Download citation
Download citation
link to html
Crystals of the title compound, C18H20N4O4, contain equal numbers of (R,R) and (S,S) mol­ecules, but these are not precise enantiomorphs, neither are they related by crystallographic symmetry; in addition, each mol­ecule exhibits approximate, but not exact, twofold rotational symmetry. There are intramolecular N-H...O hydrogen bonds [N...O 2.609 (4)-2.638 (5) Å; N-H...O 125-132°] and the mol­ecules are linked into molecular ladders by C-H...O hydrogen bonds [C...O 3.306 (6)-3.386 (6) Å; C-H...O 146-160°].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100006260/sk1388sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100006260/sk1388Isup2.hkl
Contains datablock I

CCDC reference: 147659

Comment top

As part of a continuing study of the interplay between molecular conformation and supramolecular aggregation in compounds containing 2-nitrophenyl groups (Low, Storey et al., 2000; Low, Glidewell & Wardell, 2000), we now report the structure of trans-1,2-bis(2-nitroanilino)cyclohexane, (O2NC6H4NH)2C6H10, (I), which exhibits pseudosymmetry as well as a supramolecular arrangement in the form of hydrogen-bonded molecular ladders. \sch

Compound (I) (Scheme 1) crystallizes in P21/n with two independent molecules in the asymmetric unit (Fig. 1). In both molecules the cyclohexane rings adopt the chair conformation with the two amino substituents in mutually trans equatorial sites. There are two enantiomeric forms present and the asymmetric unit was selected to contain one (R,R) molecule and one (S,S) molecule. In molecule 1 (defined by N1—N4) the stereogenic atoms C1 and C2 both have the R configuration, while in molecule 2 (defined by N5—N8) the corresponding atoms C19 and C20 both have the S configuration. Each molecule in addition has approximate C2 rotational symmetry. However, despite these observations, a search for possible additional crystallographic symmetry showed that none was present.

When the H atoms in the amino groups were all refined isotropically, the configurations about all the amino N atoms were found to be planar, within experimental uncertainty: subsequently the configurations of these N atoms were constrained to be planar. Associated with this planarity are the very wide C—N—C angles (Table 1), all around 125°, and the short NC(aryl) distances [range 1.334 (5)–1.379 (5) Å; mean 1.356 Å], which are typical of such distances involving planar N [mean value, 1.355 Å (Allen et al., 1987)]. The corresponding mean distance for bonds involving pyramidal N is 1.394 Å (Allen et al., 1987). The N—H bonds are all essentially coplanar with the adjacent aryl rings, as are the nitro groups, and there is thus an intramolecular N—H···O hydrogen bond formed by each amino group (Table 2), forming an S(6) motif (Bernstein et al., 1995). The C(aryl)-NO2 bonds are all significantly shorter than the mean value, 1.468 Å, for bonds of this type (Allen et al., 1987).

Within the aryl rings, there is evidence of some bond fixation: together with the short C(aryl)-N bonds, this is consistent with a significant admixture of the canonical form (Ic) into the more conventional forms (Ia) and (Ib) (Scheme 2). Form (Ic), where both the hydrogen-bond donor and the acceptor are charged strongly favours the formation of a strong intermolecular hydrogen bond (Aakeröy & Seddon, 1993; Gilli et al., 1994). Also worthy of note are the consistently small C—C—C angles in the aryl rings ipso to the amino substituents (i.e. at C7, C13, C25 and C31), associated with the electron-donating properties of the amino group (Domenicano & Murray-Rust, 1979). There is a consistent difference between the two exocyclic C—C—NO2 angles (Table 2) and, in every case, the angle nearer the amino group is the larger. This arises from the need to accommodate the long H···O distances within the planar S(6) ring.

In the structure of 2-nitroaniline itself (Dhaneshwar et al., 1978) the geometries reported for the two independent molecules are so different that no firm conclusions can be drawn. However, in 4-methyl-2-nitroaniline (Ellena et al., 1996) there is evidence for bond fixation of exactly the type observed here in compound (I): of particular note in 4-methyl-2-nitroaniline are the C—NO2 bond length, 1.434 (3) Å, and the range of C—C bond lengths in the aryl ring, 1.343 (5)–1.406 (4) Å.

In each of the two independent molecules in (I), the two aryl rings are nearly parallel: in molecule 1, the dihedral angles between the two ring planes is 16.1 (2)°, while in molecule 2 the corresponding angle in 11.5 (2)°. The distance between the rings is ca 3.39 Å in molecule 1 and ca 3.31 Å in molecule 2, and the centroid offsets are 1.46 Å and 1.29 Å respectively: these values are appropriate for intramolecular aromatic π···π stacking interactions. On the other hand, there are no intermolecular interactions of this type.

The molecules are linked into ladders by C—H···O hydrogen bonds (Table 2 and Fig. 2). The ladders are generated by translation along the [100] direction and alternate molecules within any ladder are of opposite chirality. Each molecule acts as a double donor and a double acceptor of hydrogen bonds (Table 2) and in the ladder, the uprights are formed by antiparallel C22(12) chains, one containing O1 and O5 as acceptors, the other containing O3 and O7. Only half of the O atoms participate in the hydrogen bonding (Table 2). The rungs of the ladder are formed by the diaminocyclohexane units, and each neighbouring pair of rungs encloses an R22(22) ring. These rings are approximately, but not exactly centrosymmetric, and they are centred close to (n/2 + 0.47, 0.17, 1/4) (n = zero or integer). Hence each individual molecule exhibits pseudosymmetry, having near C2 rotational symmetry, and the two independent molecules also exhibit a pseudosymmetric relationship in that neighbouring pairs lie across pseudo centres of inversion. The precise values of corresponding geometric parameters, both intra- and intermolecular are however significantly different in many cases (Tables 1 and 2).

The pseudosymmetry can perhaps best be understood by reference to Fig. 2, which shows both the approximate twofold axes running through each molecule and lying approximately normal to the [100] direction, and the pseudo inversions between adjacent molecules. While only a minor adjustment in the angle β, from 105.594 (7) to 108.23°, is required to generate a metrically orthorhombic cell, the cell contents do not exhibit orthorhombic symmetry.

Experimental top

A mixture of 2-fluoronitrobenzene (5.64 g, 40 mmol), trans-cyclohexane-1,2-diamine (2.28 g, 20 mmol) and sodium hydrogencarbonate (3.70 g, 44 mmol) was heated in refluxing ethanol (50 cm3) for 2 h. The hot reaction mixture was poured into ice-water (100 cm3) and extracted with CH2Cl2 (3 x 150 cm3). The combined organic extracts were dried over MgSO4 and the solvent was removed in vacuo to yield an oily orange solid, which was crystallized from ethanol to yield bright orange needle-like crystals (5.17 g, 73%), m.p. 493–494 K.

Refinement top

Compound (I) crystallized in the monoclinic system; space group P21/n from the systematic absences. H atoms were treated as riding atoms with C—H 0.95 to 1.00 Å, N—H 0.88 Å. Examination of the structure with PLATON (Spek, 1999) showed that there were no solvent-accessible voids in the crystal lattice.

Computing details top

Data collection: Kappa-CCD server software (Nonius, 1997); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97 and WORDPERFECT macro PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. A view of the two independent molecules of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing formation of a molecular ladder [symmetry codes: (i) 1 + x, y, z; (ii) −1 + x, y, z].
Trans-1,2-bis(2-nitroanilino)cyclohexane top
Crystal data top
C18H20N4O4F(000) = 1504
Mr = 356.38Dx = 1.407 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.114 (1) ÅCell parameters from 6356 reflections
b = 12.7121 (19) Åθ = 1.7–25.9°
c = 20.959 (3) ŵ = 0.10 mm1
β = 105.594 (7)°T = 150 K
V = 3365.3 (8) Å3Needle, orange
Z = 80.30 × 0.03 × 0.02 mm
Data collection top
Kappa-CCD
diffractometer
6356 independent reflections
Radiation source: fine-focus sealed X-ray tube1853 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.107
ϕ scans and ω scans with κ offsetsθmax = 25.9°, θmin = 1.7°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
h = 1615
Tmin = 0.970, Tmax = 0.998k = 1415
19380 measured reflectionsl = 2325
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 0.86w = 1/[σ2(Fo2) + (0.0276P)2]
where P = (Fo2 + 2Fc2)/3
6356 reflections(Δ/σ)max = 0.003
472 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C18H20N4O4V = 3365.3 (8) Å3
Mr = 356.38Z = 8
Monoclinic, P21/nMo Kα radiation
a = 13.114 (1) ŵ = 0.10 mm1
b = 12.7121 (19) ÅT = 150 K
c = 20.959 (3) Å0.30 × 0.03 × 0.02 mm
β = 105.594 (7)°
Data collection top
Kappa-CCD
diffractometer
6356 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
1853 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.998Rint = 0.107
19380 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 0.86Δρmax = 0.41 e Å3
6356 reflectionsΔρmin = 0.41 e Å3
472 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0423 (2)0.0934 (3)0.18727 (18)0.0341 (10)
O20.0812 (2)0.0784 (3)0.07987 (18)0.0428 (11)
O30.4292 (2)0.2568 (3)0.18483 (17)0.0367 (11)
O40.3822 (2)0.2938 (3)0.0798 (2)0.0637 (14)
N10.1558 (2)0.0794 (3)0.2596 (2)0.0224 (11)
N20.2899 (2)0.2593 (3)0.2538 (2)0.0213 (11)
N30.0155 (3)0.0787 (3)0.1349 (2)0.0293 (12)
N40.3605 (3)0.2822 (3)0.1335 (2)0.0349 (13)
C10.2376 (3)0.1133 (4)0.3184 (2)0.0227 (14)
C20.2623 (3)0.2320 (4)0.3147 (2)0.0234 (14)
C30.3509 (3)0.2620 (4)0.3748 (2)0.0212 (13)
C40.3212 (3)0.2395 (4)0.4389 (2)0.0263 (14)
C50.2907 (3)0.1241 (4)0.4418 (2)0.0283 (14)
C60.2043 (3)0.0915 (4)0.3808 (2)0.0219 (14)
C70.1741 (3)0.0554 (4)0.2005 (3)0.0195 (14)
C80.0941 (3)0.0568 (4)0.1390 (3)0.0244 (14)
C90.1182 (3)0.0397 (3)0.0787 (3)0.0248 (14)
C100.2195 (4)0.0147 (4)0.0777 (3)0.0325 (15)
C110.2972 (4)0.0066 (4)0.1367 (3)0.0305 (15)
C120.2767 (3)0.0263 (4)0.1961 (3)0.0253 (15)
C130.2224 (3)0.2896 (4)0.1960 (3)0.0203 (13)
C140.2540 (3)0.3003 (4)0.1367 (3)0.0219 (14)
C150.1811 (3)0.3276 (4)0.0765 (3)0.0294 (14)
C160.0777 (3)0.3478 (4)0.0739 (3)0.0307 (15)
C170.0464 (3)0.3407 (4)0.1318 (3)0.0266 (14)
C180.1153 (3)0.3127 (4)0.1906 (3)0.0254 (14)
O50.5095 (2)0.0850 (3)0.30688 (17)0.0296 (10)
O60.5671 (2)0.0848 (3)0.41390 (18)0.0415 (11)
O70.9749 (2)0.2546 (3)0.29533 (18)0.0350 (11)
O81.0252 (2)0.2997 (3)0.39799 (17)0.0442 (12)
N50.6430 (3)0.0703 (3)0.2333 (2)0.0230 (11)
N60.7745 (2)0.2553 (3)0.2315 (2)0.0237 (12)
N70.5837 (3)0.0761 (3)0.3592 (2)0.0269 (12)
N80.9540 (3)0.2818 (3)0.3474 (2)0.0299 (13)
C190.6707 (3)0.1031 (4)0.1734 (2)0.0191 (13)
C200.6915 (3)0.2228 (4)0.1734 (2)0.0230 (14)
C210.7222 (3)0.2526 (4)0.1105 (2)0.0230 (14)
C220.6342 (3)0.2244 (4)0.0494 (2)0.0278 (14)
C230.6088 (3)0.1071 (4)0.0496 (2)0.0281 (14)
C240.5809 (3)0.0754 (4)0.1126 (2)0.0239 (14)
C250.7146 (3)0.0511 (4)0.2936 (3)0.0205 (14)
C260.6895 (3)0.0560 (4)0.3547 (3)0.0207 (14)
C270.7663 (3)0.0433 (3)0.4147 (3)0.0296 (15)
C280.8681 (4)0.0229 (4)0.4156 (3)0.0323 (15)
C290.8946 (3)0.0138 (4)0.3561 (3)0.0311 (16)
C300.8210 (3)0.0270 (3)0.2973 (3)0.0230 (14)
C310.7611 (3)0.2838 (4)0.2900 (3)0.0226 (14)
C320.8450 (3)0.2950 (4)0.3485 (3)0.0211 (14)
C330.8279 (4)0.3155 (4)0.4103 (3)0.0270 (14)
C340.7284 (3)0.3330 (4)0.4165 (3)0.0302 (14)
C350.6436 (3)0.3301 (4)0.3583 (3)0.0302 (15)
C360.6593 (3)0.3073 (4)0.2987 (2)0.0240 (14)
H1N10.09040.07420.26270.027*
H1N20.35740.25550.25490.026*
H10.30370.07270.32050.014 (5)*
H20.19770.27280.31600.014 (5)*
H3A0.36690.33780.37260.022 (3)*
H3B0.41550.22190.37450.022 (3)*
H4A0.26100.28480.44150.022 (3)*
H4B0.38190.25610.47730.022 (3)*
H5A0.35400.07960.44540.022 (3)*
H5B0.26580.11220.48180.022 (3)*
H6A0.18930.01550.38340.022 (3)*
H6B0.13850.13080.37940.022 (3)*
H90.06410.04550.03830.028 (3)*
H100.23590.00320.03680.028 (3)*
H110.36670.01330.13600.028 (3)*
H120.33270.02050.23560.028 (3)*
H150.20390.33190.03720.028 (3)*
H160.02840.36640.03330.028 (3)*
H170.02500.35570.13060.028 (3)*
H180.09040.30870.22910.028 (3)*
H1N50.57540.06220.23070.028*
H1N60.83960.25610.22770.028*
H190.73610.06490.17080.014 (5)*
H200.62470.26060.17360.014 (5)*
H21A0.73630.32910.11070.022 (3)*
H21B0.78780.21510.10940.022 (3)*
H22A0.65640.24190.00900.022 (3)*
H22B0.57000.26600.04870.022 (3)*
H23A0.54870.09050.01090.022 (3)*
H23B0.67090.06590.04550.022 (3)*
H24A0.56740.00120.11200.022 (3)*
H24B0.51550.11220.11500.022 (3)*
H270.74720.04880.45520.028 (3)*
H280.92060.01490.45650.028 (3)*
H290.96560.00190.35650.028 (3)*
H300.84180.01990.25750.028 (3)*
H330.88640.31740.44860.028 (3)*
H340.71650.34670.45840.028 (3)*
H350.57390.34450.36110.028 (3)*
H360.59990.30690.26080.028 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0243 (19)0.052 (3)0.026 (3)0.0009 (16)0.0065 (17)0.007 (2)
O20.0281 (19)0.067 (3)0.026 (3)0.0057 (18)0.0057 (18)0.006 (2)
O30.0206 (18)0.060 (3)0.028 (3)0.0010 (18)0.0050 (17)0.005 (2)
O40.045 (2)0.124 (4)0.031 (3)0.020 (2)0.026 (2)0.022 (3)
N10.014 (2)0.033 (3)0.021 (3)0.0040 (18)0.007 (2)0.003 (2)
N20.013 (2)0.034 (3)0.020 (3)0.0014 (19)0.009 (2)0.005 (3)
N30.028 (3)0.027 (3)0.031 (4)0.000 (2)0.005 (2)0.005 (3)
N40.029 (3)0.048 (4)0.029 (4)0.001 (2)0.010 (3)0.004 (3)
C10.019 (3)0.029 (4)0.020 (4)0.007 (2)0.003 (3)0.000 (3)
C20.019 (3)0.030 (4)0.022 (4)0.008 (2)0.006 (2)0.000 (3)
C30.021 (3)0.023 (4)0.018 (4)0.000 (2)0.003 (2)0.005 (3)
C40.022 (3)0.037 (4)0.014 (4)0.003 (2)0.004 (2)0.002 (3)
C50.037 (3)0.024 (4)0.025 (4)0.001 (3)0.010 (3)0.003 (3)
C60.021 (3)0.021 (3)0.023 (4)0.001 (2)0.004 (2)0.003 (3)
C70.021 (3)0.016 (3)0.024 (4)0.003 (2)0.009 (3)0.004 (3)
C80.024 (3)0.027 (4)0.023 (4)0.001 (2)0.008 (3)0.003 (3)
C90.030 (3)0.020 (4)0.022 (4)0.003 (2)0.001 (3)0.003 (3)
C100.047 (3)0.024 (4)0.033 (5)0.000 (3)0.024 (3)0.004 (3)
C110.025 (3)0.028 (4)0.039 (5)0.003 (2)0.009 (3)0.013 (3)
C120.022 (3)0.026 (4)0.025 (4)0.001 (2)0.002 (3)0.009 (3)
C130.019 (3)0.021 (4)0.019 (4)0.000 (2)0.000 (2)0.002 (3)
C140.022 (3)0.021 (4)0.025 (4)0.004 (2)0.009 (3)0.003 (3)
C150.033 (3)0.038 (4)0.018 (4)0.002 (3)0.008 (3)0.001 (3)
C160.033 (3)0.031 (4)0.025 (4)0.001 (2)0.002 (3)0.002 (3)
C170.025 (3)0.025 (4)0.032 (4)0.005 (2)0.011 (3)0.003 (3)
C180.020 (3)0.026 (4)0.030 (4)0.006 (2)0.006 (3)0.003 (3)
O50.0246 (17)0.044 (3)0.019 (3)0.0006 (17)0.0038 (16)0.001 (2)
O60.042 (2)0.061 (3)0.027 (3)0.0044 (18)0.020 (2)0.003 (2)
O70.0224 (19)0.058 (3)0.027 (3)0.0009 (16)0.0102 (17)0.010 (2)
O80.0260 (19)0.071 (3)0.029 (3)0.0035 (18)0.0040 (18)0.019 (2)
N50.017 (2)0.035 (3)0.018 (3)0.0073 (19)0.007 (2)0.001 (3)
N60.015 (2)0.037 (3)0.019 (3)0.0035 (18)0.005 (2)0.002 (2)
N70.033 (3)0.026 (3)0.027 (4)0.003 (2)0.017 (2)0.003 (3)
N80.025 (3)0.031 (3)0.032 (4)0.003 (2)0.005 (2)0.004 (3)
C190.016 (2)0.019 (4)0.022 (4)0.000 (2)0.004 (2)0.003 (3)
C200.015 (3)0.037 (4)0.017 (4)0.002 (2)0.005 (2)0.004 (3)
C210.022 (3)0.026 (4)0.021 (4)0.001 (2)0.006 (2)0.003 (3)
C220.026 (3)0.039 (4)0.019 (4)0.004 (3)0.007 (2)0.008 (3)
C230.027 (3)0.037 (4)0.017 (4)0.001 (3)0.001 (2)0.001 (3)
C240.026 (3)0.023 (4)0.023 (4)0.002 (2)0.007 (3)0.003 (3)
C250.022 (3)0.015 (4)0.024 (4)0.003 (2)0.003 (3)0.001 (3)
C260.018 (3)0.025 (4)0.021 (4)0.002 (2)0.009 (3)0.003 (3)
C270.030 (3)0.033 (4)0.024 (4)0.003 (3)0.004 (3)0.004 (3)
C280.032 (3)0.042 (4)0.017 (4)0.002 (3)0.003 (3)0.002 (3)
C290.020 (3)0.034 (4)0.036 (5)0.005 (2)0.002 (3)0.004 (3)
C300.017 (3)0.023 (4)0.030 (4)0.001 (2)0.008 (3)0.001 (3)
C310.021 (3)0.025 (4)0.024 (4)0.005 (2)0.009 (3)0.004 (3)
C320.020 (3)0.025 (4)0.021 (4)0.002 (2)0.010 (3)0.001 (3)
C330.035 (3)0.024 (4)0.020 (4)0.006 (2)0.003 (3)0.004 (3)
C340.040 (3)0.033 (4)0.023 (4)0.003 (3)0.020 (3)0.012 (3)
C350.026 (3)0.034 (4)0.034 (4)0.006 (2)0.016 (3)0.004 (3)
C360.022 (3)0.029 (4)0.021 (4)0.001 (2)0.006 (2)0.002 (3)
Geometric parameters (Å, º) top
O1—N31.253 (5)O5—N71.261 (4)
O2—N31.240 (5)O6—N71.227 (5)
O3—N41.247 (5)O7—N81.244 (5)
O4—N41.242 (5)O8—N81.231 (4)
N1—C11.465 (5)N5—C191.459 (5)
N1—C71.357 (5)N5—C251.379 (5)
N1—H1N10.8800N5—H1N50.8800
N2—C21.459 (5)N6—C201.458 (5)
N2—C131.351 (5)N6—C311.334 (5)
N2—H1N20.8800N6—H1N60.8800
N3—C81.444 (5)N7—C261.437 (5)
N4—C141.435 (5)N8—C321.445 (5)
C1—C61.513 (6)C19—C241.525 (5)
C1—C21.549 (6)C19—C201.545 (6)
C1—H11.0000C19—H191.0000
C2—C31.515 (5)C20—C211.525 (6)
C2—H21.0000C20—H201.0000
C3—C41.523 (6)C21—C221.519 (5)
C3—H3A0.9900C21—H21A0.9900
C3—H3B0.9900C21—H21B0.9900
C4—C51.526 (5)C22—C231.529 (6)
C4—H4A0.9900C22—H22A0.9900
C4—H4B0.9900C22—H22B0.9900
C5—C61.520 (5)C23—C241.517 (6)
C5—H5A0.9900C23—H23A0.9900
C5—H5B0.9900C23—H23B0.9900
C6—H6A0.9900C24—H24A0.9900
C6—H6B0.9900C24—H24B0.9900
C7—C81.427 (6)C25—C261.407 (6)
C8—C91.400 (6)C26—C271.394 (6)
C9—C101.371 (5)C27—C281.355 (5)
C9—H90.9500C27—H270.9500
C10—C111.378 (6)C28—C291.388 (6)
C10—H100.9500C28—H280.9500
C11—C121.365 (6)C29—C301.355 (6)
C11—H110.9500C29—H290.9500
C12—C71.423 (5)C30—C251.410 (5)
C12—H120.9500C30—H300.9500
C13—C141.419 (6)C31—C321.417 (6)
C14—C151.407 (6)C32—C331.398 (6)
C15—C161.368 (5)C33—C341.364 (5)
C15—H150.9500C33—H330.9500
C16—C171.385 (6)C34—C351.413 (6)
C16—H160.9500C34—H340.9500
C17—C181.365 (6)C35—C361.351 (6)
C17—H170.9500C35—H350.9500
C18—C131.409 (5)C36—C311.427 (5)
C18—H180.9500C36—H360.9500
C1—N1—C7124.3 (4)C19—N5—C25125.0 (4)
C7—N1—H1N1117.8C25—N5—H1N5117.5
C1—N1—H1N1117.8C19—N5—H1N5117.5
C2—N2—C13126.5 (4)C20—N6—C31126.3 (4)
C13—N2—H1N2116.7C31—N6—H1N6116.8
C2—N2—H1N2116.7C20—N6—H1N6116.8
O1—N3—O2121.8 (4)O5—N7—O6121.0 (4)
O2—N3—C8119.1 (5)O6—N7—C26119.6 (4)
O1—N3—C8119.0 (4)O5—N7—C26119.4 (4)
O3—N4—O4121.7 (4)O7—N8—O8120.8 (4)
O4—N4—C14119.1 (5)O8—N8—C32119.3 (5)
O3—N4—C14119.2 (5)O7—N8—C32119.9 (4)
N1—C1—C6110.9 (4)N5—C19—C24109.7 (4)
N1—C1—C2111.2 (4)N5—C19—C20111.5 (4)
C6—C1—C2109.5 (4)C24—C19—C20108.9 (4)
N1—C1—H1108.4N5—C19—H19108.9
C6—C1—H1108.4C24—C19—H19108.9
C2—C1—H1108.4C20—C19—H19108.9
N2—C2—C3110.6 (4)N6—C20—C21110.0 (4)
N2—C2—C1112.3 (4)N6—C20—C19111.8 (4)
C3—C2—C1109.1 (4)C21—C20—C19109.4 (4)
N2—C2—H2108.2N6—C20—H20108.5
C3—C2—H2108.2C21—C20—H20108.5
C1—C2—H2108.2C19—C20—H20108.5
C2—C3—C4111.4 (4)C22—C21—C20110.7 (4)
C2—C3—H3A109.3C22—C21—H21A109.5
C4—C3—H3A109.3C20—C21—H21A109.5
C2—C3—H3B109.3C22—C21—H21B109.5
C4—C3—H3B109.3C20—C21—H21B109.5
H3A—C3—H3B108.0H21A—C21—H21B108.1
C3—C4—C5110.3 (4)C21—C22—C23110.1 (4)
C3—C4—H4A109.6C21—C22—H22A109.6
C5—C4—H4A109.6C23—C22—H22A109.6
C3—C4—H4B109.6C21—C22—H22B109.6
C5—C4—H4B109.6C23—C22—H22B109.6
H4A—C4—H4B108.1H22A—C22—H22B108.1
C6—C5—C4111.9 (4)C24—C23—C22111.4 (4)
C6—C5—H5A109.2C24—C23—H23A109.3
C4—C5—H5A109.2C22—C23—H23A109.3
C6—C5—H5B109.2C24—C23—H23B109.3
C4—C5—H5B109.2C22—C23—H23B109.3
H5A—C5—H5B107.9H23A—C23—H23B108.0
C1—C6—C5110.7 (4)C23—C24—C19110.7 (4)
C1—C6—H6A109.5C23—C24—H24A109.5
C5—C6—H6A109.5C19—C24—H24A109.5
C1—C6—H6B109.5C23—C24—H24B109.5
C5—C6—H6B109.5C19—C24—H24B109.5
H6A—C6—H6B108.1H24A—C24—H24B108.1
N1—C7—C12121.4 (5)N5—C25—C26123.9 (4)
N1—C7—C8123.6 (4)N5—C25—C30120.6 (5)
C8—C7—C12115.0 (5)C26—C25—C30115.4 (5)
C7—C8—C9121.7 (4)C25—C26—C27121.8 (5)
C7—C8—N3122.3 (5)C25—C26—N7122.3 (5)
C9—C8—N3116.0 (5)C27—C26—N7115.9 (5)
C10—C9—C8120.2 (5)C28—C27—C26120.4 (5)
C10—C9—H9119.9C28—C27—H27119.8
C8—C9—H9119.9C26—C27—H27119.8
C9—C10—C11119.3 (5)C27—C28—C29119.2 (5)
C9—C10—H10120.3C27—C28—H28120.4
C11—C10—H10120.3C29—C28—H28120.4
C12—C11—C10121.7 (5)C30—C29—C28121.1 (5)
C12—C11—H11119.2C30—C29—H29119.4
C10—C11—H11119.2C28—C29—H29119.4
C11—C12—C7121.9 (5)C29—C30—C25122.0 (5)
C11—C12—H12119.0C29—C30—H30119.0
C7—C12—H12119.0C25—C30—H30119.0
N2—C13—C18122.1 (5)N6—C31—C32124.0 (4)
N2—C13—C14122.5 (4)N6—C31—C36122.1 (4)
C14—C13—C18115.4 (5)C32—C31—C36113.9 (5)
C13—C14—C15121.4 (4)C31—C32—C33122.7 (4)
C13—C14—N4122.9 (5)C31—C32—N8121.0 (5)
C15—C14—N4115.6 (5)C33—C32—N8116.3 (4)
C16—C15—C14120.6 (5)C34—C33—C32120.9 (5)
C16—C15—H15119.7C34—C33—H33119.5
C14—C15—H15119.7C32—C33—H33119.5
C15—C16—C17118.5 (5)C33—C34—C35117.8 (5)
C15—C16—H16120.7C33—C34—H34121.1
C17—C16—H16120.7C35—C34—H34121.1
C18—C17—C16121.9 (5)C36—C35—C34121.6 (4)
C18—C17—H17119.1C36—C35—H35119.2
C16—C17—H17119.1C34—C35—H35119.2
C17—C18—C13122.1 (5)C35—C36—C31122.8 (5)
C17—C18—H18119.0C35—C36—H36118.6
C13—C18—H18119.0C31—C36—H36118.6
C7—N1—C1—C6156.9 (4)C25—N5—C19—C24157.7 (4)
C7—N1—C1—C281.0 (5)C25—N5—C19—C2081.5 (5)
C13—N2—C2—C3147.7 (4)C31—N6—C20—C21149.7 (5)
C13—N2—C2—C190.1 (5)C31—N6—C20—C1988.6 (6)
N1—C1—C2—N254.2 (5)N5—C19—C20—N656.9 (5)
C6—C1—C2—N2177.1 (4)C24—C19—C20—N6178.1 (4)
N1—C1—C2—C3177.3 (4)N5—C19—C20—C21178.9 (3)
C6—C1—C2—C359.8 (5)C24—C19—C20—C2159.8 (5)
N2—C2—C3—C4177.0 (4)N6—C20—C21—C22177.1 (4)
C1—C2—C3—C459.0 (5)C19—C20—C21—C2259.8 (5)
C2—C3—C4—C556.1 (5)C20—C21—C22—C2357.3 (5)
C3—C4—C5—C654.1 (5)C21—C22—C23—C2455.8 (5)
N1—C1—C6—C5178.4 (4)C22—C23—C24—C1957.2 (5)
C2—C1—C6—C558.5 (5)N5—C19—C24—C23179.0 (4)
C4—C5—C6—C156.3 (5)C20—C19—C24—C2358.7 (5)
C1—N1—C7—C1221.9 (7)C19—N5—C25—C26156.7 (5)
C1—N1—C7—C8158.2 (4)C19—N5—C25—C3021.8 (7)
N1—C7—C8—C9174.8 (5)N5—C25—C26—C27175.4 (4)
C12—C7—C8—C95.4 (7)C30—C25—C26—C273.2 (7)
N1—C7—C8—N33.4 (8)N5—C25—C26—N73.7 (7)
C12—C7—C8—N3176.4 (4)C30—C25—C26—N7177.8 (4)
O2—N3—C8—C91.9 (7)O6—N7—C26—C272.8 (7)
O1—N3—C8—C9179.2 (4)O5—N7—C26—C27177.7 (4)
O1—N3—C8—C72.5 (7)O5—N7—C26—C253.2 (7)
O2—N3—C8—C7179.8 (5)O6—N7—C26—C25176.3 (5)
C7—C8—C9—C104.0 (7)C25—C26—C27—C281.6 (7)
N3—C8—C9—C10177.7 (4)N7—C26—C27—C28179.2 (4)
C8—C9—C10—C110.0 (7)C26—C27—C28—C290.7 (7)
C9—C10—C11—C122.3 (8)C27—C28—C29—C301.3 (8)
C10—C11—C12—C70.6 (8)C28—C29—C30—C250.4 (8)
N1—C7—C12—C11177.0 (5)N5—C25—C30—C29176.1 (4)
C8—C7—C12—C113.1 (7)C26—C25—C30—C292.5 (7)
C2—N2—C13—C189.0 (7)C20—N6—C31—C32167.2 (4)
C2—N2—C13—C14170.9 (4)C20—N6—C31—C3613.6 (8)
N2—C13—C14—C15177.1 (4)N6—C31—C32—C33173.9 (5)
C18—C13—C14—C152.8 (7)C36—C31—C32—C336.8 (7)
N2—C13—C14—N41.5 (7)N6—C31—C32—N83.8 (7)
C18—C13—C14—N4178.6 (4)C36—C31—C32—N8175.4 (4)
O4—N4—C14—C151.8 (7)O8—N8—C32—C337.4 (6)
O3—N4—C14—C15179.4 (4)O7—N8—C32—C33174.0 (5)
O3—N4—C14—C130.7 (7)O7—N8—C32—C314.0 (7)
O4—N4—C14—C13179.5 (5)O8—N8—C32—C31174.7 (5)
C13—C14—C15—C162.1 (8)C31—C32—C33—C344.5 (8)
N4—C14—C15—C16179.2 (4)N8—C32—C33—C34177.6 (4)
C14—C15—C16—C170.1 (7)C32—C33—C34—C350.3 (7)
C15—C16—C17—C181.0 (8)C33—C34—C35—C362.2 (8)
C16—C17—C18—C130.1 (8)C34—C35—C36—C310.6 (8)
N2—C13—C18—C17178.2 (5)N6—C31—C36—C35175.9 (5)
C14—C13—C18—C171.7 (7)C32—C31—C36—C354.9 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11N···O10.882.032.638 (5)126
N2—H12N···O30.881.952.617 (4)132
N5—H15N···O50.882.032.632 (5)125
N6—H16N···O70.881.952.609 (4)131
C12—H12···O50.952.533.385 (6)149
C18—H18···O7i0.952.413.306 (6)156
C30—H30···O1ii0.952.563.386 (6)146
C36—H36···O30.952.463.368 (5)160
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC18H20N4O4
Mr356.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)13.114 (1), 12.7121 (19), 20.959 (3)
β (°) 105.594 (7)
V3)3365.3 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.03 × 0.02
Data collection
DiffractometerKappa-CCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995, 1997)
Tmin, Tmax0.970, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
19380, 6356, 1853
Rint0.107
(sin θ/λ)max1)0.614
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.140, 0.86
No. of reflections6356
No. of parameters472
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.41

Computer programs: Kappa-CCD server software (Nonius, 1997), DENZO (Otwinowski & Minor, 1997), DENZO, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1999), SHELXL97 and WORDPERFECT macro PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) top
O1—N31.253 (5)O5—N71.261 (4)
O2—N31.240 (5)O6—N71.227 (5)
O3—N41.247 (5)O7—N81.244 (5)
O4—N41.242 (5)O8—N81.231 (4)
N1—C11.465 (5)N5—C191.459 (5)
N1—C71.357 (5)N5—C251.379 (5)
N2—C21.459 (5)N6—C201.458 (5)
N2—C131.351 (5)N6—C311.334 (5)
N3—C81.444 (5)N7—C261.437 (5)
N4—C141.435 (5)N8—C321.445 (5)
C1—N1—C7124.3 (4)C19—N5—C25125.0 (4)
C2—N2—C13126.5 (4)C20—N6—C31126.3 (4)
O1—N3—O2121.8 (4)O5—N7—O6121.0 (4)
O3—N4—O4121.7 (4)O7—N8—O8120.8 (4)
C8—C7—C12115.0 (5)C26—C25—C30115.4 (5)
C7—C8—N3122.3 (5)C25—C26—N7122.3 (5)
C9—C8—N3116.0 (5)C27—C26—N7115.9 (5)
C14—C13—C18115.4 (5)C32—C31—C36113.9 (5)
C13—C14—N4122.9 (5)C31—C32—N8121.0 (5)
C15—C14—N4115.6 (5)C33—C32—N8116.3 (4)
N1—C1—C2—N254.2 (5)N5—C19—C20—N656.9 (5)
O1—N3—C8—C72.5 (7)O5—N7—C26—C253.2 (7)
O2—N3—C8—C7179.8 (5)O6—N7—C26—C25176.3 (5)
O3—N4—C14—C130.7 (7)O7—N8—C32—C314.0 (7)
O4—N4—C14—C13179.5 (5)O8—N8—C32—C31174.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11N···O10.882.032.638 (5)126
N2—H12N···O30.881.952.617 (4)132
N5—H15N···O50.882.032.632 (5)125
N6—H16N···O70.881.952.609 (4)131
C12—H12···O50.952.533.385 (6)149
C18—H18···O7i0.952.413.306 (6)156
C30—H30···O1ii0.952.563.386 (6)146
C36—H36···O30.952.463.368 (5)160
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds