Download citation
Download citation
link to html
The crystal structure of the title compound, C16H22N2O4, has two independent chiral mol­ecules related by a pseudo-inversion centre. 14 of the 22 non-H atoms have a centrosymmetric counterpart within a tolerance of 0.17 Å. A search of the Cambridge Structural Database [Spring 2000; Allen & Kennard (1993). Chem. Des. Autom. News, 8, 1, 31-37] shows at least 10% of the crystal structures reported in the literature with space group P21 and Z = 4 to be chiral compounds with a pseudo-P21/c packing.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100017960/sk1429sup1.cif
Contains datablocks default1, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100017960/sk1429Isup2.hkl
Contains datablock I

CCDC reference: 160008

Comment top

The structure of the title compound, (I), contains two crystallographically independent molecules (Fig. 1). Equivalent bond distances and angles between the two molecules agree within experimental uncertainty, except for the C13—O2 bond length of 1.191 (3) Å which appears slightly too short due to the large thermal motion of atom O2. The conformation angles within the bicylooctane groups of both molecules are rather similar: torsion angles about related bonds agree within 3°. The torsion angles about related bonds in the pyrazoledicarboxylate groups of the two molecules, however, have opposite signs. The pyrazole groups are planar. π bonding in the pyrazole rings is considerably delocalized. The carboxylate groups attached to C2 and C18 are almost coplanar with the pyrazole planes. The carboxylate groups attached to C1 and C17 are almost perpendicular to the pyrazole planes. Consequently the C2—C15 and C18—C31 bonds are about 0.03 Å shorter than the corresponding C1—C13 and C17—C29 bonds due to resonance. \sch

The molecules show no short intramolecular contacts. The crystal packing shows four intermolecular C—H···O interactions with H···O distances between 2.42 and 2.57 Å and C—H—O angles between 157 and 170° (Table 1). There also are two intermolecular C—H···π interactions between methyl groups and the π - system of the pyrazole groups with H···Cg distances of 2.64 and 2.70 Å and C—H···Cg angles of 151 and 155° (Cg1 represents the midpoint of the pyrazole ring of molecule 1 and Cg2 the midpoint of the pyrazole ring of molecule 2). A close inspection of the crystal structure shows a pseudo-centrosymmetric packing of the molecules. The achiral parts of the two molecules are symmetrically arranged about a pseudo-inversion center at 0.5 0.5 0.25. 14 atom pairs among those groups satisfy the center of symmetry within a tolerance of 0.17 Å. The two shortest intermolecular C—H···O contacts connect the molecules of this pseudo- centrosymmetric dimer (Fig. 1, Fig. 2). The H···O distances of about 2.45 Å are short for C—H···O interactions involving methyl groups (Desiraju & Steiner, 1999). The chiral parts of the molecules result in deviations from a centrosymmetric structure. The structure has a pseudo-P21/c packing. The average intensity of the h 0 l reflections with l odd is only about 25% of the average intensity of general reflections. Approximate P21/c symmetry in space group P21 with Z = 4 was also observed by one of us in the crystal structure of a 23 atom containing molecule with two chiral C atoms (Volk et al., 1998, CSD-refcode: JOGYAF). The achiral atoms of the two independent molecules in that structure are very closely related by a pseudo-inversion center. 19 non-H atoms have centrosymmetric counterparts within a tolerance of 0.23 Å. In order to get an idea of the number of crystal structures of chiral compounds which crystallize in P21 with two independent molecules related by a pseudo- inversion center, a search for such structures was performed in the spring 2000 release of the Cambridge Structural Database (Allen & Kennard, 1993). The search was limited to a subset containing the first 34378 entries in the data base (i.e. the refcodes starting with the characters A, B and C). The number of crystal structures with space group P21 and Z = 4 in this subset with coordinates reported is 318. A l l 318 structures were searched for pseudo-inversion centers using the ADDSYM option in program PLATON (Spek, 1998). For a number of structures pseudo-inversion centers were detected at 0.25 y 0, 0 y 0.25 or 0.25 y 0.25. Thus these structures approximately have P21/a, P21/c or P21/n symmetry. In a final test, the coordinates of the independent molecules were directly compared. A total of 31 chiral structures were found with pseudo-P21/c (or the equivalent pseudo-P21/a and pseudo-P21/n) symmetry. The refcodes are: ADRBFT10, AIPTHL10, APFMHA, ATRVND10, BABJIX, BADMUO, BAGMEB10, BAGMOL10, BAPZUN, BECSOR10, BIWFIW, BOJWAY, BOSWEL, BOXCPT10, BOXYOC, BPICAM, BRUDAG, BUYGUX, CAKHAX, CAMMEI, CAMPHX10, CELNAI, CITSUT10, CMETPT10, COBDAY, COGBIJ, COHRUM, COKWOO, COKWUU, CONHUI and CUCCIM. Some of these structures were reported as pseudo-centrosymmetric in the original publications (Goodwin et al., 1984; Kurihara et al., 1983; 1984, Ohashi et al., 1982; Perales et al., 1984; Trowitzsch et al., 1981; Uchida et al., 1984; Ziolo et al., 1982). Thus about 10% of the crystal structures reported in the literature with space group P21 and Z = 4 are chiral compounds with a pseudo-P21/c packing. This number probably is a low estimate of the real number of pseudo-symmetric structures as ADDSYM with default parameters only selects structures with at least 80% of the atoms fulfilling the (pseudo)-symmetry criterium within a tolerance of 0.45 Å. Larger misfit tolerances result in additional hits. Space group P21/c is not allowed for chiral compounds. The present investigation shows, however, that in some cases an approximate P21/c type packing is preferred for chiral compounds.

Related literature top

For related literature, see: Allen & Kennard (1993); Desiraju & Steiner (1999); Goodwin et al. (1984); Jefferson & Warkentin (1992); Kurihara et al. (1983, 1984); Ohashi et al. (1982); Perales et al. (1984); Somogyi (1991); Spek (1998); Trowitzsch et al. (1981); Uchida et al. (1984); Volk et al. (1998); Ziolo et al. (1982).

Experimental top

Compound (I) was prepared by a procedure similar to one described by Jefferson & Warkentin (1992) for other compounds. (1R,4R)-Camphoracetylhydrazone (500 mg, 2.40 mmol) (Somogyi, 1991) and lead tetraacetate (1.06 g, 2.40 mmol) in absolute methanol (6.5 ml) afforded 5-methoxy-1',5,7',7'- tetramethylspiro{Δ3-1,3,4-oxadiazolin-(1'R,4'R)-2,2'-bicyclo[2.2.1]heptane} (250 mg, 43%) as a mixture of four diastereomers that were used without separation. A solution of the latter oxadiazolin (230 mg, 965 µmol) and dimethyl acetylenedicarboxylate (411 mg, 2.89 mmol) in diethylether (55 ml) was irradiated with a medium pressure mercury lamp at room temperature for 8 h. After the volatiles had been removed in vacuo, column chromatography (silica gel, hexane/ethyl acetate = 10:1) provided 210 mg (71%) of the title compound (I). Single crystals were obtained by slow evaporation of a solution in pentane/dichloromethane at 273 K.

Refinement top

A 0.8 mm collimator was used. Friedel opposites were averaged. The H atoms were taken from a difference Fourier synthesis. They were refined with fixed individual thermal parameters [U(H) = 1.2Ueq(C) and U(H) = 1.5Ueq(Cmethyl)] using a riding model with fixed distances: HC(methyl) = 0.98 Å, H—C(secondary) = 0.99 Å and H—C(primary) = 1.00 Å, respectively. Torsion angles about the C—C or C—O bonds of the methyl groups were refined.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Sheldrick, 1996); software used to prepare material for publication: CIF in SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The pseudo-centric dimer of (I) with two independent molecules connected by C—H···O interactions. The displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as small circles of arbitrary radii.
[Figure 2] Fig. 2. The crystal packing of (I) viewed down a.
dimethyl (1R,8R)-1,11,11-trimethyl-2,3-diazatricyclo[6.2.1.02,6]undecan-3,5- dien-4,5-dicarboxylate top
Crystal data top
C16H22N2O4F(000) = 656
Mr = 306.36Dx = 1.315 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.3772 (14) ÅCell parameters from 188 reflections
b = 20.063 (3) Åθ = 3–23°
c = 10.4576 (12) ŵ = 0.10 mm1
β = 90.513 (12)°T = 143 K
V = 1547.7 (4) Å3Block, colorless
Z = 40.70 × 0.40 × 0.36 mm
Data collection top
SIEMENS SMART
diffractometer
4858 independent reflections
Radiation source: normal-focus sealed tube4589 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 31.0°, θmin = 2.0°
Absorption correction: numerical
six indexed faces (SHELXTL; Sheldrick, 1996)
h = 1010
Tmin = 0.943, Tmax = 0.969k = 2829
30858 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: difference Fourier map
wR(F2) = 0.096H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.055P)2 + 0.28P]
where P = (Fo2 + 2Fc2)/3
4858 reflections(Δ/σ)max = 0.001
407 parametersΔρmax = 0.44 e Å3
1 restraintΔρmin = 0.30 e Å3
Crystal data top
C16H22N2O4V = 1547.7 (4) Å3
Mr = 306.36Z = 4
Monoclinic, P21Mo Kα radiation
a = 7.3772 (14) ŵ = 0.10 mm1
b = 20.063 (3) ÅT = 143 K
c = 10.4576 (12) Å0.70 × 0.40 × 0.36 mm
β = 90.513 (12)°
Data collection top
SIEMENS SMART
diffractometer
4858 independent reflections
Absorption correction: numerical
six indexed faces (SHELXTL; Sheldrick, 1996)
4589 reflections with I > 2σ(I)
Tmin = 0.943, Tmax = 0.969Rint = 0.029
30858 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.096H-atom parameters constrained
S = 1.08Δρmax = 0.44 e Å3
4858 reflectionsΔρmin = 0.30 e Å3
407 parameters
Special details top

Experimental. A 0.8 mm colimator was used.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.88181 (18)0.33711 (8)0.10555 (12)0.0296 (3)
O20.6803 (3)0.29414 (15)0.23891 (17)0.0704 (8)
O30.81218 (17)0.52951 (6)0.39547 (12)0.0233 (2)
O40.71229 (18)0.46974 (8)0.22663 (13)0.0277 (3)
O50.11490 (17)0.66123 (8)0.39238 (12)0.0281 (3)
O60.3064 (2)0.70926 (9)0.25519 (13)0.0362 (4)
O70.17807 (17)0.47207 (6)0.09718 (12)0.0221 (2)
O80.28172 (17)0.53138 (7)0.26597 (12)0.0253 (3)
N11.11683 (19)0.36006 (7)0.47739 (13)0.0178 (3)
N21.0437 (2)0.31789 (7)0.38873 (14)0.0195 (3)
N30.13818 (18)0.64008 (7)0.02556 (13)0.0176 (3)
N40.06488 (19)0.68205 (7)0.11495 (14)0.0196 (3)
C10.9274 (2)0.35580 (9)0.32344 (16)0.0189 (3)
C20.9225 (2)0.42190 (8)0.37032 (15)0.0181 (3)
C31.0463 (2)0.42206 (8)0.47179 (15)0.0175 (3)
C41.1072 (2)0.47450 (8)0.56464 (16)0.0212 (3)
H4A1.00070.49900.59730.025*
H4B1.18720.50680.52100.025*
C51.2099 (2)0.44188 (8)0.67630 (15)0.0202 (3)
H51.26620.47660.73260.024*
C61.0818 (3)0.39642 (9)0.75462 (16)0.0251 (3)
H6A1.11670.39690.84630.030*
H6B0.95470.41180.74620.030*
C71.1030 (2)0.32536 (9)0.69831 (17)0.0234 (3)
H7A1.15600.29460.76250.028*
H7B0.98430.30750.66950.028*
C81.2319 (2)0.33439 (8)0.58401 (15)0.0188 (3)
C91.3258 (3)0.27105 (9)0.5420 (2)0.0284 (4)
H9A1.40210.25420.61200.043*
H9B1.40130.28050.46750.043*
H9C1.23460.23750.51920.043*
C101.3557 (2)0.39303 (8)0.62697 (16)0.0204 (3)
C111.4797 (3)0.37109 (10)0.73899 (19)0.0280 (4)
H11A1.56440.33690.70920.042*
H11B1.40550.35280.80790.042*
H11C1.54800.40960.77100.042*
C121.4749 (3)0.42088 (11)0.52069 (19)0.0297 (4)
H12A1.39900.43280.44680.045*
H12B1.56360.38710.49540.045*
H12C1.53870.46060.55180.045*
C130.8149 (2)0.32522 (10)0.21954 (17)0.0242 (3)
C140.7784 (3)0.31090 (14)0.00154 (19)0.0360 (5)
H14A0.76700.26250.00720.054*
H14B0.84070.32140.08140.054*
H14C0.65750.33110.00280.054*
C150.8055 (2)0.47500 (9)0.32170 (16)0.0201 (3)
C160.6950 (2)0.58352 (9)0.35556 (19)0.0256 (3)
H16A0.70880.62100.41500.038*
H16B0.56880.56830.35530.038*
H16C0.72810.59790.26930.038*
C170.0588 (2)0.64506 (8)0.17458 (15)0.0177 (3)
C180.0666 (2)0.57964 (8)0.12528 (16)0.0172 (3)
C190.0649 (2)0.57862 (8)0.02850 (15)0.0165 (3)
C200.1272 (2)0.52661 (8)0.06404 (16)0.0200 (3)
H20A0.15370.48480.01770.024*
H20B0.03010.51740.12640.024*
C210.2979 (2)0.55042 (8)0.13485 (15)0.0205 (3)
H210.32800.51970.20730.025*
C220.4595 (2)0.55542 (10)0.04149 (18)0.0260 (3)
H22A0.57420.54300.08530.031*
H22B0.44090.52540.03260.031*
C230.4658 (2)0.62900 (10)0.00278 (16)0.0246 (3)
H23A0.57720.65120.02910.030*
H23B0.46220.63200.09730.030*
C240.2961 (2)0.66110 (8)0.05540 (15)0.0184 (3)
C250.3015 (3)0.73665 (9)0.06424 (19)0.0275 (4)
H25A0.40030.75020.12190.041*
H25B0.18600.75300.09750.041*
H25C0.32180.75550.02090.041*
C260.2758 (2)0.62291 (8)0.18384 (15)0.0190 (3)
C270.4328 (3)0.63938 (10)0.27623 (17)0.0286 (4)
H27A0.42780.68670.29940.043*
H27B0.54850.62990.23460.043*
H27C0.42230.61210.35350.043*
C280.0981 (3)0.63737 (10)0.25246 (17)0.0281 (4)
H28A0.09850.68350.28320.042*
H28B0.08560.60700.32520.042*
H28C0.00380.63090.19300.042*
C290.1754 (2)0.67532 (8)0.27676 (16)0.0194 (3)
C300.2285 (3)0.68466 (13)0.49677 (18)0.0349 (5)
H30A0.35370.67020.48300.052*
H30B0.18470.66620.57750.052*
H30C0.22390.73340.50040.052*
C310.1866 (2)0.52672 (8)0.17170 (15)0.0176 (3)
C320.2928 (2)0.41720 (9)0.13646 (19)0.0247 (3)
H32A0.41880.43240.14260.037*
H32B0.28360.38120.07340.037*
H32C0.25360.40080.22000.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0250 (6)0.0453 (8)0.0186 (6)0.0110 (6)0.0002 (5)0.0071 (6)
O20.0664 (13)0.117 (2)0.0275 (8)0.0665 (14)0.0082 (8)0.0059 (10)
O30.0253 (6)0.0182 (5)0.0264 (6)0.0021 (5)0.0065 (5)0.0039 (5)
O40.0262 (6)0.0348 (7)0.0220 (6)0.0056 (5)0.0071 (5)0.0014 (5)
O50.0216 (6)0.0437 (8)0.0190 (6)0.0081 (6)0.0023 (4)0.0035 (6)
O60.0355 (7)0.0477 (9)0.0253 (7)0.0227 (7)0.0046 (5)0.0003 (6)
O70.0235 (6)0.0152 (5)0.0274 (6)0.0031 (4)0.0055 (4)0.0003 (5)
O80.0230 (6)0.0255 (6)0.0273 (6)0.0044 (5)0.0073 (5)0.0018 (5)
N10.0210 (6)0.0149 (6)0.0174 (6)0.0005 (5)0.0045 (5)0.0020 (5)
N20.0224 (6)0.0174 (6)0.0188 (6)0.0011 (5)0.0038 (5)0.0027 (5)
N30.0198 (6)0.0138 (6)0.0191 (6)0.0005 (5)0.0046 (5)0.0020 (5)
N40.0210 (6)0.0170 (6)0.0205 (6)0.0002 (5)0.0051 (5)0.0047 (5)
C10.0187 (7)0.0207 (7)0.0174 (7)0.0031 (6)0.0011 (5)0.0002 (6)
C20.0173 (7)0.0194 (7)0.0177 (7)0.0002 (6)0.0013 (5)0.0026 (6)
C30.0192 (7)0.0161 (6)0.0172 (7)0.0004 (5)0.0003 (5)0.0014 (5)
C40.0275 (8)0.0151 (7)0.0210 (7)0.0014 (6)0.0062 (6)0.0005 (6)
C50.0266 (8)0.0150 (6)0.0189 (7)0.0011 (6)0.0054 (6)0.0017 (5)
C60.0315 (9)0.0265 (8)0.0175 (7)0.0003 (7)0.0024 (6)0.0017 (6)
C70.0296 (8)0.0192 (7)0.0215 (7)0.0037 (6)0.0004 (6)0.0030 (6)
C80.0231 (7)0.0156 (6)0.0176 (7)0.0018 (5)0.0059 (5)0.0004 (5)
C90.0324 (9)0.0199 (8)0.0326 (9)0.0098 (7)0.0105 (7)0.0055 (7)
C100.0213 (7)0.0190 (7)0.0209 (7)0.0008 (6)0.0055 (6)0.0002 (6)
C110.0293 (9)0.0247 (8)0.0300 (9)0.0003 (7)0.0139 (7)0.0005 (7)
C120.0229 (8)0.0342 (10)0.0321 (9)0.0046 (7)0.0008 (7)0.0042 (8)
C130.0251 (8)0.0279 (8)0.0195 (7)0.0065 (7)0.0064 (6)0.0014 (6)
C140.0336 (10)0.0541 (13)0.0203 (8)0.0105 (9)0.0038 (7)0.0083 (9)
C150.0169 (7)0.0223 (7)0.0211 (7)0.0007 (6)0.0007 (5)0.0052 (6)
C160.0252 (8)0.0194 (7)0.0320 (9)0.0048 (6)0.0024 (7)0.0057 (7)
C170.0179 (7)0.0167 (7)0.0183 (7)0.0016 (5)0.0019 (5)0.0026 (5)
C180.0170 (6)0.0142 (6)0.0204 (7)0.0002 (5)0.0014 (5)0.0006 (5)
C190.0176 (6)0.0140 (6)0.0178 (7)0.0001 (5)0.0007 (5)0.0008 (5)
C200.0259 (8)0.0141 (6)0.0199 (7)0.0004 (6)0.0041 (6)0.0038 (6)
C210.0263 (8)0.0173 (6)0.0178 (7)0.0035 (6)0.0056 (6)0.0000 (5)
C220.0215 (7)0.0291 (8)0.0273 (8)0.0067 (6)0.0028 (6)0.0080 (7)
C230.0196 (7)0.0331 (9)0.0213 (7)0.0020 (6)0.0007 (6)0.0013 (7)
C240.0187 (7)0.0186 (7)0.0178 (7)0.0022 (5)0.0046 (5)0.0004 (5)
C250.0315 (9)0.0176 (7)0.0331 (9)0.0069 (7)0.0098 (7)0.0020 (7)
C260.0231 (7)0.0177 (6)0.0162 (6)0.0010 (6)0.0020 (5)0.0018 (5)
C270.0362 (9)0.0281 (8)0.0214 (8)0.0001 (7)0.0101 (7)0.0040 (7)
C280.0340 (9)0.0250 (8)0.0255 (8)0.0005 (7)0.0084 (7)0.0028 (7)
C290.0191 (7)0.0180 (7)0.0209 (7)0.0003 (5)0.0027 (5)0.0027 (6)
C300.0272 (9)0.0578 (14)0.0195 (8)0.0084 (9)0.0044 (7)0.0071 (8)
C310.0157 (6)0.0164 (6)0.0207 (7)0.0009 (5)0.0000 (5)0.0015 (6)
C320.0230 (8)0.0164 (7)0.0347 (9)0.0044 (6)0.0014 (6)0.0033 (6)
Geometric parameters (Å, º) top
O1—C131.316 (2)C3—C41.498 (2)
O1—C141.448 (2)C4—C51.533 (2)
O2—C131.191 (3)C5—C101.547 (2)
O3—C151.339 (2)C5—C61.552 (2)
O3—C161.445 (2)C6—C71.551 (3)
O4—C151.209 (2)C7—C81.545 (2)
O5—C291.323 (2)C8—C91.514 (2)
O5—C301.449 (2)C8—C101.553 (2)
O6—C291.205 (2)C10—C121.529 (3)
O7—C311.346 (2)C10—C111.544 (2)
O7—C321.446 (2)C17—C181.411 (2)
O8—C311.209 (2)C17—C291.495 (2)
N1—C31.349 (2)C18—C191.396 (2)
N1—N21.3631 (19)C18—C311.462 (2)
N1—C81.487 (2)C19—C201.493 (2)
N2—C11.330 (2)C20—C211.532 (2)
N3—C191.347 (2)C21—C261.551 (2)
N3—N41.3660 (18)C21—C221.551 (3)
N3—C241.495 (2)C22—C231.548 (3)
N4—C171.327 (2)C23—C241.538 (2)
C1—C21.414 (2)C24—C251.519 (2)
C1—C131.493 (2)C24—C261.555 (2)
C2—C31.394 (2)C26—C281.528 (2)
C2—C151.460 (2)C26—C271.538 (2)
C13—O1—C14115.80 (15)O2—C13—O1124.67 (18)
C15—O3—C16115.30 (14)O2—C13—C1123.38 (18)
C29—O5—C30114.94 (14)O1—C13—C1111.95 (15)
C31—O7—C32115.56 (14)O4—C15—O3124.26 (16)
C3—N1—N2113.11 (13)O4—C15—C2123.59 (17)
C3—N1—C8124.69 (13)O3—C15—C2112.14 (14)
N2—N1—C8120.98 (13)N4—C17—C18112.24 (14)
C1—N2—N1104.11 (13)N4—C17—C29119.84 (15)
C19—N3—N4113.11 (13)C18—C17—C29127.86 (15)
C19—N3—C24125.59 (13)C19—C18—C17104.36 (14)
N4—N3—C24121.03 (13)C19—C18—C31130.14 (14)
C17—N4—N3104.07 (13)C17—C18—C31125.49 (14)
N2—C1—C2112.12 (14)N3—C19—C18106.22 (13)
N2—C1—C13119.35 (16)N3—C19—C20120.27 (14)
C2—C1—C13128.44 (16)C18—C19—C20133.49 (14)
C3—C2—C1104.33 (14)C19—C20—C21110.02 (13)
C3—C2—C15130.16 (16)C20—C21—C26111.33 (13)
C1—C2—C15125.48 (15)C20—C21—C22110.44 (13)
N1—C3—C2106.30 (14)C26—C21—C22103.35 (13)
N1—C3—C4120.39 (14)C23—C22—C21105.96 (14)
C2—C3—C4133.31 (15)C24—C23—C22104.75 (14)
C3—C4—C5109.71 (13)N3—C24—C25109.63 (14)
C4—C5—C10110.90 (13)N3—C24—C23106.91 (13)
C4—C5—C6110.74 (14)C25—C24—C23114.89 (15)
C10—C5—C6103.41 (13)N3—C24—C26105.65 (12)
C7—C6—C5106.01 (13)C25—C24—C26116.22 (14)
C8—C7—C6104.53 (13)C23—C24—C26102.73 (13)
N1—C8—C9109.42 (14)C28—C26—C27107.99 (14)
N1—C8—C7105.62 (13)C28—C26—C21115.23 (14)
C9—C8—C7114.36 (15)C27—C26—C21109.16 (14)
N1—C8—C10106.54 (12)C28—C26—C24113.68 (14)
C9—C8—C10116.79 (14)C27—C26—C24111.06 (14)
C7—C8—C10103.26 (13)C21—C26—C2499.53 (12)
C12—C10—C11108.34 (15)O6—C29—O5124.70 (16)
C12—C10—C5114.65 (14)O6—C29—C17123.58 (16)
C11—C10—C5109.68 (14)O5—C29—C17111.70 (14)
C12—C10—C8114.01 (14)O8—C31—O7123.98 (15)
C11—C10—C8110.27 (13)O8—C31—C18124.05 (16)
C5—C10—C899.65 (13)O7—C31—C18111.97 (13)
C3—N1—N2—C11.85 (18)C3—C2—C15—O36.0 (2)
C8—N1—N2—C1169.80 (14)C1—C2—C15—O3171.40 (15)
C19—N3—N4—C170.34 (18)N3—N4—C17—C180.09 (18)
C24—N3—N4—C17174.59 (14)N3—N4—C17—C29177.19 (13)
N1—N2—C1—C20.93 (18)N4—C17—C18—C190.17 (19)
N1—N2—C1—C13177.68 (14)C29—C17—C18—C19177.18 (15)
N2—C1—C2—C30.23 (19)N4—C17—C18—C31179.03 (15)
C13—C1—C2—C3176.16 (16)C29—C17—C18—C314.0 (3)
N2—C1—C2—C15178.21 (15)N4—N3—C19—C180.45 (18)
C13—C1—C2—C151.8 (3)C24—N3—C19—C18174.39 (14)
N2—N1—C3—C22.03 (18)N4—N3—C19—C20179.10 (14)
C8—N1—C3—C2169.45 (15)C24—N3—C19—C207.0 (2)
N2—N1—C3—C4178.32 (14)C17—C18—C19—N30.36 (17)
C8—N1—C3—C410.9 (2)C31—C18—C19—N3179.14 (16)
C1—C2—C3—N11.31 (17)C17—C18—C19—C20178.75 (17)
C15—C2—C3—N1179.16 (16)C31—C18—C19—C202.5 (3)
C1—C2—C3—C4179.11 (17)N3—C19—C20—C2110.7 (2)
C15—C2—C3—C41.3 (3)C18—C19—C20—C21171.11 (17)
N1—C3—C4—C514.9 (2)C19—C20—C21—C2646.86 (18)
C2—C3—C4—C5165.61 (17)C19—C20—C21—C2267.36 (17)
C3—C4—C5—C1049.11 (18)C20—C21—C22—C2395.31 (16)
C3—C4—C5—C665.10 (17)C26—C21—C22—C2323.86 (16)
C4—C5—C6—C793.59 (16)C21—C22—C23—C245.88 (17)
C10—C5—C6—C725.25 (17)C19—N3—C24—C25162.36 (16)
C5—C6—C7—C83.91 (17)N4—N3—C24—C2524.1 (2)
C3—N1—C8—C9164.98 (16)C19—N3—C24—C2372.52 (19)
N2—N1—C8—C928.5 (2)N4—N3—C24—C23100.98 (17)
C3—N1—C8—C771.48 (19)C19—N3—C24—C2636.4 (2)
N2—N1—C8—C795.01 (17)N4—N3—C24—C26150.10 (14)
C3—N1—C8—C1037.9 (2)C22—C23—C24—N377.59 (15)
N2—N1—C8—C10155.63 (14)C22—C23—C24—C25160.54 (14)
C6—C7—C8—N180.12 (15)C22—C23—C24—C2633.37 (16)
C6—C7—C8—C9159.52 (15)C20—C21—C26—C2847.05 (18)
C6—C7—C8—C1031.57 (16)C22—C21—C26—C28165.61 (14)
C4—C5—C10—C1247.38 (19)C20—C21—C26—C27168.73 (14)
C6—C5—C10—C12166.11 (14)C22—C21—C26—C2772.71 (16)
C4—C5—C10—C11169.50 (14)C20—C21—C26—C2474.91 (15)
C6—C5—C10—C1171.77 (16)C22—C21—C26—C2443.65 (14)
C4—C5—C10—C874.78 (15)N3—C24—C26—C2858.82 (17)
C6—C5—C10—C843.95 (15)C25—C24—C26—C2862.98 (19)
N1—C8—C10—C1258.39 (18)C23—C24—C26—C28170.71 (14)
C9—C8—C10—C1264.2 (2)N3—C24—C26—C27179.16 (14)
C7—C8—C10—C12169.41 (14)C25—C24—C26—C2759.04 (19)
N1—C8—C10—C11179.48 (14)C23—C24—C26—C2767.27 (16)
C9—C8—C10—C1157.9 (2)N3—C24—C26—C2164.24 (14)
C7—C8—C10—C1168.47 (17)C25—C24—C26—C21173.96 (15)
N1—C8—C10—C564.22 (15)C23—C24—C26—C2147.65 (15)
C9—C8—C10—C5173.21 (15)C30—O5—C29—O65.6 (3)
C7—C8—C10—C546.80 (15)C30—O5—C29—C17175.59 (17)
C14—O1—C13—O21.4 (4)N4—C17—C29—O679.6 (2)
C14—O1—C13—C1178.29 (17)C18—C17—C29—O697.2 (2)
N2—C1—C13—O280.4 (3)N4—C17—C29—O599.19 (19)
C2—C1—C13—O295.8 (3)C18—C17—C29—O584.0 (2)
N2—C1—C13—O1100.0 (2)C32—O7—C31—O80.2 (2)
C2—C1—C13—O183.9 (2)C32—O7—C31—C18179.96 (14)
C16—O3—C15—O41.2 (2)C19—C18—C31—O8171.45 (17)
C16—O3—C15—C2178.05 (14)C17—C18—C31—O87.1 (3)
C3—C2—C15—O4174.75 (17)C19—C18—C31—O78.4 (2)
C1—C2—C15—O47.8 (3)C17—C18—C31—O7173.09 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16B···O80.982.423.349 (2)157
C22—H22B···O4i0.992.573.516 (2)160
C25—H25A···O2ii0.982.553.519 (3)170
C32—H32A···O40.982.453.395 (2)163
C16—H16C···Cg2iii0.982.643.529 (3)151
C32—H32C···Cg1i0.982.703.617 (3)155
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H22N2O4
Mr306.36
Crystal system, space groupMonoclinic, P21
Temperature (K)143
a, b, c (Å)7.3772 (14), 20.063 (3), 10.4576 (12)
β (°) 90.513 (12)
V3)1547.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.70 × 0.40 × 0.36
Data collection
DiffractometerSIEMENS SMART
diffractometer
Absorption correctionNumerical
six indexed faces (SHELXTL; Sheldrick, 1996)
Tmin, Tmax0.943, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
30858, 4858, 4589
Rint0.029
(sin θ/λ)max1)0.725
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.096, 1.08
No. of reflections4858
No. of parameters407
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.30

Computer programs: SMART (Siemens, 1995), SMART, SAINT (Siemens, 1995), SHELXS97 (Sheldrick, 1997), XP in SHELXTL (Sheldrick, 1996), CIF in SHELXL97 (Sheldrick, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16B···O80.982.423.349 (2)157
C22—H22B···O4i0.992.573.516 (2)160
C25—H25A···O2ii0.982.553.519 (3)170
C32—H32A···O40.982.453.395 (2)163
C16—H16C···Cg2iii0.982.643.529 (3)151
C32—H32C···Cg1i0.982.703.617 (3)155
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z; (iii) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds