B—C2'—H21C109.5
O12—C10—O11125.74 (16)C22—C23—C24120.2 (2)
O12—C10—C11116.92 (15)C22—C23—H23119.9
O11—C10—C11117.31 (15)C24—C23—H23119.9
O32—C30—O31125.16 (16)C3—C3'—H31A109.5
O32—C30—C31117.45 (15)C3—C3'—H31B109.5
O31—C30—C31117.40 (15)H31A—C3'—H31B109.5
C2—N2—Cu2156.97 (15)C3—C3'—H31C109.5
C15—C16—C11120.17 (17)H31A—C3'—H31C109.5
C15—C16—H16119.9H31B—C3'—H31C109.5
C11—C16—H16119.9N3—C3—C3'178.9 (3)
C33—C32—C31119.80 (18)C111—C112—H11A109.5
C33—C32—H32120.1C111—C112—H11B109.5
C31—C32—H32120.1H11A—C112—H11B109.5
C25—C26—C21120.48 (19)C111—C112—H11C109.5
C25—C26—H26119.8H11A—C112—H11C109.5
C21—C26—H26119.8H11B—C112—H11C109.5
C43—C42—C41120.02 (18)N4—C4—C4'174.3 (16)
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y+1, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Cu2(C7H5O2)4(C5H7N3)2]·2C2H3N[Cu2(C7H5O2)4(C2H3N)2]·1.5C2H3N
Mr911.92755.21
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)293150
a, b, c (Å)10.690 (1), 12.822 (3), 16.485 (2)9.875 (1), 10.707 (1), 18.046 (2)
α, β, γ (°)85.24 (1), 71.24 (1), 85.87 (1)75.86 (1), 79.69 (1), 68.28 (1)
V3)2129.7 (6)1710.5 (3)
Z21
Radiation typeMo KαMo Kα
µ (mm1)1.061.30
Crystal size (mm)0.40 × 0.19 × 0.110.22 × 0.20 × 0.20
Data collection
DiffractometerNONIUS CAD-4
diffractometer
Nonius Kappa-CCD
diffractometer
Absorption correctionGaussian
(PLATON; Spek, 1998)
Tmin, Tmax0.61, 0.88
No. of measured, independent and
observed [I > 2σ(I)] reflections
8494, 8365, 4333 13906, 7102, 6315
Rint0.0170.024
(sin θ/λ)max1)0.6170.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.154, 0.99 0.025, 0.079, 1.11
No. of reflections83657102
No. of parameters543449
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.750.40, 0.50

Computer programs: CAD-4 Software (Enraf-Nonius, 1994), Collect Software (Nonius, 1998), PARAM in X-RAY76 (Stewart et al., 1976), DENZO and SCALEPACK (Otwinowski & Minor, 1997), XCAD4 (Harms & Wocadlo, 1995), DENZO and SCALEPACK, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97.

Selected bond lengths (Å) for (I) top
Cu1—O121.963 (3)Cu2—O32ii1.961 (3)
Cu1—O11i1.968 (3)Cu2—O311.964 (3)
Cu1—O21i1.971 (4)Cu2—O411.971 (3)
Cu1—O221.975 (3)Cu2—O42ii1.974 (4)
Cu1—N12.263 (4)Cu2—N22.245 (4)
Cu1—Cu1i2.7114 (12)Cu2—Cu2ii2.7130 (12)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···O11i0.862.333.137 (6)156
N11—H11A···O21i0.862.552.964 (5)110
N11—H11B···N70.862.473.279 (8)157
N12—H12A···O220.862.122.946 (6)161
N12—H12B···N80.862.403.139 (9)144
N21—H21A···O32ii0.862.363.073 (7)140
N21—H21A···O410.862.373.000 (6)130
N22—H22A···O42ii0.862.132.871 (7)144
N22—H22A···O310.862.523.093 (6)125
N22—H22B···N7iii0.862.693.490 (8)154
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+2, z; (iii) x+2, y+1, z.
Selected bond lengths (Å) for (II) top
Cu1—O111.9602 (13)Cu2—O41ii1.9542 (12)
Cu1—O22i1.9644 (13)Cu2—O421.9615 (12)
Cu1—O12i1.9666 (13)Cu2—O311.9616 (13)
Cu1—O211.9704 (13)Cu2—O32ii1.9737 (13)
Cu1—N12.1770 (16)Cu2—N22.1986 (15)
Cu1—Cu1i2.6323 (5)Cu2—Cu2ii2.6202 (5)
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds