Download citation
Download citation
link to html
In the title compound, C14H10N2O2·2H2O, the water mol­ecules are involved in hydrogen bonds and interactions. Intermolecular and intramolecular O-H...O hydrogen bonds connect the complex into chains along the a axis, whereas N-H...O intermolecular hydrogen bonds and C-H...O interactions interconnect these layers forming a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100015675/sk1423sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100015675/sk1423Isup2.hkl
Contains datablock I

CCDC reference: 159991

Comment top

Benzimidazole is an interesting heterocyclic ring because it is present in various naturally occurring drugs such as omeprazole, astemizole and emedastine difumarate (Sakai et al., 1989). The efficacy of substituted benzimidazoles in the treatment of parasitic infections is well known (Brown et al., 1961; Preston, 1974; Sarkar et al., 1984). Substituted benzimidazole moieties are established pharmacophores in parasitic chemotherapy. Furthermore, proton tranfer, accompanied by a configurational change of the pi-electron structure, is one of the key reactions in many proposals for molecular-electronic devices (Xu et al., 1994). The electrical properties depend heavily on the intermolecular interactions. Thus, the title compound, (I), may be a candidate for construction of a novel type of conductive organic material in which the proton motion is essentially correlated to the electron conduction (Inabe, 1991). \sch

The benzimidazole moiety is planar, with the maximum deviation of 0.008 (2)° for the N1 atom with protonation occurring at the other imidazole N atom. The dihedral angle between this benzimidazole moiety and the phenyl ring is 11.33 (12)°. The C—O bond lengths are comparable to those of a –COO- group (Leban & Rupnik, 1992; Aakeroy & Hitchcock, 1994). The carboxyl group makes a dihedral angle of 4.4 (2) Å with the mean plane of the phenyl ring. In the asymmetric unit, both water molecules are linked to the carboxyl group through O—H···O hydrogen bonds.

In the crystal, all the hydrogen bondings and interactions (Table 2) involved the water molecules. The water molecules are involved in O—H···O intramolecular and intermolecular hydrogen bonds with the O atoms in the COO- group. These hydrogen bonds connect those water molecules into infinite chains in the [100] direction in which the O atoms of the COO- group act as a bridge. This results in the molecules of the title compound being stacked along the same axis to form layers. The water molecules are also involved in N—H···O intermolecular hydrogen bonds and C—H···O interactions. These hydrogen bonds and interactions interconnect these layers. The O—H···O, N—H···O hydrogen bonds and the C—H···O interactions in which all are involving the water molecules form a three-dimensional network of the title compound throughout the structure.

Related literature top

For related literature, see: Aakeroy & Hitchcock (1994); Addison & Burke (1981); Addison et al. (1983); Brown et al. (1961); Flack (1983); Inabe (1991); Leban & Rupnik (1992); Preston (1974); Sakai et al. (1989); Sarkar et al. (1984); Xu et al. (1994).

Experimental top

The title compound is prepared from benzene-1,4-dicarboxylic acid and 1,2-diaminobenzene in 36% yield using a modified Phillips reaction (Addison & Burke, 1981; Addison et al., 1983) and is recrystallized from water. The single crystals suitable for X-ray analysis were obtained by slow evaporation at room temperature from the EtOH/H2O solvent.

Refinement top

Friedel pairs were averaged in view of the inconclusive Flack parameter (Flack, 1983) value and s.u. After checking their presence in the difference map, all H atoms were geometrically fixed and allowed to ride on their attached atoms except the H atoms of N1, N2, O1W and O2W which were involved in hydrogen bonding and were refined isotropically.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme.
4-[1H-Benzimidazolium]-Benzene Carbonic Acid dihydrate solvate top
Crystal data top
C14H10N2O2·2H2OF(000) = 576
Mr = 274.27Dx = 1.408 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 4.5541 (2) ÅCell parameters from 2836 reflections
b = 16.3140 (8) Åθ = 2.3–29.4°
c = 17.5245 (9) ŵ = 0.11 mm1
β = 96.234 (2)°T = 293 K
V = 1294.29 (11) Å3Rectangular slab, colourless
Z = 40.48 × 0.30 × 0.08 mm
Data collection top
Siemens SMART CCD area detector
diffractometer
1150 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.058
Graphite monochromatorθmax = 27.5°, θmin = 2.3°
Detector resolution: 8.33 pixels mm-1h = 55
ω scansk = 1320
4352 measured reflectionsl = 2220
1474 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111See text
S = 0.97 w = 1/[σ2(Fo2) + (0.0593P)2]
where P = (Fo2 + 2Fc2)/3
1474 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 0.18 e Å3
6 restraintsΔρmin = 0.25 e Å3
Crystal data top
C14H10N2O2·2H2OV = 1294.29 (11) Å3
Mr = 274.27Z = 4
Monoclinic, CcMo Kα radiation
a = 4.5541 (2) ŵ = 0.11 mm1
b = 16.3140 (8) ÅT = 293 K
c = 17.5245 (9) Å0.48 × 0.30 × 0.08 mm
β = 96.234 (2)°
Data collection top
Siemens SMART CCD area detector
diffractometer
1150 reflections with I > 2σ(I)
4352 measured reflectionsRint = 0.058
1474 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0456 restraints
wR(F2) = 0.111See text
S = 0.97Δρmax = 0.18 e Å3
1474 reflectionsΔρmin = 0.25 e Å3
205 parameters
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 30 s covered 0.3° in ω. The crystal-to-detector distance was 4 cm and the detector swing angle was -35°. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.5276 (5)0.26258 (17)0.14519 (15)0.0335 (6)
O11.4317 (6)0.49797 (19)0.07722 (16)0.0544 (7)
O21.4672 (6)0.59464 (18)0.01262 (17)0.0554 (7)
O1W0.9502 (6)0.69114 (18)0.00665 (16)0.0517 (7)
O2W1.8698 (7)0.5413 (2)0.15967 (16)0.0593 (8)
N10.6511 (5)0.34087 (18)0.24503 (15)0.0350 (6)
C10.3826 (6)0.2317 (2)0.20484 (18)0.0351 (7)
C20.1938 (8)0.1653 (2)0.2078 (2)0.0457 (8)
H2A0.14200.13200.16530.055*
C30.0862 (8)0.1516 (3)0.2783 (2)0.0525 (10)
H3A0.04050.10770.28330.063*
C40.1644 (8)0.2021 (3)0.3412 (2)0.0546 (10)
H4A0.08750.19060.38710.065*
C50.3507 (8)0.2683 (3)0.3385 (2)0.0475 (9)
H5A0.40050.30190.38080.057*
C60.4598 (7)0.2815 (2)0.26800 (18)0.0380 (8)
C70.6851 (6)0.3278 (2)0.17099 (18)0.0313 (7)
C80.8679 (6)0.3777 (2)0.12518 (16)0.0310 (6)
C90.9271 (8)0.3509 (2)0.05292 (19)0.0417 (8)
H9A0.85320.30090.03400.050*
C101.0959 (8)0.3988 (2)0.00925 (19)0.0412 (8)
H10A1.13450.38050.03890.049*
C111.2077 (6)0.4733 (2)0.03591 (19)0.0341 (7)
C121.1456 (8)0.4997 (2)0.10781 (19)0.0433 (8)
H12A1.21780.55010.12630.052*
C130.9798 (8)0.4529 (2)0.15210 (19)0.0426 (8)
H13A0.94200.47160.20020.051*
C141.3868 (7)0.5255 (2)0.0130 (2)0.0392 (8)
H1N20.503 (10)0.237 (3)0.093 (3)0.066 (13)*
H1N10.730 (12)0.386 (3)0.279 (3)0.086 (18)*
H1W11.105 (14)0.656 (4)0.005 (5)0.15 (3)*
H2W10.804 (8)0.656 (2)0.007 (2)0.052 (12)*
H1W22.032 (11)0.519 (4)0.145 (4)0.12 (3)*
H2W21.739 (10)0.527 (3)0.128 (3)0.078 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0338 (13)0.0357 (14)0.0317 (14)0.0038 (11)0.0076 (11)0.0013 (12)
O10.0501 (16)0.0737 (19)0.0422 (13)0.0125 (13)0.0175 (11)0.0041 (13)
O20.0510 (15)0.0530 (16)0.0648 (16)0.0167 (13)0.0182 (12)0.0037 (14)
O1W0.0574 (17)0.0459 (15)0.0543 (16)0.0161 (14)0.0175 (13)0.0129 (13)
O2W0.0465 (15)0.083 (2)0.0486 (15)0.0035 (15)0.0082 (12)0.0269 (15)
N10.0333 (13)0.0449 (16)0.0269 (12)0.0057 (13)0.0040 (10)0.0021 (12)
C10.0300 (14)0.0427 (18)0.0336 (16)0.0013 (13)0.0078 (12)0.0079 (14)
C20.0441 (18)0.0426 (19)0.050 (2)0.0046 (16)0.0052 (15)0.0030 (17)
C30.0433 (19)0.055 (2)0.061 (2)0.0054 (18)0.0122 (16)0.017 (2)
C40.045 (2)0.078 (3)0.042 (2)0.001 (2)0.0117 (15)0.018 (2)
C50.0458 (18)0.069 (3)0.0286 (17)0.0008 (18)0.0080 (13)0.0059 (17)
C60.0287 (15)0.052 (2)0.0331 (16)0.0002 (15)0.0013 (12)0.0045 (14)
C70.0260 (13)0.0342 (16)0.0333 (16)0.0007 (13)0.0014 (11)0.0017 (13)
C80.0270 (14)0.0369 (17)0.0294 (15)0.0007 (13)0.0044 (11)0.0048 (13)
C90.0452 (18)0.042 (2)0.0386 (19)0.0123 (16)0.0093 (14)0.0030 (16)
C100.0436 (17)0.049 (2)0.0324 (17)0.0075 (17)0.0126 (13)0.0033 (16)
C110.0238 (13)0.0407 (18)0.0378 (16)0.0013 (13)0.0027 (11)0.0042 (14)
C120.049 (2)0.0437 (19)0.0378 (18)0.0157 (16)0.0071 (14)0.0036 (15)
C130.0487 (19)0.047 (2)0.0333 (17)0.0142 (17)0.0106 (14)0.0063 (16)
C140.0293 (16)0.047 (2)0.0414 (18)0.0056 (15)0.0044 (13)0.0088 (16)
Geometric parameters (Å, º) top
N2—C71.334 (4)C3—H3A0.9300
N2—C11.390 (4)C4—C51.377 (6)
N2—H1N20.99 (5)C4—H4A0.9300
O1—C141.249 (4)C5—C61.398 (4)
O2—C141.254 (5)C5—H5A0.9300
O1W—H1W10.91 (4)C7—C81.465 (4)
O1W—H2W10.88 (3)C8—C131.392 (5)
O2W—H1W20.84 (4)C8—C91.393 (4)
O2W—H2W20.89 (3)C9—C101.384 (5)
N1—C71.340 (4)C9—H9A0.9300
N1—C61.391 (4)C10—C111.379 (5)
N1—H1N10.98 (6)C10—H10A0.9300
C1—C21.387 (5)C11—C121.390 (5)
C1—C61.387 (5)C11—C141.510 (4)
C2—C31.396 (5)C12—C131.372 (5)
C2—H2A0.9300C12—H12A0.9300
C3—C41.391 (6)C13—H13A0.9300
C7—N2—C1108.4 (3)N1—C6—C5131.1 (3)
C7—N2—H1N2130 (3)N2—C7—N1109.9 (3)
C1—N2—H1N2121 (3)N2—C7—C8125.0 (3)
H1W1—O1W—H2W1101 (6)N1—C7—C8125.0 (3)
H1W2—O2W—H2W2109 (6)C13—C8—C9119.0 (3)
C7—N1—C6108.1 (3)C13—C8—C7120.9 (3)
C7—N1—H1N1129 (3)C9—C8—C7120.1 (3)
C6—N1—H1N1123 (3)C10—C9—C8120.0 (3)
C2—C1—C6122.2 (3)C10—C9—H9A120.0
C2—C1—N2131.1 (3)C8—C9—H9A120.0
C6—C1—N2106.7 (3)C11—C10—C9121.1 (3)
C1—C2—C3115.9 (4)C11—C10—H10A119.4
C1—C2—H2A122.1C9—C10—H10A119.4
C3—C2—H2A122.1C10—C11—C12118.4 (3)
C4—C3—C2121.5 (4)C10—C11—C14120.5 (3)
C4—C3—H3A119.3C12—C11—C14121.0 (3)
C2—C3—H3A119.3C13—C12—C11121.3 (3)
C5—C4—C3122.9 (3)C13—C12—H12A119.4
C5—C4—H4A118.5C11—C12—H12A119.4
C3—C4—H4A118.5C12—C13—C8120.2 (3)
C4—C5—C6115.5 (4)C12—C13—H13A119.9
C4—C5—H5A122.2C8—C13—H13A119.9
C6—C5—H5A122.2O1—C14—O2125.2 (3)
C1—C6—N1106.8 (3)O1—C14—C11117.4 (3)
C1—C6—C5122.1 (3)O2—C14—C11117.3 (3)
C7—N2—C1—C2180.0 (4)N2—C7—C8—C13167.9 (3)
C7—N2—C1—C60.1 (3)N1—C7—C8—C1312.1 (5)
C6—C1—C2—C30.1 (5)N2—C7—C8—C910.8 (5)
N2—C1—C2—C3180.0 (3)N1—C7—C8—C9169.2 (3)
C1—C2—C3—C40.3 (6)C13—C8—C9—C100.3 (5)
C2—C3—C4—C50.0 (6)C7—C8—C9—C10178.9 (3)
C3—C4—C5—C60.5 (6)C8—C9—C10—C110.0 (5)
C2—C1—C6—N1179.6 (3)C9—C10—C11—C120.4 (5)
N2—C1—C6—N10.4 (3)C9—C10—C11—C14178.9 (3)
C2—C1—C6—C50.4 (5)C10—C11—C12—C130.7 (5)
N2—C1—C6—C5179.6 (3)C14—C11—C12—C13179.1 (3)
C7—N1—C6—C10.6 (4)C11—C12—C13—C80.5 (6)
C7—N1—C6—C5179.4 (3)C9—C8—C13—C120.0 (5)
C4—C5—C6—C10.7 (5)C7—C8—C13—C12178.6 (3)
C4—C5—C6—N1179.4 (4)C10—C11—C14—O11.1 (4)
C1—N2—C7—N10.3 (3)C12—C11—C14—O1179.5 (3)
C1—N2—C7—C8179.7 (3)C10—C11—C14—O2175.9 (3)
C6—N1—C7—N20.6 (3)C12—C11—C14—O22.5 (5)
C6—N1—C7—C8179.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O20.91 (6)1.92 (6)2.825 (4)171 (7)
O1W—H2W1···O2i0.88 (4)1.84 (4)2.716 (4)172 (3)
O2W—H2W2···O10.89 (5)1.80 (5)2.682 (4)171 (5)
O2W—H1W2···O1ii0.84 (6)2.09 (6)2.887 (4)158 (6)
N1—H1N1···O2Wiii0.99 (5)1.68 (5)2.667 (4)177 (5)
N2—H1N2···O1Wiv1.00 (5)1.68 (5)2.682 (4)177 (4)
C9—H9A···O1Wiv0.932.573.433 (4)154
C13—H13A···O2Wiii0.932.523.391 (4)156
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x1, y+1, z+1/2; (iv) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC14H10N2O2·2H2O
Mr274.27
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)4.5541 (2), 16.3140 (8), 17.5245 (9)
β (°) 96.234 (2)
V3)1294.29 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.48 × 0.30 × 0.08
Data collection
DiffractometerSiemens SMART CCD area detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4352, 1474, 1150
Rint0.058
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.111, 0.97
No. of reflections1474
No. of parameters205
No. of restraints6
H-atom treatmentSee text
Δρmax, Δρmin (e Å3)0.18, 0.25

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL and PLATON (Spek, 1990).

Selected bond lengths (Å) top
N2—C71.334 (4)O2—C141.254 (5)
N2—C11.390 (4)N1—C71.340 (4)
O1—C141.249 (4)N1—C61.391 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O20.91 (6)1.92 (6)2.825 (4)171 (7)
O1W—H2W1···O2i0.88 (4)1.84 (4)2.716 (4)172 (3)
O2W—H2W2···O10.89 (5)1.80 (5)2.682 (4)171 (5)
O2W—H1W2···O1ii0.84 (6)2.09 (6)2.887 (4)158 (6)
N1—H1N1···O2Wiii0.99 (5)1.68 (5)2.667 (4)177 (5)
N2—H1N2···O1Wiv1.00 (5)1.68 (5)2.682 (4)177 (4)
C9—H9A···O1Wiv0.92972.57163.433 (4)154
C13—H13A···O2Wiii0.92992.52163.391 (4)156
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x1, y+1, z+1/2; (iv) x1/2, y1/2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds