Download citation
Download citation
link to html
The crystal and molecular structures of two phenanthroline hydro­chlorides have been determined at 173 K. 1,10-Phenanthrolin-1-ium chloride, C12H9N2+·Cl-, crystallizes in two stacks of exactly planar mol­ecules. Both stacks are approximately parallel to the (\bar{2}02) plane and the planes composing the different stacks enclose an angle of 13.29 (3)°. Tris(1,10-phenanthrolin-1-ium) dichloride (hydrogen chloride) chloride chloro­form solvate, 3C12H9N2+·2Cl-·HCl·Cl-·CHCl3, displays an interesting network of Cl- mediated hydrogen bonds between the two different phenanthrolinium moieties and between a phenanthrolinium and the chloro­form solvate. In addition, a hydrogen bond between the HCl and the third Cl- ion is formed. The C-N-C angle at the protonated N atoms is, in all phenanthrolinium units of both structures, significantly larger than the C-N-C angle at the non-protonated N atom.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199013815/sk1328sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199013815/sk1328Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199013815/sk1328IIsup3.hkl
Contains datablock II

CCDC references: 142756; 142757

Comment top

As a Lewis acid, trichloromethylsilane forms a complex with the Lewis bases 3,4-dimethylpyridine (Hensen et al., 1990) and 3,5-dimethylpyridine (Hensen et al., 1989; Burger et al., 1992). According to the result of Kummer (1977), who prepared bis-phenanthroline-complexes of diiodosilanes with different substituents, we tried to synthesize a complex of MeSiCl3 with the Lewis base 1,10-phenanthroline. The two obtained structures, however, are products of hydrolyses of a mixture of methyltrichlorosilane and 1,10-phenanthroline.

1,10-Phenanthrolin-1-ium chloride, (I) (Fig. 1), is the first structure of the pure 1:1 compound between 1,10-phenanthroline and HCl. It consists of a protonated phenanthroline molecule and a chloride ion. Bond lengths and angles are in the usual ranges, compared with similar structures retrieved from the Cambridge Crystallographic Database (Version 5.16, October 1998; Allen & Kennard, 1993). The finding of Hensen et al. (1998) that the C—N—C angle at the protonated N atom is significantly larger [C14—N1—C2 123.1 (4)°] than at the non-protonated N atom [C11—N12—C13 116.1 (3)°] is confirmed with this structure. The phenanthroline moiety is essentially planar and the chloride ion which is hydrogen bonded to N1 deviates by only 0.400 (4) Å from this plane. Three further short Cl···H contacts to aromatic hydrogen atoms are found, so that the Cl ion is approximately tetrahedrally coordinated. The phenanthroline moieties crystallize in stacks of exactly coplanar molecules, but two differently oriented stacks can be identified (Fig. 2). Although the layers in both stacks are formed approximately parallel to the ¯(202) plane, these two layers are tilted by an angle of 13.29 (3)° respective to each other.

The crystal structure of tris(1,10-phenanthrolin-1-ium) dichloride (hydrogen chloride) chloride chloroform solvate, (II) (Fig. 3), consists of three discrete protonated phenanthroline molecules, three chloride ions, a HCl molecule and a chloroform solvate. Bond lengths and angles of the phenanthrolinium units are in the usual ranges, compared with similar structures retrieved from the Cambridge Crystallographic Database (Version 5.16, October 1998; Allen & Kennard, 1993), and the C—N—C angles show the values in the same range as already found for (I). In contrast to other structures [C12H9N2+·NO3·C12H8N2·H2O (Thevenet & Rodier, 1981), C24H17N4+·ClO4 (Maresca et al., 1989), C12H9N2+·C5H10I2NS2Te·C12H8N2 and C12H9N2+·C5H10Br2NS2Te·C12H8N2 (Krishnakumar et al., 1996) and C12H9N2+·Cl·2C12H8N2 (Hensen et al., 1998)] the protonated phenanthrolines do not form a hydrogen bond to a second phenanthroline. Two phenanthrolinium molecules form a hydrogen bond to the same Cl ion, namely Cl1. The third phenanthrolinium and the chloroform are both connected via hydrogen bonds to Cl2, whereas the third Cl ion, Cl3, forms a hydrogen bond to the HCl molecule. It might be surprising that the Cl is protonated and not an additional nitrogen of the phenanthrolines, because Cl (pKa = −6) is a weaker base than phenanthroline (pKa = 4.48). However, a comparable structural motif was found 30 times in the Cambridge Structural Database (Version 5.16, October 1998; Allen & Kennard, 1993) with the following mean geometric parameters: Cl—H 1.3 (2) Å, H···Cl 2.1 (2) Å, Cl—H···Cl 166 (16)° Cl···Cl 3.3 (2) Å. Compared with the mean values extracted from the data base, the distances between the two Cl atoms and the hydrogen bridging them are more equal in (II), but since the determination of H atoms by means of X-ray structure analysis is a difficult chapter, we do not want to overemphasize this point. Furthermore, the Cl···Cl distance in (II) is slightly shorter than the mean distance in the database structures, but this might be partially due to the fact that (II) was measured at low temperature. The geometric parameters of all these hydrogen bonds are summarized in Table 4. The sum of the bond angles at all protonated nitrogen atoms in both structures is exactly 360°. Furthermore, the crystal packing is stabilized by several short Cl···H—C contacts. The phenanthrolinium molecules of (II) also form stacks. One is built up by exactly coplanar layers of the phenanthrolinium which is hydrogen bonded to the chloroform solvate. The other one is formed by intermittant layers [tilted by 5.1 (1)° against each other] of the remaining two phenanthroline units. Furthermore, there is a short Cl···Cl distance, Cl13···Cl2(x, 1 + y,z) 3.300 (1) Å.

Experimental top

Preparation of (I): methyltrichlorosilane (1 mmol) and 1,10-phenanthroline (2 mmol) were mixed. The mixture was heated above the melting point of phenanthroline (390 K). During cooling to 298 K a white solid precipitated. The clear solution was removed by a syringe. The solid was dried in vacuo (2–3 mbar for 8 h), the powder was transferred into a glove box under nitrogen. Crystals of (I) were obtained by sublimation at (2–3 mbar; 1 mbar = 100 Pa) and 315 K.

Preparation of (II): methyltrichlorosilane (1 mmol) was dissolved in 20 ml CHCl3. During continuous stirring, a solution of 1,10-phenanthroline (2 mmol) in chloroform was added. The solvent was slowly removed in vacuo (2–3 mbar) at 300 K. Crystals were obtained after a few days.

Refinement top

All H atoms were located by difference Fourier synthesis and the H atoms bonded to carbon were refined with fixed individual displacement parameters [U(H) = 1.2 Ueq(C)] using a riding model with C—H(aromatic) = 0.95 or C—H(tertiary) = 1.00, respectively. H atoms bonded to N and Cl were refined freely.

Computing details top

Data collection: SMART (Siemens, 1995) for (I); SMART (Siemens, 1994) for (II). For both compounds, cell refinement: SMART. Data reduction: SAINT (Siemens, 1995) for (I); SAINT (Siemens, 1994) for (II). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994).

Figures top
[Figure 1] Fig. 1. Perspective view of (I) with the atom numbering; displacement ellipsoids are at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of (I); hydrogen atoms omitted.
[Figure 3] Fig. 3. Perspective view of (II) with the atom numbering; displacement ellipsoids are at the 50% probability level.
(I) top
Crystal data top
C12H9N2+·ClF(000) = 448
Mr = 216.66Dx = 1.385 Mg m3
Dm = N/A Mg m3
Dm measured by not measured
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.877 (1) ÅCell parameters from 1982 reflections
b = 9.787 (1) Åθ = 1.0–25.0°
c = 15.547 (2) ŵ = 0.33 mm1
β = 96.91 (2)°T = 173 K
V = 1038.8 (2) Å3Plate, colourless
Z = 40.25 × 0.20 × 0.10 mm
Data collection top
Siemens CCD three circle
diffractometer
1884 independent reflections
Radiation source: fine-focus sealed tube1093 reflections with I > 2σ(I)
Highly oriented graphite crystal monochromatorRint = 0.083
ω scansθmax = 26.0°, θmin = 2.5°
Absorption correction: empirical
SADABS (Sheldrick, 1996)
h = 88
Tmin = 0.922, Tmax = 0.968k = 1011
7686 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.6383P]
where P = (Fo2 + 2Fc2)/3
1884 reflections(Δ/σ)max < 0.001
140 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C12H9N2+·ClV = 1038.8 (2) Å3
Mr = 216.66Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.877 (1) ŵ = 0.33 mm1
b = 9.787 (1) ÅT = 173 K
c = 15.547 (2) Å0.25 × 0.20 × 0.10 mm
β = 96.91 (2)°
Data collection top
Siemens CCD three circle
diffractometer
1884 independent reflections
Absorption correction: empirical
SADABS (Sheldrick, 1996)
1093 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.968Rint = 0.083
7686 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.56 e Å3
1884 reflectionsΔρmin = 0.31 e Å3
140 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The data collection nominally covered a sphere of reciprocal space, by a combination of six [for (I)] and seven [for (II)] sets of exposures; each set had a different ϕ angle for the crystal and each exposure covered 0.3° in ω. The crystal-to-detector distance was 6.0 cm. Coverage of the unique set is over 97% complete to at least 25° in θ [for (I)] and to 26.4° [for (II)]. Crystal decay was monitored by repeating the initial frames at the end of data collection and analyzing the duplicate reflections.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.31541 (18)0.05264 (11)0.37599 (6)0.0564 (4)
N10.2924 (4)0.2822 (3)0.5009 (2)0.0342 (8)
H10.275 (6)0.239 (4)0.446 (3)0.066 (14)*
C20.3453 (6)0.2038 (5)0.5697 (2)0.0453 (11)
H20.36230.10820.56300.054*
C30.3757 (6)0.2635 (5)0.6517 (3)0.0505 (13)
H30.41050.20820.70140.061*
C40.3556 (6)0.4011 (6)0.6606 (3)0.0519 (13)
H40.37720.44160.71640.062*
C50.3034 (5)0.4829 (5)0.5880 (3)0.0418 (11)
C60.2845 (6)0.6278 (5)0.5927 (3)0.0550 (13)
H60.30780.67230.64730.066*
C70.2336 (6)0.7028 (5)0.5202 (3)0.0538 (13)
H70.22330.79920.52490.065*
C80.1953 (5)0.6404 (4)0.4376 (3)0.0406 (11)
C90.1382 (6)0.7142 (4)0.3612 (3)0.0499 (12)
H90.12610.81080.36310.060*
C100.1003 (6)0.6471 (4)0.2845 (3)0.0467 (12)
H100.05770.69550.23280.056*
C110.1253 (5)0.5058 (4)0.2833 (3)0.0407 (11)
H110.10080.46060.22900.049*
N120.1805 (4)0.4303 (3)0.35232 (19)0.0358 (8)
C130.2125 (5)0.4983 (4)0.4292 (2)0.0320 (9)
C140.2694 (5)0.4212 (4)0.5061 (2)0.0340 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0929 (10)0.0341 (6)0.0378 (6)0.0029 (6)0.0099 (5)0.0012 (6)
N10.032 (2)0.039 (2)0.0319 (19)0.0022 (16)0.0022 (15)0.0001 (17)
C20.041 (3)0.056 (3)0.039 (2)0.006 (2)0.0047 (19)0.010 (2)
C30.033 (3)0.084 (4)0.034 (2)0.010 (3)0.0010 (18)0.010 (3)
C40.035 (3)0.084 (4)0.036 (2)0.011 (2)0.0046 (19)0.017 (2)
C50.024 (2)0.061 (3)0.040 (3)0.010 (2)0.0049 (18)0.018 (2)
C60.035 (3)0.067 (4)0.064 (3)0.010 (3)0.011 (2)0.035 (3)
C70.037 (3)0.040 (3)0.084 (4)0.004 (2)0.010 (3)0.031 (3)
C80.026 (2)0.033 (3)0.064 (3)0.0056 (19)0.010 (2)0.012 (2)
C90.031 (3)0.031 (3)0.088 (4)0.004 (2)0.006 (2)0.001 (3)
C100.035 (3)0.037 (3)0.067 (3)0.001 (2)0.002 (2)0.020 (2)
C110.036 (2)0.036 (3)0.049 (3)0.0033 (19)0.001 (2)0.001 (2)
N120.0335 (19)0.037 (2)0.0369 (18)0.0010 (16)0.0038 (15)0.0051 (17)
C130.023 (2)0.033 (2)0.040 (2)0.0038 (17)0.0029 (17)0.0046 (18)
C140.019 (2)0.039 (3)0.045 (2)0.0046 (18)0.0085 (17)0.009 (2)
Geometric parameters (Å, º) top
N1—C21.331 (5)C7—C81.418 (5)
N1—C141.373 (5)C8—C131.404 (5)
C2—C31.395 (6)C8—C91.405 (6)
C3—C41.363 (6)C9—C101.358 (6)
C4—C51.394 (6)C10—C111.394 (6)
C5—C141.404 (5)C11—N121.321 (5)
C5—C61.427 (6)N12—C131.362 (5)
C6—C71.355 (6)C13—C141.428 (5)
C2—N1—C14123.1 (4)C9—C8—C7123.2 (4)
N1—C2—C3119.3 (4)C10—C9—C8119.9 (4)
C4—C3—C2120.0 (4)C9—C10—C11118.8 (4)
C3—C4—C5120.3 (4)N12—C11—C10124.6 (4)
C4—C5—C14119.0 (4)C11—N12—C13116.1 (3)
C4—C5—C6123.1 (4)N12—C13—C8124.0 (4)
C14—C5—C6117.9 (4)N12—C13—C14118.4 (3)
C7—C6—C5120.8 (4)C8—C13—C14117.6 (4)
C6—C7—C8121.4 (4)N1—C14—C5118.2 (4)
C13—C8—C9116.6 (4)N1—C14—C13119.7 (3)
C13—C8—C7120.2 (4)C5—C14—C13122.1 (4)
C14—N1—C2—C31.3 (6)C11—N12—C13—C14179.0 (3)
N1—C2—C3—C41.5 (6)C9—C8—C13—N121.1 (6)
C2—C3—C4—C50.4 (6)C7—C8—C13—N12179.3 (3)
C3—C4—C5—C140.9 (6)C9—C8—C13—C14179.7 (3)
C3—C4—C5—C6178.5 (4)C7—C8—C13—C140.1 (5)
C4—C5—C6—C7179.9 (4)C2—N1—C14—C50.0 (5)
C14—C5—C6—C70.5 (6)C2—N1—C14—C13179.9 (3)
C5—C6—C7—C80.7 (6)C4—C5—C14—N11.1 (5)
C6—C7—C8—C130.9 (6)C6—C5—C14—N1178.3 (3)
C6—C7—C8—C9178.6 (4)C4—C5—C14—C13179.0 (4)
C13—C8—C9—C100.9 (6)C6—C5—C14—C131.6 (5)
C7—C8—C9—C10178.7 (4)N12—C13—C14—N10.7 (5)
C8—C9—C10—C112.0 (6)C8—C13—C14—N1178.6 (3)
C9—C10—C11—N121.3 (6)N12—C13—C14—C5179.4 (3)
C10—C11—N12—C130.6 (5)C8—C13—C14—C51.4 (5)
C11—N12—C13—C81.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.95 (4)2.16 (4)2.986 (4)145 (4)
C2—H2···Cl1i0.952.793.462 (4)128
C4—H4···Cl1ii0.952.573.424 (4)150
C9—H9···Cl1iii0.952.703.527 (4)146
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y+1, z.
(II) top
Crystal data top
3C12H9N2+·2Cl·HCl·Cl·CHCl3F(000) = 1648
Mr = 805.81Dx = 1.464 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 26.017 (3) ÅCell parameters from 8192 reflections
b = 7.222 (1) Åθ = 1–25°
c = 19.461 (2) ŵ = 0.58 mm1
β = 90.77 (1)°T = 173 K
V = 3656.3 (8) Å3Plate, colourless
Z = 40.46 × 0.34 × 0.18 mm
Data collection top
Siemens CCD three-circle
diffractometer
7983 independent reflections
Radiation source: fine-focus sealed tube5433 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ω scansθmax = 27.9°, θmin = 2.1°
Absorption correction: empirical
SADABS (Sheldrick, 1996)
h = 3232
Tmin = 0.776, Tmax = 0.903k = 99
52608 measured reflectionsl = 2524
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0279P)2 + 2.6109P]
where P = (Fo2 + 2Fc2)/3
7983 reflections(Δ/σ)max = 0.002
467 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
3C12H9N2+·2Cl·HCl·Cl·CHCl3V = 3656.3 (8) Å3
Mr = 805.81Z = 4
Monoclinic, P21/cMo Kα radiation
a = 26.017 (3) ŵ = 0.58 mm1
b = 7.222 (1) ÅT = 173 K
c = 19.461 (2) Å0.46 × 0.34 × 0.18 mm
β = 90.77 (1)°
Data collection top
Siemens CCD three-circle
diffractometer
7983 independent reflections
Absorption correction: empirical
SADABS (Sheldrick, 1996)
5433 reflections with I > 2σ(I)
Tmin = 0.776, Tmax = 0.903Rint = 0.058
52608 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.27 e Å3
7983 reflectionsΔρmin = 0.28 e Å3
467 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.67394 (9)0.3968 (3)0.75826 (10)0.0290 (5)
H10.6423 (10)0.409 (4)0.7657 (13)0.039 (8)*
C10.70605 (10)0.4347 (4)0.81055 (12)0.0335 (6)
H1A0.69260.47140.85360.040*
C20.75904 (10)0.4208 (4)0.80262 (13)0.0371 (6)
H20.78180.44760.83980.044*
C30.77771 (10)0.3675 (4)0.73978 (13)0.0358 (6)
H3A0.81380.35860.73350.043*
C40.74401 (9)0.3259 (3)0.68459 (12)0.0302 (6)
C50.76184 (10)0.2664 (4)0.61825 (13)0.0374 (6)
H5A0.79770.25280.61090.045*
C60.72817 (10)0.2299 (4)0.56638 (13)0.0365 (6)
H60.74080.19040.52320.044*
C70.67352 (10)0.2496 (3)0.57518 (12)0.0298 (6)
C80.63744 (10)0.2128 (3)0.52182 (12)0.0353 (6)
H80.64870.17440.47780.042*
C90.58573 (10)0.2333 (4)0.53437 (12)0.0363 (6)
H90.56090.20900.49930.044*
C100.57028 (10)0.2910 (4)0.60013 (12)0.0354 (6)
H100.53450.30440.60790.042*
N20.60266 (7)0.3282 (3)0.65236 (10)0.0302 (5)
C110.65390 (9)0.3063 (3)0.63960 (11)0.0264 (5)
C120.69029 (9)0.3426 (3)0.69481 (12)0.0267 (5)
N30.47600 (8)0.4367 (3)0.78823 (10)0.0270 (5)
H30.4991 (10)0.425 (4)0.8197 (13)0.032 (7)*
C210.49118 (9)0.5005 (3)0.72722 (12)0.0305 (6)
H210.52660.52430.71970.037*
C220.45536 (9)0.5319 (3)0.67478 (12)0.0316 (6)
H220.46600.57850.63160.038*
C230.40413 (9)0.4945 (3)0.68635 (12)0.0307 (6)
H230.37930.51680.65100.037*
C240.38837 (9)0.4233 (3)0.75018 (11)0.0259 (5)
C250.33535 (9)0.3823 (3)0.76522 (12)0.0298 (6)
H250.30960.39890.73060.036*
C260.32193 (9)0.3201 (3)0.82843 (12)0.0300 (6)
H260.28680.29440.83730.036*
C270.35977 (8)0.2921 (3)0.88227 (11)0.0257 (5)
C280.34683 (9)0.2341 (3)0.94941 (12)0.0320 (6)
H280.31210.20790.96050.038*
C290.38523 (10)0.2162 (4)0.99822 (13)0.0374 (6)
H290.37740.17941.04380.045*
C300.43631 (10)0.2532 (4)0.97970 (13)0.0400 (7)
H300.46230.23971.01420.048*
N40.45087 (7)0.3059 (3)0.91730 (10)0.0330 (5)
C310.41235 (8)0.3273 (3)0.86944 (11)0.0248 (5)
C320.42588 (8)0.3945 (3)0.80225 (12)0.0244 (5)
N50.98791 (8)0.3167 (3)0.60652 (9)0.0247 (4)
H50.9611 (9)0.352 (3)0.6273 (12)0.030 (7)*
C411.02952 (9)0.2931 (3)0.64643 (12)0.0299 (6)
H411.02780.31650.69440.036*
C421.07568 (9)0.2340 (4)0.61754 (12)0.0334 (6)
H421.10540.21640.64580.040*
C431.07775 (9)0.2014 (3)0.54782 (12)0.0298 (5)
H431.10920.16450.52780.036*
C441.03312 (8)0.2226 (3)0.50592 (11)0.0245 (5)
C451.03239 (9)0.1868 (3)0.43322 (12)0.0294 (5)
H451.06310.14920.41140.035*
C460.98869 (9)0.2056 (3)0.39518 (12)0.0293 (5)
H460.98920.17950.34740.035*
C470.94148 (9)0.2646 (3)0.42619 (11)0.0243 (5)
C480.89476 (9)0.2859 (4)0.38838 (12)0.0320 (6)
H480.89310.25620.34090.038*
C490.85202 (9)0.3501 (4)0.42166 (12)0.0339 (6)
H490.82050.36610.39730.041*
C500.85548 (9)0.3920 (4)0.49235 (12)0.0317 (6)
H500.82570.43890.51400.038*
N60.89790 (7)0.3699 (3)0.53073 (9)0.0269 (4)
C510.94038 (8)0.3068 (3)0.49759 (11)0.0216 (5)
C520.98720 (8)0.2823 (3)0.53726 (11)0.0216 (5)
Cl10.58166 (2)0.49634 (9)0.85282 (3)0.03607 (16)
Cl20.92728 (2)0.47185 (9)0.72848 (3)0.03194 (15)
Cl31.28210 (2)0.51611 (10)0.59651 (3)0.04031 (17)
Cl41.22226 (3)0.16575 (10)0.54186 (3)0.04516 (18)
H41.2497 (12)0.330 (5)0.5704 (16)0.086 (11)*
C1L0.85087 (9)0.8395 (4)0.70304 (12)0.0304 (6)
H1L0.87250.72920.71470.037*
Cl110.82194 (2)0.80530 (10)0.62080 (3)0.03980 (17)
Cl120.80329 (2)0.86691 (10)0.76726 (3)0.03851 (17)
Cl130.89046 (2)1.03978 (10)0.70288 (3)0.04006 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0290 (12)0.0289 (12)0.0291 (11)0.0010 (10)0.0024 (9)0.0021 (9)
C10.0408 (15)0.0310 (15)0.0287 (13)0.0027 (12)0.0011 (11)0.0023 (11)
C20.0380 (15)0.0350 (15)0.0380 (15)0.0042 (12)0.0042 (12)0.0031 (12)
C30.0308 (14)0.0311 (15)0.0455 (16)0.0006 (11)0.0001 (12)0.0067 (13)
C40.0323 (13)0.0221 (13)0.0362 (13)0.0022 (11)0.0056 (11)0.0065 (11)
C50.0340 (14)0.0369 (16)0.0414 (15)0.0092 (12)0.0095 (12)0.0068 (13)
C60.0413 (15)0.0345 (15)0.0338 (14)0.0109 (12)0.0115 (12)0.0028 (12)
C70.0423 (15)0.0210 (13)0.0263 (12)0.0033 (11)0.0048 (11)0.0026 (10)
C80.0525 (17)0.0262 (14)0.0273 (13)0.0052 (13)0.0030 (12)0.0006 (11)
C90.0450 (16)0.0338 (15)0.0298 (13)0.0021 (13)0.0063 (12)0.0003 (12)
C100.0346 (14)0.0364 (16)0.0350 (14)0.0019 (12)0.0005 (11)0.0025 (12)
N20.0315 (11)0.0295 (12)0.0296 (11)0.0016 (9)0.0000 (9)0.0018 (9)
C110.0316 (13)0.0193 (12)0.0282 (12)0.0026 (10)0.0025 (10)0.0041 (10)
C120.0351 (13)0.0176 (12)0.0275 (12)0.0010 (10)0.0032 (10)0.0039 (10)
N30.0234 (11)0.0275 (12)0.0301 (11)0.0020 (9)0.0011 (9)0.0026 (9)
C210.0291 (13)0.0266 (14)0.0360 (14)0.0001 (11)0.0096 (10)0.0045 (11)
C220.0383 (14)0.0297 (14)0.0270 (13)0.0002 (11)0.0058 (11)0.0027 (11)
C230.0347 (14)0.0304 (14)0.0270 (12)0.0022 (12)0.0007 (10)0.0052 (11)
C240.0274 (12)0.0222 (13)0.0281 (12)0.0019 (10)0.0013 (10)0.0069 (10)
C250.0244 (12)0.0324 (14)0.0324 (13)0.0001 (11)0.0029 (10)0.0060 (11)
C260.0241 (12)0.0289 (14)0.0371 (14)0.0032 (11)0.0045 (10)0.0057 (11)
C270.0255 (12)0.0213 (12)0.0303 (12)0.0006 (10)0.0045 (10)0.0021 (10)
C280.0274 (13)0.0299 (14)0.0390 (14)0.0009 (11)0.0108 (11)0.0004 (12)
C290.0394 (15)0.0383 (16)0.0346 (14)0.0006 (13)0.0094 (12)0.0092 (12)
C300.0366 (15)0.0463 (18)0.0371 (15)0.0028 (13)0.0000 (12)0.0116 (13)
N40.0268 (11)0.0387 (13)0.0336 (11)0.0033 (10)0.0013 (9)0.0075 (10)
C310.0242 (12)0.0210 (13)0.0293 (12)0.0019 (10)0.0018 (10)0.0000 (10)
C320.0237 (12)0.0190 (12)0.0307 (12)0.0013 (10)0.0037 (10)0.0006 (10)
N50.0239 (11)0.0271 (11)0.0232 (10)0.0006 (9)0.0021 (9)0.0002 (9)
C410.0326 (13)0.0325 (14)0.0243 (12)0.0006 (11)0.0066 (10)0.0013 (11)
C420.0292 (13)0.0364 (16)0.0342 (14)0.0018 (11)0.0106 (11)0.0011 (12)
C430.0223 (12)0.0284 (14)0.0388 (14)0.0004 (10)0.0021 (10)0.0022 (12)
C440.0229 (12)0.0216 (12)0.0290 (12)0.0014 (10)0.0034 (10)0.0032 (10)
C450.0271 (13)0.0312 (14)0.0302 (13)0.0013 (11)0.0094 (10)0.0020 (11)
C460.0344 (14)0.0317 (14)0.0220 (12)0.0006 (11)0.0049 (10)0.0011 (11)
C470.0281 (12)0.0218 (13)0.0232 (11)0.0027 (10)0.0007 (10)0.0025 (10)
C480.0369 (14)0.0358 (15)0.0232 (12)0.0019 (12)0.0058 (10)0.0017 (11)
C490.0270 (13)0.0377 (16)0.0368 (14)0.0013 (11)0.0067 (11)0.0071 (12)
C500.0234 (12)0.0354 (15)0.0365 (14)0.0021 (11)0.0034 (10)0.0064 (12)
N60.0229 (10)0.0309 (12)0.0270 (10)0.0014 (9)0.0034 (8)0.0029 (9)
C510.0223 (11)0.0191 (12)0.0235 (11)0.0019 (9)0.0025 (9)0.0018 (10)
C520.0246 (12)0.0184 (12)0.0219 (11)0.0024 (9)0.0014 (9)0.0025 (10)
Cl10.0309 (3)0.0442 (4)0.0331 (3)0.0072 (3)0.0011 (3)0.0042 (3)
Cl20.0368 (3)0.0333 (3)0.0258 (3)0.0050 (3)0.0025 (2)0.0011 (3)
Cl30.0297 (3)0.0542 (4)0.0370 (3)0.0038 (3)0.0015 (3)0.0024 (3)
Cl40.0445 (4)0.0515 (5)0.0394 (4)0.0007 (3)0.0007 (3)0.0010 (3)
C1L0.0275 (13)0.0330 (15)0.0308 (13)0.0009 (11)0.0006 (10)0.0025 (11)
Cl110.0334 (3)0.0526 (4)0.0333 (3)0.0006 (3)0.0026 (3)0.0104 (3)
Cl120.0337 (3)0.0492 (4)0.0327 (3)0.0056 (3)0.0044 (3)0.0014 (3)
Cl130.0350 (3)0.0461 (4)0.0393 (3)0.0104 (3)0.0076 (3)0.0090 (3)
Geometric parameters (Å, º) top
N1—C11.336 (3)C27—C281.417 (3)
N1—C121.369 (3)C28—C291.375 (3)
C1—C21.393 (4)C29—C301.407 (3)
C2—C31.377 (3)C30—N41.332 (3)
C3—C41.410 (3)N4—C311.368 (3)
C4—C121.419 (3)C31—C321.443 (3)
C4—C51.443 (3)N5—C411.335 (3)
C5—C61.353 (4)N5—C521.370 (3)
C6—C71.441 (3)C41—C421.400 (3)
C7—C81.416 (3)C42—C431.379 (3)
C7—C111.420 (3)C43—C441.418 (3)
C8—C91.379 (4)C44—C521.416 (3)
C9—C101.410 (3)C44—C451.438 (3)
C10—N21.339 (3)C45—C461.355 (3)
N2—C111.369 (3)C46—C471.440 (3)
C11—C121.446 (3)C47—C481.421 (3)
N3—C211.338 (3)C47—C511.423 (3)
N3—C321.370 (3)C48—C491.375 (3)
C21—C221.391 (3)C49—C501.410 (3)
C22—C231.382 (3)C50—N61.334 (3)
C23—C241.410 (3)N6—C511.365 (3)
C24—C321.413 (3)C51—C521.444 (3)
C24—C251.445 (3)C1L—Cl131.776 (3)
C25—C261.360 (3)C1L—Cl111.777 (2)
C26—C271.442 (3)C1L—Cl121.782 (2)
C27—C311.417 (3)
C1—N1—C12123.2 (2)C28—C29—C30119.0 (2)
N1—C1—C2120.7 (2)N4—C30—C29124.7 (2)
C3—C2—C1118.7 (2)C30—N4—C31116.0 (2)
C2—C3—C4120.9 (2)N4—C31—C27124.1 (2)
C3—C4—C12118.6 (2)N4—C31—C32118.0 (2)
C3—C4—C5122.7 (2)C27—C31—C32117.9 (2)
C12—C4—C5118.7 (2)N3—C32—C24118.3 (2)
C6—C5—C4120.8 (2)N3—C32—C31120.0 (2)
C5—C6—C7121.5 (2)C24—C32—C31121.7 (2)
C8—C7—C11117.3 (2)C41—N5—C52123.3 (2)
C8—C7—C6122.7 (2)N5—C41—C42119.9 (2)
C11—C7—C6120.0 (2)C43—C42—C41119.5 (2)
C9—C8—C7119.3 (2)C42—C43—C44120.3 (2)
C8—C9—C10118.9 (2)C52—C44—C43118.3 (2)
N2—C10—C9124.4 (2)C52—C44—C45118.6 (2)
C10—N2—C11116.3 (2)C43—C44—C45123.1 (2)
N2—C11—C7123.8 (2)C46—C45—C44121.3 (2)
N2—C11—C12118.3 (2)C45—C46—C47121.0 (2)
C7—C11—C12117.9 (2)C48—C47—C51117.0 (2)
N1—C12—C4118.0 (2)C48—C47—C46122.9 (2)
N1—C12—C11120.9 (2)C51—C47—C46120.1 (2)
C4—C12—C11121.1 (2)C49—C48—C47119.0 (2)
C21—N3—C32123.1 (2)C48—C49—C50119.4 (2)
N3—C21—C22120.3 (2)N6—C50—C49124.2 (2)
C23—C22—C21119.1 (2)C50—N6—C51116.38 (19)
C22—C23—C24120.5 (2)N6—C51—C47124.0 (2)
C23—C24—C32118.6 (2)N6—C51—C52118.08 (19)
C23—C24—C25122.9 (2)C47—C51—C52117.89 (19)
C32—C24—C25118.5 (2)N5—C52—C44118.6 (2)
C26—C25—C24120.6 (2)N5—C52—C51120.24 (19)
C25—C26—C27121.5 (2)C44—C52—C51121.16 (19)
C31—C27—C28117.2 (2)Cl13—C1L—Cl11110.49 (13)
C31—C27—C26119.9 (2)Cl13—C1L—Cl12108.60 (13)
C28—C27—C26122.9 (2)Cl11—C1L—Cl12110.94 (13)
C29—C28—C27119.0 (2)
C12—N1—C1—C20.2 (4)C30—N4—C31—C32176.4 (2)
N1—C1—C2—C30.1 (4)C28—C27—C31—N41.0 (4)
C1—C2—C3—C40.6 (4)C26—C27—C31—N4179.6 (2)
C2—C3—C4—C120.9 (4)C28—C27—C31—C32177.2 (2)
C2—C3—C4—C5178.9 (2)C26—C27—C31—C321.3 (3)
C3—C4—C5—C6179.3 (2)C21—N3—C32—C241.3 (3)
C12—C4—C5—C61.0 (4)C21—N3—C32—C31179.7 (2)
C4—C5—C6—C70.3 (4)C23—C24—C32—N30.2 (3)
C5—C6—C7—C8179.8 (2)C25—C24—C32—N3178.9 (2)
C5—C6—C7—C110.8 (4)C23—C24—C32—C31178.2 (2)
C11—C7—C8—C90.0 (4)C25—C24—C32—C310.5 (3)
C6—C7—C8—C9179.5 (2)N4—C31—C32—N30.7 (3)
C7—C8—C9—C100.2 (4)C27—C31—C32—N3177.7 (2)
C8—C9—C10—N20.1 (4)N4—C31—C32—C24179.0 (2)
C9—C10—N2—C110.5 (4)C27—C31—C32—C240.6 (3)
C10—N2—C11—C70.7 (3)C52—N5—C41—C421.3 (4)
C10—N2—C11—C12179.2 (2)N5—C41—C42—C430.3 (4)
C8—C7—C11—N20.5 (4)C41—C42—C43—C441.7 (4)
C6—C7—C11—N2179.9 (2)C42—C43—C44—C521.6 (3)
C8—C7—C11—C12179.4 (2)C42—C43—C44—C45178.6 (2)
C6—C7—C11—C120.0 (3)C52—C44—C45—C461.4 (4)
C1—N1—C12—C40.1 (3)C43—C44—C45—C46178.8 (2)
C1—N1—C12—C11178.9 (2)C44—C45—C46—C470.8 (4)
C3—C4—C12—N10.6 (3)C45—C46—C47—C48179.9 (2)
C5—C4—C12—N1179.2 (2)C45—C46—C47—C510.9 (4)
C3—C4—C12—C11178.4 (2)C51—C47—C48—C491.8 (3)
C5—C4—C12—C111.8 (3)C46—C47—C48—C49177.4 (2)
N2—C11—C12—N10.2 (3)C47—C48—C49—C500.4 (4)
C7—C11—C12—N1179.7 (2)C48—C49—C50—N61.5 (4)
N2—C11—C12—C4178.8 (2)C49—C50—N6—C511.7 (4)
C7—C11—C12—C41.3 (3)C50—N6—C51—C470.1 (3)
C32—N3—C21—C221.8 (4)C50—N6—C51—C52179.6 (2)
N3—C21—C22—C230.7 (4)C48—C47—C51—N61.7 (3)
C21—C22—C23—C240.7 (4)C46—C47—C51—N6177.6 (2)
C22—C23—C24—C321.1 (4)C48—C47—C51—C52178.7 (2)
C22—C23—C24—C25179.8 (2)C46—C47—C51—C522.1 (3)
C23—C24—C25—C26177.7 (2)C41—N5—C52—C441.4 (3)
C32—C24—C25—C261.0 (3)C41—N5—C52—C51178.6 (2)
C24—C25—C26—C270.3 (4)C43—C44—C52—N50.1 (3)
C25—C26—C27—C310.9 (4)C45—C44—C52—N5179.9 (2)
C25—C26—C27—C28177.6 (2)C43—C44—C52—C51180.0 (2)
C31—C27—C28—C290.5 (3)C45—C44—C52—C510.1 (3)
C26—C27—C28—C29178.1 (2)N6—C51—C52—N51.9 (3)
C27—C28—C29—C301.0 (4)C47—C51—C52—N5178.4 (2)
C28—C29—C30—N40.2 (4)N6—C51—C52—C44178.1 (2)
C29—C30—N4—C311.2 (4)C47—C51—C52—C441.5 (3)
C30—N4—C31—C271.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cl10.952.893.380 (3)113
C21—H21···Cl10.952.953.371 (3)108
C46—H46···Cl2i0.953.013.818 (2)144
C48—H48···Cl2i0.952.893.733 (3)149
C23—H23···Cl3ii0.952.733.607 (3)154
C25—H25···Cl3ii0.952.833.676 (3)149
C29—H29···Cl3iii0.953.043.716 (3)129
C49—H49···Cl3iv0.952.803.633 (3)146
C2—H2···Cl4v0.952.793.534 (3)136
C6—H6···Cl4vi0.953.033.787 (3)138
C45—H45···Cl11iv0.953.083.947 (2)152
C26—H26···Cl11vii0.952.963.886 (2)166
C25—H25···Cl12vii0.952.953.655 (2)132
C42—H42···Cl12viii0.953.103.959 (2)152
C45—H45···Cl13iv0.952.893.723 (2)147
C48—H48···Cl13ix0.953.063.824 (2)138
N1—H1···Cl10.84 (3)2.42 (3)3.128 (2)143 (2)
N3—H3···Cl10.86 (2)2.29 (3)3.038 (2)146 (2)
C1L—H1L···Cl21.002.353.349 (3)173
N5—H5···Cl20.85 (2)2.33 (2)3.079 (2)146 (2)
Cl4—H4···Cl31.49 (3)1.67 (3)3.1485 (11)176 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1, y, z; (iii) x1, y+1/2, z+1/2; (iv) x+2, y+1, z+1; (v) x+2, y+1/2, z+3/2; (vi) x+2, y, z+1; (vii) x+1, y1/2, z+3/2; (viii) x+2, y1/2, z+3/2; (ix) x, y+3/2, z1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC12H9N2+·Cl3C12H9N2+·2Cl·HCl·Cl·CHCl3
Mr216.66805.81
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)173173
a, b, c (Å)6.877 (1), 9.787 (1), 15.547 (2)26.017 (3), 7.222 (1), 19.461 (2)
β (°) 96.91 (2) 90.77 (1)
V3)1038.8 (2)3656.3 (8)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.330.58
Crystal size (mm)0.25 × 0.20 × 0.100.46 × 0.34 × 0.18
Data collection
DiffractometerSiemens CCD three circle
diffractometer
Siemens CCD three-circle
diffractometer
Absorption correctionEmpirical
SADABS (Sheldrick, 1996)
Empirical
SADABS (Sheldrick, 1996)
Tmin, Tmax0.922, 0.9680.776, 0.903
No. of measured, independent and
observed [I > 2σ(I)] reflections
7686, 1884, 1093 52608, 7983, 5433
Rint0.0830.058
(sin θ/λ)max1)0.6170.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.150, 1.05 0.043, 0.090, 1.05
No. of reflections18847983
No. of parameters140467
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 0.310.27, 0.28

Computer programs: SMART (Siemens, 1995), SMART (Siemens, 1994), SMART, SAINT (Siemens, 1995), SAINT (Siemens, 1994), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP (Siemens, 1994).

Selected geometric parameters (Å, º) for (I) top
N1—C21.331 (5)C11—N121.321 (5)
N1—C141.373 (5)N12—C131.362 (5)
C2—N1—C14123.1 (4)C11—N12—C13116.1 (3)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.95 (4)2.16 (4)2.986 (4)145 (4)
C2—H2···Cl1i0.952.793.462 (4)128.4
C4—H4···Cl1ii0.952.573.424 (4)150.1
C9—H9···Cl1iii0.952.703.527 (4)146.4
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y+1, z.
Selected geometric parameters (Å, º) for (II) top
N1—C11.336 (3)C30—N41.332 (3)
N1—C121.369 (3)N4—C311.368 (3)
C10—N21.339 (3)N5—C411.335 (3)
N2—C111.369 (3)N5—C521.370 (3)
N3—C211.338 (3)C50—N61.334 (3)
N3—C321.370 (3)N6—C511.365 (3)
C1—N1—C12123.2 (2)C30—N4—C31116.0 (2)
C10—N2—C11116.3 (2)C41—N5—C52123.3 (2)
C21—N3—C32123.1 (2)C50—N6—C51116.38 (19)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cl10.952.893.380 (3)113.1
C21—H21···Cl10.952.953.371 (3)108.2
C46—H46···Cl2i0.953.013.818 (2)144.3
C48—H48···Cl2i0.952.893.733 (3)148.8
C23—H23···Cl3ii0.952.733.607 (3)153.8
C25—H25···Cl3ii0.952.833.676 (3)149.2
C29—H29···Cl3iii0.953.043.716 (3)129.1
C49—H49···Cl3iv0.952.803.633 (3)146.3
C2—H2···Cl4v0.952.793.534 (3)135.5
C6—H6···Cl4vi0.953.033.787 (3)137.8
C45—H45···Cl11iv0.953.083.947 (2)152.4
C26—H26···Cl11vii0.952.963.886 (2)166.2
C25—H25···Cl12vii0.952.953.655 (2)132.3
C42—H42···Cl12viii0.953.103.959 (2)151.8
C45—H45···Cl13iv0.952.893.723 (2)147.3
C48—H48···Cl13ix0.953.063.824 (2)138.2
N1—H1···Cl10.84 (3)2.42 (3)3.128 (2)143 (2)
N3—H3···Cl10.86 (2)2.29 (3)3.038 (2)146 (2)
C1L—H1L···Cl21.002.353.349 (3)173.1
N5—H5···Cl20.85 (2)2.33 (2)3.079 (2)146 (2)
Cl4—H4···Cl31.49 (3)1.67 (3)3.1485 (11)176 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1, y, z; (iii) x1, y+1/2, z+1/2; (iv) x+2, y+1, z+1; (v) x+2, y+1/2, z+3/2; (vi) x+2, y, z+1; (vii) x+1, y1/2, z+3/2; (viii) x+2, y1/2, z+3/2; (ix) x, y+3/2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds