research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of fipronil

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry (BK21 plus) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
*Correspondence e-mail: thkim@gnu.ac.kr, jekim@gnu.ac.kr

Edited by J. Simpson, University of Otago, New Zealand (Received 9 September 2017; accepted 13 September 2017; online 15 September 2017)

The title compound, C12H4Cl2F6N4OS {systematic name: 5-amino-1-[2,6-di­chloro-4-(tri­fluoro­meth­yl)phen­yl]-4-[(tri­fluoro­methane)sulfinyl]-1H-pyrazole-3-carbo­nitrile}, is a member of the phenyl­pyrazole group of acaricides, and one of the phenyl­pyrazole group of insecticides. The dihedral angle between the planes of the pyrazole and benzene rings is 89.03 (9)°. The fluorine atoms of the tri­fluoro­methyl substituent on the benzene ring are disordered over two sets of sites, with occupancy ratios 0.620 (15):0.380 (15). In the crystal, C—N⋯π inter­actions [N⋯ring centroid = 3.607 (4) Å] together with N—H⋯N and C—H⋯F hydrogen bonds form a looped chain structure along [10[\overline{1}]]. Finally, N—H⋯O hydrogen bonds and C—Cl⋯π inter­actions [Cl⋯ring centroid = 3.5159 (16) Å] generate a three-dimensional structure. Additionally, there are a short inter­molecular F⋯ F contacts present.

1. Chemical context

Fipronil is an insecticide that belongs to the phenyl­pyrazole group. It is an insecticide with extended use in the control of many agricultural vermin. Fipronil contains a tri­fluoro­methyl­sulfinyl substituent that is not present in any other agrochemicals and this is thought to contribute to its remarkable potency in the field (Hainzl & Casida, 1996[Hainzl, D. & Casida, J. E. (1996). Proc. Natl Acad. Sci. USA, 93, 12764-12767.]). In addition, it is a highly effective and broad-spectrum insecticide against piercing–sucking, contact and chewing pests and is widely used to control many species of soil and foliar insects on various crops including rice, vegetables and fruits (Kaur et al., 2015[Kaur, R., Mandal, K., Kumar, R. & Singh, B. (2015). J. AOAC Int. 98, 464-471.]). The toxicity of fipronil is attributed to its ability to act at the GABA receptor as a non-competitive inhibitor of the GABA-gated chloride channels of neurons in the central nervous system. Impediments to the influx of the chloride ions affect the transmission of nervous impulses, causing insect death by neuronal hyperexcitation and paralysis (Medeiros et al., 2015[Medeiros, H. C. D. de, Constantin, J., Ishii-Iwamoto, E. L. & Mingatto, F. E. (2015). Toxicol. Lett. 236, 34-42.]). Recently, eggs contaminated with fipronil have been found in Europe, Hong Kong and the Republic of Korea. We report here the crystal structure of fipronil, 5-amino-1-[2,6-di­chloro-4-(tri­fluoro­meth­yl)phen­yl]-4-(tri­fluoro­methane­sul­fin­yl)-1H-pyrazole-3-carbo­nitrile.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The dihedral angle between the planes of the pyrazole and benzene rings is 89.03 (9)°. All bond lengths and bond angles are normal and comparable to those observed in similar crystal structures (Kang et al., 2015[Kang, G., Kim, J., Park, H. & Kim, T. H. (2015). Acta Cryst. E71, o494.]; Jiang & Xu, 2009[Jiang, D.-X. & Xu, H.-H. (2009). Acta Cryst. E65, o1774.]).

[Figure 1]
Figure 1
The structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

3. Supra­molecular features

In the crystal, mol­ecules are linked by C12—N4⋯Cg1iii inter­actions [N⋯Cg1 = 3.607 (4) Å; Cg1 is the centroid of the C5–C10 ring; symmetry code: (iii) −[{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z], together with N3—H3A⋯N4i and C9—H9⋯F2i hydrogen bonds, forming looped chains along [10[\overline{1}]] (Fig. 2[link]). Inversion-related C10—Cl2⋯Cg1iv inter­actions [Cl⋯Cg1 = 3.5159 (16)Å; symmetry code: (iv) 2 − x, −y, 2 − z] (red dashed lines), link adjacent chains, resulting in a two-dimensional network parallel to the (10[\overline{1}]) plane (Fig. 3[link]). Finally, classical N3—H3B⋯O1ii hydrogen bonds (black dashed lines) combine with these contacts to generate a three-dimensional network structure (Fig. 4[link] and Table 1[link]). Short F2⋯F4′v [2.762 (14) Å] and F3⋯F6′vi [2.855 (12) Å] inter­actions are also present [symmetry codes: (v) −[{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z; (vi) −[{1\over 2}] + x, [{1\over 2}] + y, −1 + z].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N4i 0.88 2.39 3.183 (3) 151
N3—H3B⋯O1ii 0.88 2.28 2.896 (3) 127
C9—H9⋯F2i 0.95 2.42 3.222 (3) 143
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+2, y, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title compound. Looped chains are formed through inter­molecular C—N⋯π inter­actions together with N—H⋯N and C—H⋯F hydrogen bonds (yellow dashed lines). H atoms not involved in inter­molecular inter­actions have been omitted for clarity.
[Figure 3]
Figure 3
The two-dimensional network formed through inter­molecular C—Cl⋯π inter­actions (red dashed lines). H atoms not involved in inter­molecular inter­actions have been omitted for clarity.
[Figure 4]
Figure 4
The overall packing of the title compound, showing the three-dimensional network formed through N—H⋯O hydrogen bonds (black dashed lines). H atoms not involved in inter­molecular inter­actions have been omitted for clarity.

4. Database survey

The title compound has been used as a starting material for the synthesis of other materials (Tang et al., 2005[Tang, R.-Y., Zhong, P., Lin, Q.-L., Hu, M.-L. & Shi, Q. (2005). Acta Cryst. E61, o4374-o4375.]; Liu et al., 2013[Liu, C., Chen, Y., Sun, Y. & Wu, F. (2013). Res. Chem. Intermed. 39, 2087-2093.]). Moreover, the structures of CuII, CdII, ZnII and MnII complexes using fipronil as a ligand are known (Tang et al., 2009[Tang, Y.-Z., Tan, Y.-H., Liu, D.-L., Luo, X.-P., Xie, X.-B., Liu, Z.-X. & Ge, Z.-T. (2009). Inorg. Chim. Acta, 362, 1969-1973.], 2010[Tang, Y.-Z., Cao, Z., Wen, H.-R., Liao, S.-L., Huang, S. & Yu, C.-L. (2010). J. Coord. Chem. 63, 3101-3107.]). The crystal structures of other phenyl­pyrazole compounds such as ethyl 7-methyl-2-phenyl­pyrazolo­[1,5-a]pyrimidine-5-carboxyl­ate (Bassoude et al., 2013[Bassoude, I., Berteina-Raboin, S., Essassi, E. M., Guillaumet, G. & El Ammari, L. (2013). Acta Cryst. E69, o740.]) and 4-{[(E)-(3,5-dimethyl-1-phenyl-1H-pyrazol-4-yl)methyl­idene]amino}-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (Fun et al., 2010[Fun, H.-K., Hemamalini, M., Asiri, A. M. & Khan, S. A. (2010). Acta Cryst. E66, o1602-o1603.]) have also been reported.

5. Synthesis and crystallization

The title compound was purchased from Dr. Ehrenstorfer GmbH. Colourless single crystals suitable for X-ray diffraction were obtained from a CH3CN solution by slow evaporation at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were positioned geometrically and refined using a riding model with d(N—H) = 0.88 Å, Uiso = 1.2Ueq(C) for the N—H group, d(C—H) = 0.95 Å, Uiso = 1.2Ueq(C) for aromatic C—H. Atoms F4–F6 of the CF3 substituent are disordered over two sets of sites. Their occupancies refined to 0.620 (15) and 0.380 (15).

Table 2
Experimental details

Crystal data
Chemical formula C12H4Cl2F6N4OS
Mr 437.15
Crystal system, space group Monoclinic, C2/c
Temperature (K) 173
a, b, c (Å) 22.5649 (16), 12.6823 (9), 14.9051 (11)
β (°) 129.699 (3)
V3) 3281.9 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.60
Crystal size (mm) 0.15 × 0.13 × 0.04
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.587, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 14125, 3731, 2506
Rint 0.066
(sin θ/λ)max−1) 0.648
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.120, 1.03
No. of reflections 3731
No. of parameters 263
No. of restraints 36
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.32
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

5-Amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethanesulfinyl])-1H-pyrazole-3-carbonitrile top
Crystal data top
C12H4Cl2F6N4OSF(000) = 1728
Mr = 437.15Dx = 1.769 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 22.5649 (16) ÅCell parameters from 2101 reflections
b = 12.6823 (9) Åθ = 2.4–21.6°
c = 14.9051 (11) ŵ = 0.60 mm1
β = 129.699 (3)°T = 173 K
V = 3281.9 (4) Å3Plate, colourless
Z = 80.15 × 0.13 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
2506 reflections with I > 2σ(I)
φ and ω scansRint = 0.066
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 27.4°, θmin = 2.0°
Tmin = 0.587, Tmax = 0.746h = 2829
14125 measured reflectionsk = 1616
3731 independent reflectionsl = 1919
Refinement top
Refinement on F236 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0463P)2 + 0.8977P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3731 reflectionsΔρmax = 0.38 e Å3
263 parametersΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.94088 (4)0.32995 (6)1.06637 (7)0.0429 (2)
Cl21.04310 (4)0.06765 (6)0.90739 (7)0.0417 (2)
S10.83382 (4)0.44166 (6)0.63886 (6)0.0337 (2)
F10.89072 (10)0.55280 (14)0.83001 (16)0.0516 (5)
F20.77293 (11)0.50457 (17)0.7312 (2)0.0695 (7)
F30.80245 (12)0.62984 (14)0.66925 (18)0.0673 (6)
F41.2426 (3)0.1359 (8)1.3877 (5)0.084 (2)0.620 (15)
F51.1906 (7)0.0112 (5)1.3561 (5)0.110 (4)0.620 (15)
F61.1641 (4)0.1123 (8)1.4199 (6)0.075 (2)0.620 (15)
F4'1.2399 (5)0.0680 (16)1.3697 (9)0.081 (4)0.380 (15)
F5'1.1577 (6)0.0083 (10)1.3614 (9)0.075 (3)0.380 (15)
F6'1.1875 (10)0.1483 (11)1.4220 (10)0.092 (5)0.380 (15)
O10.89951 (12)0.48383 (17)0.6504 (2)0.0470 (6)
N10.93791 (12)0.22985 (17)0.88474 (19)0.0279 (5)
N20.86486 (12)0.18765 (17)0.8196 (2)0.0321 (6)
N31.00700 (13)0.37326 (19)0.8898 (2)0.0376 (6)
H3A1.04990.35100.95630.045*
H3B1.00720.43100.85720.045*
N40.67806 (14)0.2159 (2)0.5679 (3)0.0525 (8)
C10.82489 (17)0.5375 (2)0.7227 (3)0.0398 (8)
C20.86620 (15)0.3372 (2)0.7357 (2)0.0291 (6)
C30.94140 (15)0.3194 (2)0.8382 (2)0.0278 (6)
C40.82316 (15)0.2528 (2)0.7293 (2)0.0304 (6)
C50.99688 (14)0.1918 (2)0.9991 (2)0.0268 (6)
C61.00414 (16)0.2340 (2)1.0918 (3)0.0302 (6)
C71.06225 (16)0.2006 (2)1.2042 (2)0.0325 (7)
H71.06730.22971.26760.039*
C81.11308 (15)0.1241 (2)1.2236 (2)0.0319 (7)
C91.10661 (15)0.0802 (2)1.1335 (2)0.0307 (7)
H91.14110.02641.14800.037*
C101.04895 (15)0.1158 (2)1.0209 (2)0.0287 (6)
C111.1763 (2)0.0878 (3)1.3460 (3)0.0481 (9)
C120.74238 (17)0.2320 (2)0.6396 (3)0.0364 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0409 (5)0.0398 (4)0.0512 (5)0.0144 (3)0.0308 (4)0.0070 (3)
Cl20.0381 (4)0.0498 (5)0.0383 (5)0.0030 (3)0.0249 (4)0.0050 (3)
S10.0242 (4)0.0383 (4)0.0292 (4)0.0042 (3)0.0127 (4)0.0077 (3)
F10.0376 (11)0.0530 (12)0.0410 (12)0.0005 (9)0.0143 (10)0.0068 (8)
F20.0514 (13)0.0723 (15)0.1067 (19)0.0067 (11)0.0606 (14)0.0199 (13)
F30.0577 (13)0.0370 (11)0.0654 (14)0.0157 (9)0.0200 (12)0.0090 (9)
F40.026 (2)0.100 (5)0.060 (3)0.007 (3)0.003 (2)0.023 (3)
F50.138 (7)0.048 (3)0.041 (3)0.043 (4)0.010 (3)0.010 (2)
F60.059 (3)0.125 (6)0.037 (3)0.020 (3)0.030 (3)0.022 (3)
F4'0.039 (4)0.128 (9)0.063 (5)0.019 (5)0.026 (4)0.048 (5)
F5'0.062 (5)0.087 (6)0.058 (4)0.006 (4)0.031 (4)0.046 (4)
F6'0.103 (8)0.081 (6)0.030 (4)0.037 (6)0.013 (5)0.001 (4)
O10.0429 (13)0.0494 (14)0.0594 (15)0.0056 (11)0.0376 (13)0.0151 (11)
N10.0143 (11)0.0307 (12)0.0257 (13)0.0012 (9)0.0067 (11)0.0049 (9)
N20.0178 (11)0.0313 (13)0.0332 (14)0.0032 (10)0.0098 (11)0.0022 (10)
N30.0169 (12)0.0442 (15)0.0356 (15)0.0038 (10)0.0093 (12)0.0110 (11)
N40.0248 (15)0.0419 (16)0.0570 (19)0.0042 (12)0.0104 (15)0.0070 (13)
C10.0229 (15)0.0400 (18)0.045 (2)0.0010 (13)0.0164 (16)0.0011 (14)
C20.0166 (13)0.0316 (15)0.0286 (16)0.0007 (11)0.0096 (13)0.0033 (11)
C30.0210 (14)0.0306 (15)0.0285 (16)0.0021 (11)0.0144 (13)0.0035 (12)
C40.0165 (13)0.0294 (15)0.0325 (16)0.0005 (11)0.0097 (13)0.0011 (12)
C50.0189 (13)0.0267 (14)0.0264 (15)0.0023 (11)0.0106 (13)0.0033 (11)
C60.0248 (15)0.0264 (14)0.0361 (17)0.0032 (11)0.0178 (14)0.0025 (12)
C70.0316 (16)0.0332 (15)0.0286 (16)0.0008 (13)0.0173 (15)0.0011 (12)
C80.0226 (15)0.0326 (16)0.0288 (16)0.0006 (12)0.0110 (14)0.0045 (12)
C90.0221 (14)0.0280 (15)0.0364 (17)0.0031 (11)0.0161 (14)0.0044 (12)
C100.0232 (14)0.0282 (15)0.0302 (16)0.0013 (11)0.0150 (14)0.0004 (11)
C110.040 (2)0.055 (2)0.0331 (19)0.0070 (17)0.0153 (18)0.0064 (16)
C120.0237 (16)0.0269 (15)0.0414 (19)0.0029 (12)0.0128 (15)0.0019 (13)
Geometric parameters (Å, º) top
Cl1—C61.724 (3)N2—C41.327 (3)
Cl2—C101.723 (3)N3—C31.340 (3)
S1—O11.479 (2)N3—H3A0.8800
S1—C21.739 (3)N3—H3B0.8800
S1—C11.844 (3)N4—C121.144 (4)
F1—C11.329 (3)C2—C31.398 (4)
F2—C11.325 (3)C2—C41.408 (4)
F3—C11.321 (4)C4—C121.437 (4)
F4—C111.344 (7)C5—C101.388 (4)
F5—C111.281 (7)C5—C61.389 (4)
F6—C111.331 (8)C6—C71.379 (4)
F4'—C111.265 (9)C7—C81.384 (4)
F5'—C111.357 (11)C7—H70.9500
F6'—C111.253 (13)C8—C91.373 (4)
N1—C31.359 (3)C8—C111.500 (4)
N1—N21.379 (3)C9—C101.387 (4)
N1—C51.418 (3)C9—H90.9500
O1—S1—C2108.69 (13)C7—C6—C5120.5 (3)
O1—S1—C1102.58 (14)C7—C6—Cl1119.7 (2)
C2—S1—C196.30 (14)C5—C6—Cl1119.9 (2)
C3—N1—N2113.4 (2)C6—C7—C8119.1 (3)
C3—N1—C5125.6 (2)C6—C7—H7120.4
N2—N1—C5119.7 (2)C8—C7—H7120.4
C4—N2—N1103.1 (2)C9—C8—C7121.6 (3)
C3—N3—H3A120.0C9—C8—C11119.3 (3)
C3—N3—H3B120.0C7—C8—C11119.1 (3)
H3A—N3—H3B120.0C8—C9—C10118.9 (3)
F3—C1—F2108.4 (3)C8—C9—H9120.6
F3—C1—F1107.4 (3)C10—C9—H9120.6
F2—C1—F1107.9 (3)C9—C10—C5120.6 (3)
F3—C1—S1110.0 (2)C9—C10—Cl2119.8 (2)
F2—C1—S1110.0 (2)C5—C10—Cl2119.6 (2)
F1—C1—S1112.9 (2)F6'—C11—F4'109.4 (8)
C3—C2—C4104.7 (2)F5—C11—F6107.4 (6)
C3—C2—S1127.2 (2)F5—C11—F4105.6 (5)
C4—C2—S1128.1 (2)F6—C11—F4105.6 (5)
N3—C3—N1122.4 (2)F6'—C11—F5'107.5 (9)
N3—C3—C2132.0 (3)F4'—C11—F5'101.2 (7)
N1—C3—C2105.5 (2)F6'—C11—C8113.4 (6)
N2—C4—C2113.2 (2)F4'—C11—C8115.4 (5)
N2—C4—C12119.1 (3)F5—C11—C8114.6 (4)
C2—C4—C12127.8 (3)F6—C11—C8113.3 (4)
C10—C5—C6119.3 (3)F4—C11—C8109.7 (4)
C10—C5—N1121.4 (3)F5'—C11—C8108.9 (5)
C6—C5—N1119.2 (2)N4—C12—C4179.7 (4)
C3—N1—N2—C41.3 (3)N2—N1—C5—C685.1 (3)
C5—N1—N2—C4169.4 (2)C10—C5—C6—C70.2 (4)
O1—S1—C1—F367.2 (2)N1—C5—C6—C7178.2 (2)
C2—S1—C1—F3178.0 (2)C10—C5—C6—Cl1179.0 (2)
O1—S1—C1—F2173.4 (2)N1—C5—C6—Cl11.0 (4)
C2—S1—C1—F262.6 (2)C5—C6—C7—C80.3 (4)
O1—S1—C1—F152.8 (2)Cl1—C6—C7—C8179.5 (2)
C2—S1—C1—F158.0 (2)C6—C7—C8—C90.5 (4)
O1—S1—C2—C324.2 (3)C6—C7—C8—C11179.9 (3)
C1—S1—C2—C381.4 (3)C7—C8—C9—C101.8 (4)
O1—S1—C2—C4156.3 (3)C11—C8—C9—C10178.7 (3)
C1—S1—C2—C498.1 (3)C8—C9—C10—C52.3 (4)
N2—N1—C3—N3178.6 (3)C8—C9—C10—Cl2176.2 (2)
C5—N1—C3—N311.4 (4)C6—C5—C10—C91.5 (4)
N2—N1—C3—C20.3 (3)N1—C5—C10—C9179.5 (2)
C5—N1—C3—C2167.6 (3)C6—C5—C10—Cl2177.0 (2)
C4—C2—C3—N3179.6 (3)N1—C5—C10—Cl21.0 (4)
S1—C2—C3—N30.0 (5)C9—C8—C11—F6'164.8 (12)
C4—C2—C3—N10.8 (3)C7—C8—C11—F6'15.6 (12)
S1—C2—C3—N1178.9 (2)C9—C8—C11—F4'37.5 (12)
N1—N2—C4—C21.8 (3)C7—C8—C11—F4'142.9 (11)
N1—N2—C4—C12178.8 (3)C9—C8—C11—F538.1 (10)
C3—C2—C4—N21.7 (3)C7—C8—C11—F5141.4 (9)
S1—C2—C4—N2177.9 (2)C9—C8—C11—F6161.9 (6)
C3—C2—C4—C12179.0 (3)C7—C8—C11—F617.6 (6)
S1—C2—C4—C121.4 (5)C9—C8—C11—F480.4 (6)
C3—N1—C5—C1096.6 (3)C7—C8—C11—F4100.0 (6)
N2—N1—C5—C1096.9 (3)C9—C8—C11—F5'75.4 (7)
C3—N1—C5—C681.4 (3)C7—C8—C11—F5'104.1 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N4i0.882.393.183 (3)151
N3—H3B···O1ii0.882.282.896 (3)127
C9—H9···F2i0.952.423.222 (3)143
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+2, y, z+3/2.
 

Funding information

This research was supported by the Basic Science Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2015R1D1A4A01020317 and 2017R1D1A3A03000534).

References

First citationBassoude, I., Berteina-Raboin, S., Essassi, E. M., Guillaumet, G. & El Ammari, L. (2013). Acta Cryst. E69, o740.  CSD CrossRef IUCr Journals
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationFun, H.-K., Hemamalini, M., Asiri, A. M. & Khan, S. A. (2010). Acta Cryst. E66, o1602–o1603.  Web of Science CSD CrossRef IUCr Journals
First citationHainzl, D. & Casida, J. E. (1996). Proc. Natl Acad. Sci. USA, 93, 12764–12767.  CSD CrossRef CAS PubMed Web of Science
First citationJiang, D.-X. & Xu, H.-H. (2009). Acta Cryst. E65, o1774.  Web of Science CSD CrossRef IUCr Journals
First citationKang, G., Kim, J., Park, H. & Kim, T. H. (2015). Acta Cryst. E71, o494.  Web of Science CSD CrossRef IUCr Journals
First citationKaur, R., Mandal, K., Kumar, R. & Singh, B. (2015). J. AOAC Int. 98, 464–471.  Web of Science CrossRef CAS PubMed
First citationLiu, C., Chen, Y., Sun, Y. & Wu, F. (2013). Res. Chem. Intermed. 39, 2087–2093.  Web of Science CSD CrossRef CAS
First citationMedeiros, H. C. D. de, Constantin, J., Ishii-Iwamoto, E. L. & Mingatto, F. E. (2015). Toxicol. Lett. 236, 34–42.  Web of Science PubMed
First citation[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.] Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationTang, Y.-Z., Cao, Z., Wen, H.-R., Liao, S.-L., Huang, S. & Yu, C.-L. (2010). J. Coord. Chem. 63, 3101–3107.  Web of Science CSD CrossRef CAS
First citationTang, Y.-Z., Tan, Y.-H., Liu, D.-L., Luo, X.-P., Xie, X.-B., Liu, Z.-X. & Ge, Z.-T. (2009). Inorg. Chim. Acta, 362, 1969–1973.  Web of Science CSD CrossRef CAS
First citationTang, R.-Y., Zhong, P., Lin, Q.-L., Hu, M.-L. & Shi, Q. (2005). Acta Cryst. E61, o4374–o4375.  Web of Science CSD CrossRef IUCr Journals
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds