research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl­ammonium 2,4,5-tri­carb­­oxy­benzoate: an example of the deca­rbonylation of N,N-di­methyl­formamide in the presence of a metal and a benzene­polycarb­­oxy­lic acid. Is zirconium(IV) the Tsotsi?

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Rhodes University, PO Box 94, Grahamstown, South Africa, and bDepartment of Chemistry, Nelson Mandela University, Summerstrand, PO Box 77000, South Africa
*Correspondence e-mail: g11h7156@campus.ru.ac.za

Edited by J. Simpson, University of Otago, New Zealand (Received 9 September 2016; accepted 21 September 2016; online 4 October 2016)

The title salt, C2H8N+·C10H5O8, was the unexpected product of an attempt to prepare a ZrIV metal–organic framework with benzene-1,2,4,5-tetra­carb­oxy­lic acid (1,2,4,5-H3B4C). In the reaction, the DMF solvent has been decarb­on­yl­ated, forming the di­methyl­ammonium cation, with one proton lost from the tetra­carb­oxy­lic acid. It is proposed that the ZrIV salt acts as a Tsotsi or robber, plundering CO from the DMF mol­ecule. The resulting salt crystallizes with two cations and two anions in the asymmetric unit. An intra­molecular hydrogen bond forms between a carb­oxy­lic acid substituent and the carboxyl­ate group of each of the monodeprotonated (1,2,4,5-H3B4C) anions. In the crystal, an extensive array of O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds generates a three-dimensional network, with columns of cations and anions forming along the b axis.

1. Chemical context

The term Tsotsi is South African township slang for a street gangster or hoodlum who is known to mug unsuspecting passers-by and steal their goods. Identifying a possible Tsotsi on the street is part of everyday township life. We attempted to grow a single crystal of a zirconium-based metal–organic framework incorporating 1,2,4,5-benzene­tetra­carb­oxy­lic acid that we had previously synthesized in powder form, in a di­methyl­formamide, DMF, solution. Instead this yielded crystals of the unanti­cipated title compound (I)[link]. The unexpected deca­rbonylation of N,N-di­methyl­formamide (DMF) has led us to ponder the possible characteristics of the reagents used that led to this `plundering' of the DMF. De­carbonyl­ation of DMF has previously been shown to occur under slow evaporation conditions in the presence of coordination complexes (Siddiqui et al., 2012[Siddiqui, T., Koteswara Rao, V., Zeller, M. & Lovelace-Cameron, S. R. (2012). Acta Cryst. E68, o1778.]; Chen et al., 2007[Chen, D.-C., Li, X.-H. & Ding, J.-C. (2007). Acta Cryst. E63, o1133-o1135.]; Karpova et al., 2004[Karpova, E. V., Zakharov, M. A., Gutnikov, S. I. & Alekseyev, R. S. (2004). Acta Cryst. E60, o2491-o2492.]). In these reports, the nitrate salts of MgII (Siddiqui et al., 2012[Siddiqui, T., Koteswara Rao, V., Zeller, M. & Lovelace-Cameron, S. R. (2012). Acta Cryst. E68, o1778.]), PbII (Chen et al., 2007[Chen, D.-C., Li, X.-H. & Ding, J.-C. (2007). Acta Cryst. E63, o1133-o1135.]), HoIII and the chloride salt of NdIII (Karpova et al., 2004[Karpova, E. V., Zakharov, M. A., Gutnikov, S. I. & Alekseyev, R. S. (2004). Acta Cryst. E60, o2491-o2492.]) ions were suggested to play a unique catalytic role in the observed deca­rbonylation reaction. The form of the metals in these reactions was thought to be as six-coordinate metal complexes This suggests that, in the decarb­onylation reaction observed here, the active decarb­on­ylation agent could be the chloride salt of ZrIV as this is also likely to be six-coordinate in solution.

[Scheme 1]

The other potential deca­rbonylation catalyst in this reaction is the benzene­tetra­carb­oxy­lic acid. However, Dale and coworkers have studied the slow evaporation reactions of 1,4-benzene­dicarb­oxy­lic acid (terephthalic acid; 1,4-H2B2C), 1,2,3-benzene­tri­carb­oxy­lic acid (hemimellitic acid; 1,2,3-H3B3C) and 1,2,4,5-benzene­tetra­carb­oxy­lic acid (pyromellitic acid; 1,2,4,5-H4B4C) in the absence of metal complexes and no deca­rbonylation of DMF was observed (Dale & Elsegood, 2004[Dale, S. H. & Elsegood, M. R. J. (2004). Acta Cryst. C60, o444-o448.]).

Clearly this further implicates the zirconium(IV) as the Tsotsi in this deca­rbonylation reaction, stealing CO from the DMF and forming the di­methyl­ammonium cation (Fig. 1[link]). While the detailed mechanism of the deca­rbonylation process remains unclear, it is most likely that the formation of this salt is initiated by the zirconium(IV) Tsotsi.

[Figure 1]
Figure 1
The reaction procedure used in the preparation of (I)[link].

2. Structural commentary

The asymmetric unit of the title salt C2H8N+ C10H5O8, (I)[link], consists of two anions, 1 and 2 and two cations, 3 and 4, differentiated by the leading numbers in the numbering scheme, Fig. 2[link]. Within the asymmetric unit, both cations and anions are linked by strong N—H⋯O and weaker C—H⋯O hydrogen bonds, Table 1[link], Fig. 3[link]. Bond distances and angles in the approximately tetra­hedral di­methyl­ammonium cations are unremarkable.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O13i 0.91 1.86 2.762 (4) 169
N3—H3B⋯O27 0.91 1.99 2.798 (5) 147
N4—H4A⋯O26ii 0.91 2.32 3.025 (4) 134
N4—H4A⋯O27ii 0.91 2.49 2.918 (4) 110
N4—H4A⋯O12iii 0.91 2.19 2.830 (5) 127
N4—H4B⋯O16 0.91 1.99 2.879 (5) 167
O11—H11A⋯O15iv 0.84 1.73 2.560 (4) 171
O14—H14A⋯O17v 0.84 2.55 3.119 (4) 126
O14—H14A⋯O18v 0.84 1.77 2.583 (4) 161
O17—H17A⋯O16 0.84 1.57 2.409 (4) 176
O22—H22A⋯O23 0.88 1.49 2.370 (4) 179
O25—H25A⋯O21v 0.84 1.75 2.572 (4) 164
O25—H25A⋯O22v 0.84 2.59 3.181 (4) 129
O28—H28⋯O24i 0.84 1.74 2.571 (3) 168
C32—H32C⋯O15 0.98 2.54 3.234 (6) 128
C41—H41C⋯O11i 0.98 2.41 3.235 (5) 142
C42—H42C⋯O21 0.98 2.57 3.519 (6) 164
Symmetry codes: (i) x, y-1, z; (ii) x-1, y, z; (iii) [y-1, -x+1, z-{\script{1\over 4}}]; (iv) x, y+1, z; (v) x+1, y, z.
[Figure 2]
Figure 2
The asymmetric unit of (I)[link], showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Intra­molecular hydrogen bonds are drawn as dashed lines.
[Figure 3]
Figure 3
The asymmetric unit of (I)[link], showing the hydrogen bonds formed between the cations and anions. In this and subsequent figures, hydrogen bonds are shown as blue dashed lines.

The benzene rings of the anions are inclined to one another by 6.56 (3)°. In both anions, the two carboxyl­ate substituents lie reasonably close to the benzene ring planes, inclined at 16.16 (19)° for 1 and 6.01 (5)° for 2. One carb­oxy­lic acid substituent in each cation also lies close to these planes, [5.85 (8)° for 1 and 6.25 (9)° for 2]. This planarity is doubtless aided by the two intra­molecular O17—H17A⋯O16 and O22—H22A⋯O23 hydrogen bonds that form between a carboxyl­ate oxygen and the OH group of an adjacent carb­oxy­lic acid substituent in each of the discrete anions, Fig. 2[link]. Each encloses an S7 ring. The other two carb­oxy­lic acid substituents in both anions lie well out of the benzene ring planes with dihedral angles ranging from 75.4 (4) to 37.23 (15)°.

3. Supra­molecular features

In the crystal structure, a myriad of classical O—H⋯O and N—H⋯O hydrogen bonds are found together with non-classical C—H⋯O hydrogen bonds. These are detailed in Table 1[link]. Each individual anion of type 1 binds to four other type 1 anions through O—H⋯O hydrogen bonds. Each also binds to four cations, two of type 3 and two of type 4, through N—H⋯O and C—H⋯O hydrogen bonds, Fig. 4[link]. Similarly, each type 2 anion binds to four other discrete type 2 anions and to three cations one of type 3 and two of type 4, Fig. 5[link].

[Figure 4]
Figure 4
The immediate environment of anion 1.
[Figure 5]
Figure 5
The immediate environment of anion 2.

Layers built from alternating rows of cations and anions form in the ab plane, Fig. 6[link]. These layers are further linked by N—H⋯O and C—H⋯O contacts to form a three-dimensional network comprised of linked columns of cations and anions, Fig. 7[link].

[Figure 6]
Figure 6
Sheets formed in the ab plane by the cations and anions of (I)[link].
[Figure 7]
Figure 7
Overall packing for (I)[link], viewed along the a-axis direction.

4. Database survey

A search of the Cambridge Structural Database (Version 5.37, update November 2015; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 1,2,4,5-H3B4C anion yielded 46 hits and of these 35 are purely organic compounds. One particular compound, YIRFOV, reports a 1,2,4,5-H3B4C salt with a tetra­methyl­ammonium cation (Cunha-Silva et al., 2008[Cunha-Silva, L., Girginova, P. I., Trindade, T., Rocha, J., Klinowski, J. & Almeida Paz, F. A. (2008). Acta Cryst. E64, o69-o70.]). This is very similar to the structure reported here. The principal difference between these structures is that the asymmetric unit of YIRFOV comprises one tetra­methyl­ammonium cation, one 1,2,4,5-H3B4C anion co-crystallized with half a fully protonated 1,2,4,5-H4B4C mol­ecule that lies on a centre of inversion. In YIRFOV, the crystal packing is also mediated by an extensive hydrogen-bonding network.

5. Synthesis and crystallization

A 2 mL aqueous solution of ZrOCl2·8H2O (0.04 g, 0.124 mmol) was suspended in 0.5 mL N,N-di­methyl­formamide (DMF). A 2 mL aqueous solution of 1,2,4,5-H4B4C 0.032 g, 0.124 mmol) was similarly suspended in 0.5 mL DMF and the two solutions were combined in a small sample vial. This was placed inside a larger sample vial. 0.5 mL of deionized water was added before it was covered and left until crystallization was complete. After three weeks, yellow–brown cubic crystals formed. These were isolated and used for the X-ray crystallographic analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All non-hydrogen atoms were refined anisotropically. Carbon-bound hydrogen atoms were placed in calculated positions and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2Ueq(C). The hydrogen atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density, with Uiso(H) = 1.5Ueq(C). The H atoms of the hydroxyl groups were allowed to rotate with a fixed angle around the C—-O bond to best fit the experimental electron density with Uiso(H) set to 1.5Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula C2H8N+·C10H5O8
Mr 299.23
Crystal system, space group Tetragonal, P41
Temperature (K) 200
a, c (Å) 9.6621 (5), 27.8940 (17)
V3) 2604.1 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.13
Crystal size (mm) 0.42 × 0.32 × 0.20
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Numerical (SADABS; Bruker, 2010[Bruker. (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.946, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 47565, 6473, 6118
Rint 0.025
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.134, 1.15
No. of reflections 6473
No. of parameters 388
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.40, −0.27
Absolute structure Flack x determined using 2780 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.14 (15)
Computer programs: APEX2 and SAINT (Bruker, 2010[Bruker. (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: APEX2 (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b) and ShelXle (Hübschle et al., 2011); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Dimethylammonium 2,4,5-tricarboxybenzoate top
Crystal data top
C2H8N+·C10H5O8Dx = 1.526 Mg m3
Mr = 299.23Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41Cell parameters from 9896 reflections
a = 9.6621 (5) Åθ = 2.2–28.3°
c = 27.8940 (17) ŵ = 0.13 mm1
V = 2604.1 (3) Å3T = 200 K
Z = 8Block, pale yellow
F(000) = 12480.42 × 0.32 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
6473 independent reflections
Radiation source: sealed tube6118 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 8.3333 pixels mm-1θmax = 28.3°, θmin = 2.1°
φ and ω scansh = 1212
Absorption correction: numerical
(SADABS; Bruker, 2010)
k = 1212
Tmin = 0.946, Tmax = 1.000l = 3737
47565 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0614P)2 + 1.8024P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.134(Δ/σ)max < 0.001
S = 1.15Δρmax = 0.40 e Å3
6473 reflectionsΔρmin = 0.27 e Å3
388 parametersAbsolute structure: Flack x determined using 2780 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
2 restraintsAbsolute structure parameter: 0.14 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Carbon and nitrogen-bound H atoms were placed in calculated positions and were included in the refinement in the riding model approximation, with U(H) set to 1.2 Ueq(C) and Ueq(N) respectively.

The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C-C bond to best fit the experimental electron density (HFIX 137 in the SHELX program suite (Sheldrick, 2008)), with U(H) set to 1.5Ueq(C).

The H atoms of the hydroxyl groups were allowed to rotate with a fixed angle around the C—O bond to best fit the experimental electron density (HFIX 147 in the SHELX program suite (Sheldrick, 2008)), with U(H) set to 1.5Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O110.5156 (3)1.2649 (3)0.49062 (12)0.0377 (7)
H11A0.53771.34760.49590.057*
O120.6526 (3)1.2222 (3)0.55294 (12)0.0349 (6)
O130.8393 (3)1.0813 (3)0.48959 (12)0.0340 (7)
O140.8840 (3)0.8724 (3)0.51895 (13)0.0363 (7)
H14A0.96550.89130.51070.054*
O150.5589 (3)0.5243 (3)0.50160 (14)0.0406 (8)
O160.3406 (3)0.5520 (3)0.48128 (12)0.0321 (6)
O170.1613 (3)0.7171 (3)0.49938 (13)0.0365 (7)
H17A0.22330.66020.49190.055*
O180.1428 (3)0.9376 (3)0.51382 (13)0.0351 (7)
O210.5303 (3)0.7790 (3)0.38363 (14)0.0370 (7)
O220.5504 (3)1.0018 (3)0.37440 (17)0.0500 (10)
H22A0.61371.06700.37580.075*
O230.7235 (3)1.1753 (3)0.37790 (17)0.0455 (9)
O240.9469 (3)1.1983 (2)0.38543 (13)0.0318 (6)
O251.2733 (2)0.8364 (3)0.39696 (10)0.0276 (6)
H25A1.35480.82320.38750.041*
O261.2263 (3)0.6532 (3)0.35071 (11)0.0291 (6)
O271.0649 (3)0.4957 (3)0.41643 (10)0.0265 (5)
O280.8825 (3)0.4524 (2)0.36955 (11)0.0286 (6)
H280.91060.37030.37140.043*
N30.9720 (4)0.3343 (4)0.49322 (15)0.0420 (9)
H3A0.91850.25710.49100.050*
H3B1.00720.35200.46360.050*
N40.3409 (3)0.3907 (4)0.39447 (13)0.0310 (7)
H4A0.27990.42880.37340.037*
H4B0.32900.43380.42320.037*
C100.5492 (3)1.0341 (3)0.51166 (12)0.0190 (6)
C110.6516 (3)0.9326 (3)0.50839 (12)0.0180 (6)
C120.6134 (3)0.7951 (3)0.50505 (13)0.0203 (6)
H120.68360.72630.50430.024*
C130.4749 (3)0.7538 (3)0.50279 (12)0.0181 (6)
C140.3713 (3)0.8560 (3)0.50605 (12)0.0182 (6)
C150.4121 (3)0.9940 (3)0.51066 (13)0.0193 (6)
H150.34261.06310.51320.023*
C160.5807 (3)1.1841 (3)0.52053 (13)0.0214 (6)
C170.8019 (3)0.9708 (3)0.50521 (13)0.0207 (6)
C180.4570 (4)0.5988 (3)0.49537 (14)0.0238 (7)
C190.2155 (3)0.8358 (4)0.50648 (14)0.0239 (7)
C200.7591 (3)0.8638 (3)0.38189 (13)0.0186 (6)
C210.8632 (3)0.9671 (3)0.38146 (13)0.0185 (6)
C221.0014 (3)0.9250 (3)0.38182 (13)0.0200 (6)
H221.07160.99380.38170.024*
C231.0406 (3)0.7872 (3)0.38235 (12)0.0158 (6)
C240.9378 (3)0.6852 (3)0.38409 (12)0.0173 (6)
C250.7998 (3)0.7253 (3)0.38374 (13)0.0194 (6)
H250.73040.65580.38480.023*
C260.6027 (3)0.8836 (4)0.38037 (15)0.0249 (7)
C270.8424 (4)1.1233 (3)0.38165 (15)0.0266 (7)
C281.1904 (3)0.7498 (3)0.37547 (13)0.0201 (6)
C290.9707 (3)0.5344 (3)0.39091 (12)0.0186 (6)
C311.0866 (6)0.3067 (6)0.5262 (2)0.0530 (13)
H31A1.13720.22440.51540.080*
H31B1.04990.29060.55850.080*
H31C1.14920.38640.52670.080*
C320.8850 (6)0.4510 (7)0.5079 (3)0.0627 (16)
H32A0.94110.53540.50930.094*
H32B0.84570.43230.53970.094*
H32C0.80990.46330.48470.094*
C410.3069 (5)0.2421 (4)0.40027 (17)0.0353 (9)
H41A0.32200.19390.36980.053*
H41B0.20970.23260.40980.053*
H41C0.36640.20170.42500.053*
C420.4831 (4)0.4183 (5)0.37732 (19)0.0395 (10)
H42A0.49880.36870.34710.059*
H42B0.54980.38650.40140.059*
H42C0.49490.51790.37210.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0440 (17)0.0134 (11)0.0557 (19)0.0008 (11)0.0229 (14)0.0006 (12)
O120.0337 (14)0.0235 (13)0.0475 (17)0.0014 (11)0.0156 (13)0.0105 (12)
O130.0244 (13)0.0226 (12)0.0550 (18)0.0073 (10)0.0025 (12)0.0038 (12)
O140.0114 (11)0.0270 (13)0.070 (2)0.0007 (10)0.0005 (12)0.0107 (14)
O150.0245 (13)0.0136 (11)0.084 (3)0.0006 (10)0.0132 (15)0.0025 (13)
O160.0201 (12)0.0194 (12)0.0567 (18)0.0025 (9)0.0041 (12)0.0130 (12)
O170.0174 (12)0.0261 (13)0.066 (2)0.0019 (10)0.0030 (13)0.0130 (13)
O180.0132 (11)0.0260 (13)0.066 (2)0.0014 (10)0.0006 (12)0.0076 (13)
O210.0109 (11)0.0223 (13)0.078 (2)0.0005 (9)0.0032 (13)0.0035 (14)
O220.0147 (12)0.0226 (13)0.113 (3)0.0058 (10)0.0048 (16)0.0069 (16)
O230.0191 (13)0.0148 (12)0.102 (3)0.0052 (9)0.0021 (16)0.0011 (15)
O240.0222 (12)0.0108 (10)0.0624 (19)0.0022 (9)0.0031 (13)0.0014 (11)
O250.0095 (10)0.0280 (13)0.0454 (16)0.0009 (9)0.0013 (10)0.0052 (11)
O260.0186 (11)0.0230 (12)0.0457 (16)0.0041 (10)0.0020 (11)0.0069 (11)
O270.0216 (12)0.0175 (11)0.0405 (15)0.0036 (9)0.0048 (10)0.0043 (10)
O280.0314 (13)0.0099 (10)0.0445 (16)0.0022 (9)0.0115 (11)0.0007 (10)
N30.051 (2)0.0303 (17)0.045 (2)0.0167 (16)0.0150 (18)0.0110 (15)
N40.0235 (15)0.0280 (16)0.0414 (19)0.0082 (12)0.0053 (13)0.0080 (14)
C100.0182 (14)0.0144 (13)0.0243 (16)0.0007 (11)0.0005 (12)0.0010 (11)
C110.0137 (13)0.0149 (13)0.0255 (16)0.0009 (11)0.0005 (11)0.0005 (11)
C120.0129 (14)0.0152 (14)0.0328 (18)0.0002 (11)0.0014 (12)0.0004 (12)
C130.0130 (13)0.0119 (13)0.0295 (17)0.0008 (11)0.0020 (12)0.0005 (11)
C140.0127 (13)0.0161 (14)0.0258 (16)0.0010 (11)0.0010 (11)0.0023 (12)
C150.0124 (13)0.0149 (14)0.0305 (16)0.0009 (10)0.0018 (12)0.0035 (12)
C160.0165 (14)0.0143 (13)0.0333 (18)0.0014 (11)0.0003 (13)0.0035 (12)
C170.0147 (14)0.0178 (14)0.0297 (17)0.0020 (11)0.0027 (12)0.0058 (12)
C180.0212 (15)0.0131 (13)0.0370 (19)0.0018 (12)0.0005 (14)0.0002 (13)
C190.0128 (14)0.0244 (16)0.0344 (19)0.0008 (12)0.0003 (13)0.0047 (14)
C200.0102 (12)0.0152 (14)0.0304 (17)0.0013 (10)0.0002 (12)0.0016 (12)
C210.0153 (14)0.0102 (12)0.0299 (16)0.0005 (10)0.0018 (12)0.0015 (12)
C220.0145 (13)0.0118 (13)0.0336 (17)0.0023 (10)0.0007 (13)0.0016 (12)
C230.0092 (12)0.0124 (13)0.0258 (15)0.0009 (10)0.0019 (11)0.0008 (11)
C240.0134 (13)0.0133 (13)0.0253 (15)0.0013 (11)0.0008 (12)0.0014 (12)
C250.0130 (13)0.0139 (14)0.0312 (17)0.0029 (11)0.0001 (12)0.0007 (12)
C260.0106 (13)0.0223 (15)0.042 (2)0.0011 (11)0.0007 (13)0.0013 (15)
C270.0236 (16)0.0138 (14)0.042 (2)0.0024 (12)0.0014 (15)0.0009 (14)
C280.0112 (13)0.0157 (14)0.0334 (18)0.0017 (10)0.0010 (12)0.0054 (12)
C290.0158 (14)0.0135 (13)0.0267 (16)0.0007 (11)0.0006 (12)0.0008 (11)
C310.051 (3)0.052 (3)0.056 (3)0.004 (2)0.015 (2)0.013 (2)
C320.043 (3)0.076 (4)0.069 (4)0.015 (3)0.019 (3)0.024 (3)
C410.034 (2)0.032 (2)0.039 (2)0.0016 (16)0.0071 (17)0.0011 (17)
C420.028 (2)0.039 (2)0.051 (3)0.0064 (17)0.0007 (18)0.001 (2)
Geometric parameters (Å, º) top
O11—C161.304 (5)C11—C121.382 (4)
O11—H11A0.8400C11—C171.501 (4)
O12—C161.198 (5)C12—C131.398 (4)
O13—C171.208 (4)C12—H120.9500
O14—C171.297 (4)C13—C141.409 (4)
O14—H14A0.8400C13—C181.522 (4)
O15—C181.232 (5)C14—C151.396 (4)
O16—C181.274 (4)C14—C191.518 (4)
O17—C191.276 (4)C15—H150.9500
O17—H17A0.8400C20—C251.396 (4)
O18—C191.226 (4)C20—C211.418 (4)
O21—C261.233 (4)C20—C261.523 (4)
O22—C261.260 (4)C21—C221.396 (4)
O22—H22A0.8788C21—C271.522 (4)
O23—C271.258 (4)C22—C231.384 (4)
O24—C271.248 (4)C22—H220.9500
O25—C281.304 (4)C23—C241.400 (4)
O25—H25A0.8400C23—C281.504 (4)
O26—C281.211 (4)C24—C251.388 (4)
O27—C291.214 (4)C24—C291.504 (4)
O28—C291.307 (4)C25—H250.9500
O28—H280.8400C31—H31A0.9800
N3—C311.463 (6)C31—H31B0.9800
N3—C321.465 (8)C31—H31C0.9800
N3—H3A0.9100C32—H32A0.9800
N3—H3B0.9100C32—H32B0.9800
N4—C421.479 (6)C32—H32C0.9800
N4—C411.481 (5)C41—H41A0.9800
N4—H4A0.9100C41—H41B0.9800
N4—H4B0.9100C41—H41C0.9800
C10—C151.381 (4)C42—H42A0.9800
C10—C111.396 (4)C42—H42B0.9800
C10—C161.501 (4)C42—H42C0.9800
C16—O11—H11A109.5C22—C21—C20118.3 (3)
C17—O14—H14A109.5C22—C21—C27114.6 (3)
C19—O17—H17A109.5C20—C21—C27127.2 (3)
C26—O22—H22A111.4C23—C22—C21122.9 (3)
C28—O25—H25A109.5C23—C22—H22118.6
C29—O28—H28109.5C21—C22—H22118.6
C31—N3—C32113.5 (5)C22—C23—C24118.9 (3)
C31—N3—H3A108.9C22—C23—C28119.6 (3)
C32—N3—H3A108.9C24—C23—C28121.2 (3)
C31—N3—H3B108.9C25—C24—C23119.0 (3)
C32—N3—H3B108.9C25—C24—C29118.3 (3)
H3A—N3—H3B107.7C23—C24—C29122.5 (3)
C42—N4—C41114.6 (3)C24—C25—C20122.6 (3)
C42—N4—H4A108.6C24—C25—H25118.7
C41—N4—H4A108.6C20—C25—H25118.7
C42—N4—H4B108.6O21—C26—O22121.7 (3)
C41—N4—H4B108.6O21—C26—C20117.3 (3)
H4A—N4—H4B107.6O22—C26—C20121.0 (3)
C15—C10—C11118.7 (3)O24—C27—O23120.9 (3)
C15—C10—C16118.0 (3)O24—C27—C21118.0 (3)
C11—C10—C16123.1 (3)O23—C27—C21121.1 (3)
C12—C11—C10119.4 (3)O26—C28—O25125.5 (3)
C12—C11—C17119.4 (3)O26—C28—C23122.2 (3)
C10—C11—C17121.1 (3)O25—C28—C23112.2 (3)
C11—C12—C13122.2 (3)O27—C29—O28124.7 (3)
C11—C12—H12118.9O27—C29—C24122.0 (3)
C13—C12—H12118.9O28—C29—C24113.1 (3)
C12—C13—C14118.5 (3)N3—C31—H31A109.5
C12—C13—C18113.3 (3)N3—C31—H31B109.5
C14—C13—C18128.2 (3)H31A—C31—H31B109.5
C15—C14—C13118.3 (3)N3—C31—H31C109.5
C15—C14—C19113.7 (3)H31A—C31—H31C109.5
C13—C14—C19127.9 (3)H31B—C31—H31C109.5
C10—C15—C14122.8 (3)N3—C32—H32A109.5
C10—C15—H15118.6N3—C32—H32B109.5
C14—C15—H15118.6H32A—C32—H32B109.5
O12—C16—O11125.4 (3)N3—C32—H32C109.5
O12—C16—C10122.5 (3)H32A—C32—H32C109.5
O11—C16—C10112.0 (3)H32B—C32—H32C109.5
O13—C17—O14124.8 (3)N4—C41—H41A109.5
O13—C17—C11121.9 (3)N4—C41—H41B109.5
O14—C17—C11113.2 (3)H41A—C41—H41B109.5
O15—C18—O16122.8 (3)N4—C41—H41C109.5
O15—C18—C13117.7 (3)H41A—C41—H41C109.5
O16—C18—C13119.4 (3)H41B—C41—H41C109.5
O18—C19—O17120.8 (3)N4—C42—H42A109.5
O18—C19—C14117.8 (3)N4—C42—H42B109.5
O17—C19—C14121.5 (3)H42A—C42—H42B109.5
C25—C20—C21118.4 (3)N4—C42—H42C109.5
C25—C20—C26113.6 (3)H42A—C42—H42C109.5
C21—C20—C26128.0 (3)H42B—C42—H42C109.5
C15—C10—C11—C121.0 (5)C25—C20—C21—C221.4 (5)
C16—C10—C11—C12173.4 (3)C26—C20—C21—C22178.3 (3)
C15—C10—C11—C17174.9 (3)C25—C20—C21—C27177.2 (4)
C16—C10—C11—C1710.6 (5)C26—C20—C21—C273.0 (6)
C10—C11—C12—C132.7 (5)C20—C21—C22—C230.3 (5)
C17—C11—C12—C13173.3 (3)C27—C21—C22—C23179.1 (3)
C11—C12—C13—C142.7 (5)C21—C22—C23—C242.0 (5)
C11—C12—C13—C18175.6 (3)C21—C22—C23—C28171.1 (3)
C12—C13—C14—C150.9 (5)C22—C23—C24—C252.0 (5)
C18—C13—C14—C15177.0 (3)C28—C23—C24—C25171.1 (3)
C12—C13—C14—C19177.3 (3)C22—C23—C24—C29172.2 (3)
C18—C13—C14—C194.7 (6)C28—C23—C24—C2914.7 (5)
C11—C10—C15—C140.7 (5)C23—C24—C25—C200.2 (5)
C16—C10—C15—C14175.4 (3)C29—C24—C25—C20174.2 (3)
C13—C14—C15—C100.7 (5)C21—C20—C25—C241.5 (5)
C19—C14—C15—C10179.2 (3)C26—C20—C25—C24178.3 (3)
C15—C10—C16—O12123.0 (4)C25—C20—C26—O214.0 (5)
C11—C10—C16—O1251.5 (5)C21—C20—C26—O21176.3 (4)
C15—C10—C16—O1153.8 (4)C25—C20—C26—O22173.7 (4)
C11—C10—C16—O11131.6 (4)C21—C20—C26—O226.1 (6)
C12—C11—C17—O13150.8 (4)C22—C21—C27—O244.8 (5)
C10—C11—C17—O1325.2 (5)C20—C21—C27—O24173.9 (4)
C12—C11—C17—O1426.7 (5)C22—C21—C27—O23174.9 (4)
C10—C11—C17—O14157.3 (3)C20—C21—C27—O236.4 (7)
C12—C13—C18—O1514.0 (5)C22—C23—C28—O26138.4 (4)
C14—C13—C18—O15168.0 (4)C24—C23—C28—O2634.7 (5)
C12—C13—C18—O16163.2 (4)C22—C23—C28—O2538.4 (5)
C14—C13—C18—O1614.8 (6)C24—C23—C28—O25148.6 (3)
C15—C14—C19—O184.7 (5)C25—C24—C29—O27138.4 (4)
C13—C14—C19—O18173.7 (4)C23—C24—C29—O2735.8 (5)
C15—C14—C19—O17175.2 (4)C25—C24—C29—O2837.1 (5)
C13—C14—C19—O176.4 (6)C23—C24—C29—O28148.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O13i0.911.862.762 (4)169
N3—H3B···O270.911.992.798 (5)147
N4—H4A···O26ii0.912.323.025 (4)134
N4—H4A···O27ii0.912.492.918 (4)110
N4—H4A···O12iii0.912.192.830 (5)127
N4—H4B···O160.911.992.879 (5)167
O11—H11A···O15iv0.841.732.560 (4)171
O14—H14A···O17v0.842.553.119 (4)126
O14—H14A···O18v0.841.772.583 (4)161
O17—H17A···O160.841.572.409 (4)176
O22—H22A···O230.881.492.370 (4)179
O25—H25A···O21v0.841.752.572 (4)164
O25—H25A···O22v0.842.593.181 (4)129
O28—H28···O24i0.841.742.571 (3)168
C32—H32C···O150.982.543.234 (6)128
C41—H41C···O11i0.982.413.235 (5)142
C42—H42C···O210.982.573.519 (6)164
Symmetry codes: (i) x, y1, z; (ii) x1, y, z; (iii) y1, x+1, z1/4; (iv) x, y+1, z; (v) x+1, y, z.
 

Acknowledgements

This work is funded by Rhodes University Research Council.

References

First citationBruker. (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, D.-C., Li, X.-H. & Ding, J.-C. (2007). Acta Cryst. E63, o1133–o1135.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCunha-Silva, L., Girginova, P. I., Trindade, T., Rocha, J., Klinowski, J. & Almeida Paz, F. A. (2008). Acta Cryst. E64, o69–o70.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDale, S. H. & Elsegood, M. R. J. (2004). Acta Cryst. C60, o444–o448.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKarpova, E. V., Zakharov, M. A., Gutnikov, S. I. & Alekseyev, R. S. (2004). Acta Cryst. E60, o2491–o2492.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiddiqui, T., Koteswara Rao, V., Zeller, M. & Lovelace-Cameron, S. R. (2012). Acta Cryst. E68, o1778.  CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds