research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-(2-hy­dr­oxy­eth­yl)-2-methyl­sulfanyl-6-nitro-3H-benzimidazol-1-ium chloride monohydrate

CROSSMARK_Color_square_no_text.svg

aUnité Mixte de Recherche et d'Innovation en Electronique et d'Electricité Appliquées (UMRI EEA), Equipe de Recherche: Instrumentation Image et Spectroscopie (L2IS), DFR–GEE, Institut National Polytechnique Félix Houphouët-Boigny (INP-HB), BP 1093, Yamoussoukro, Côte d'Ivoire, Laboratoire de Cristallographie et Physique Moléculaire, UFR SSMT, Université de Cocody 22 BP 582 Abidjan 22, Côte d'Ivoire, bLaboratoire de Chimie Organique, UFR SSMT, Université de Cocody 22 BP 582 Abidjan 22, Côte d'Ivoire, cLaboratoire de Cristallographie et Physique Moléculaire, UFR SSMT, Université de Cocody 22 BP 582 Abidjan 22, Côte d'Ivoire, and dUnité Mixte de Recherche et d'Innovation en Electronique et d'Electricité Appliquées (UMRI EEA)., Equipe de Recherche: Instrumentation Image et Spectroscopie (L2IS), DFR–GEE, Institut National Polytechnique Félix Houphouët-Boigny (INP-HB), BP 1093, Yamoussoukro, Côte d'Ivoire
*Correspondence e-mail: abouakoun@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 18 August 2016; accepted 25 August 2016; online 31 August 2016)

In the cation of the title hydrated molecular salt, C10H12N3O3S+·Cl·H2O, the benzimidazolium ring system is almost planar (r.m.s. deviation = 0.006 Å) and the nitro group is inclined at an angle of 4.86 (9)° to this plane. In the crystal, C—H⋯O hydrogen bonds form centrosymmetric R22(20) dimers and these are further aggregated through N—H⋯O and O—H⋯Cl hydrogen bonds involving the water mol­ecules and chloride anions. Aromatic ππ stacking inter­actions are also found between two parallel benzene rings or the benzene and imidazolium rings, with centroid–centroid distances of 3.5246 (9) and 3.7756 (9) Å, respectively. Analysis of the bond lengths and comparison with related compounds show that the nitro substituent is not involved in conjugation with the adjacent π-system and hence has no effect on the charge distribution of the heterocyclic ring.

1. Chemical context

Numerous compounds with benzimidazole ring systems display versatile pharmacological activities such as anti-viral, anti-helmintic, spasmolitic, anti-hypertensive and vasodilator properties (Akkurt et al., 2006[Akkurt, M., Türktekin, S., Şireci, N., Küçükbay, H. & Büyükgüngör, O. (2006). Acta Cryst. E62, o185-o187.]). Many benzimidazole derivatives also have anti-microbial and anti-fungal activities (Küçükbay et al., 2003[Küçükbay, H., Durmaz, R., Orhan, E. & Günal, S. (2003). Farmaco, 58, 431-437.], 2004[Küçükbay, H., Durmaz, R., Okuyucu, N., Günal, S. & Kazaz, C. (2004). Arzneim.-Forsch. Drug. Res. 54, 64-68.]; Puratchikody et al., 2008[Puratchikody, A., Nagalakshmi, G. & Doble, M. (2008). Chem. Pharm. Bull. 56, 273-281.]; Alasmary et al., 2015[Alasmary, F. A. S., Snelling, A. M., Zain, M. E., Alafeefy, A. M., Awaad, A. S. & Karodia, N. K. (2015). Molecules, 20, 15206-15223.]). The synthesis of new benzimidazole derivatives is therefore of considerable current inter­est. As part of our studies in this area, the title protonated benzimidazole compound (I)[link] has been synthesized and its mol­ecular structure is presented here.

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The nine-membered benzimidazolium ring system (N4/C11/N9/C13/C16/C7/C15/C18/C10) is essentially planar, the maximum deviation from planarity being 0.013 (1) Å for atom N4. In addition, atoms N12, C17 and S2 of the nitro, hy­droxy­ethyl and methyl­sulfanyl substituents lie close to the benzimidazolium ring plane with a maximum deviation of −0.059 (1) Å for atom S2. The least-squares plane of the nitro group (C7/N12/O6/O8) lies close to the benzimidazolium ring system, making a dihedral angle of 4.86 (9)°. In the structure, the bond lengths and angles of the benzimidazolium ring are generally in good agreement with those observed in related structures (Morozov et al., 2004[Morozov, P. J., Kurbatov, S. V., Dolgushin, F. M., Antipin, M. Y. & Olekhnovich, L. P. (2004). Russ. Chem. Bull. 9, 1990-1994.]; Verdan et al., 2009[Verdan, S., Melich, X., Bernardinelli, G. & Williams, A. F. (2009). CrystEngComm, 11, 1416-1426.]; Chen et al., 2010[Chen, S. H., Yang, F. R., Wang, M. T. & Wang, N. N. (2010). C. R. Chim. 13, 1391-1396.]; Yuasa et al., 2010[Yuasa, J., Ogawa, T. & Kawai, T. (2010). Chem. Commun. 46, 3693-3695.]; Gao et al., 2013[Gao, X. J., Jin, S., Liang, S., Chen, W. & Wang, D. (2013). J. Mol. Struct. 1039, 144-152.]; Samsonov et al., 2013[Samsonov, V. A., Gatilov, Y. V. & Savel'ev, V. A. (2013). Russ. J. Org. Chem. 49, 1208-1214.]; Liu et al., 2014[Liu, J. & Pan, Q. (2014). Z. Kristallogr. New Cryst. Struct. 229, 111-112.]). In addition, the C7—N12 bond length, 1.4667 (19) Å shows that the nitro group is not involved in conjugation with the adjacent π-system and hence has no effect on the charge distribution of the heterocyclic ring.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atomic labelling scheme and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

3. Supra­molecular features

In the crystal, C14—H14B⋯O8 hydrogen bonds (Table 1[link]) link the organic fragments into centrosymmetric dimers with [R_{2}^{2}](20) ring motifs along the [100] direction (Fig. 2[link]). These dimers are further connected along the [100] and [010] directions by N—H⋯O and O—H⋯Cl hydrogen bonds, respectively, generating R46(22) rings. In the latter ring motifs, both the water mol­ecule and the oxygen atom of the hy­droxy­ethyl substituent act as donors with the chloride anion as acceptor. The O3 atom of the water mol­ecule serves as acceptor for the H9 atom of the imidazolium NH group (Fig. 3[link]). The pattern formed by the water mol­ecules connecting the chloride anions, and forming an R24(8) ring, is reminiscent of a parallelogram (Fig. 3[link]). The supra­molecular aggregation is completed by ππ stacking inter­actions between two parallel benzene rings and between the benzene and imidazolium rings: Cg2⋯Cg2(1 − x, −y, −z) = 3.5246 (9), Cg1⋯Cg2(1 − x, −y, −z) = 3.7756 (9) Å, slippage = 1.190 Å Cg1 and Cg2 are the centroids of the imidazolium and benzene rings respectively. The centroid–centroid separations are less than 3.8 Å, the maximum regarded as suitable for an effective ππ inter­action (Janiak, 2000[Janiak, J. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]) (Fig. 4[link])).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯Cl1 0.82 2.40 3.1840 (15) 161
C17—H17B⋯S2 0.97 2.68 3.1514 (18) 110
O3—H3B⋯Cl1 0.83 (2) 2.28 (2) 3.1090 (14) 178 (2)
O3—H3A⋯Cl1i 0.79 (2) 2.37 (2) 3.1561 (14) 174 (2)
C14—H14B⋯O8ii 0.97 2.60 3.189 (2) 119
N9—H9⋯O3iii 0.86 1.85 2.6949 (16) 165
Symmetry codes: (i) -x, -y, -z+1; (ii) -x, -y, -z; (iii) x+1, y, z.
[Figure 2]
Figure 2
The crystal packing of (I)[link], showing the supra­molecular aggregation resulting from the three-dimensional hydrogen-bonded network. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3]
Figure 3
The mol­ecular packing of (I)[link], showing the pattern formed by the water mol­ecules hydrogen bonded to the chloride anions.
[Figure 4]
Figure 4
A view of the crystal packing, showing ππ stacking inter­actions (dashed lines). The brown dots are the centroids of the rings. H atoms have been omitted for clarity.

4. Database survey

A CSD search (Web CSD version 5.37; August 19, 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) found eight benzimidazolium structures with substituents at the 1 and 2 positions of the imidazolium ring system (Morozov et al., 2004[Morozov, P. J., Kurbatov, S. V., Dolgushin, F. M., Antipin, M. Y. & Olekhnovich, L. P. (2004). Russ. Chem. Bull. 9, 1990-1994.]; Verdan et al., 2009[Verdan, S., Melich, X., Bernardinelli, G. & Williams, A. F. (2009). CrystEngComm, 11, 1416-1426.]; Chen et al., 2010[Chen, S. H., Yang, F. R., Wang, M. T. & Wang, N. N. (2010). C. R. Chim. 13, 1391-1396.]; Yuasa et al., 2010[Yuasa, J., Ogawa, T. & Kawai, T. (2010). Chem. Commun. 46, 3693-3695.]; Gao et al., 2013[Gao, X. J., Jin, S., Liang, S., Chen, W. & Wang, D. (2013). J. Mol. Struct. 1039, 144-152.]; Samsonov et al., 2013[Samsonov, V. A., Gatilov, Y. V. & Savel'ev, V. A. (2013). Russ. J. Org. Chem. 49, 1208-1214.]; Liu et al., 2014[Liu, J. & Pan, Q. (2014). Z. Kristallogr. New Cryst. Struct. 229, 111-112.]; Kerimov et al., 2012[Kerimov, I., İlgar, , Ayhan-Kılcıgil, G., Özdamar, E. D., Can-Eke, B., Çoban, T., Özbey, S. & Kazak, C. (2012). Arch. Pharm. Pharm. Med. Chem. 345, 549-556.]). In these structures, the imidazolium rings generally show two long (in the range 1.36–1.40 Å) and two short (1.30–1.34 Å) C—N distances. This pattern is clearly repeated here with N4—C11 = 1.3492 (18) and N9—C11 = 1.3390 (17) Å while N4—C10 = 1.3898 (18) Å and N9—C13 = 1.3867 (16)Å. The sole exception to this pattern is the compound, 2-(4-chloro­phen­yl)-3-[(5-(3,5-di­nitro­phen­yl)-1,3,4-oxa­diazol-2-yl]meth­yl)-1H-benzimidazole (Kerimov et al., 2012[Kerimov, I., İlgar, , Ayhan-Kılcıgil, G., Özdamar, E. D., Can-Eke, B., Çoban, T., Özbey, S. & Kazak, C. (2012). Arch. Pharm. Pharm. Med. Chem. 345, 549-556.]), with an imidazolium ring, which reveals three long (1.37–1.39 Å) and one short ( 1.30 Å) C—N bonds, a pattern that is also displayed in benzimidazole structures (Abou et al., 2007[Abou, A., Bany, G. E., Kakou-Yao, R., Seikou, T. & Ebby, N. D. (2007). Acta Cryst. E63, o4218.]; Yavo et al., 2007[Yavo, E. A., Kakou-Yao, R., Coulibaly, S., Abou, A. & Tenon, A. J. (2007). Acta Cryst. E63, o4551.]; Kakou-Yao et al., 2007[Kakou-Yao, R., Abou, A., Adjou, A., Bany, G. E. & Ebby, N. D. (2007). Acta Cryst. E63, o4463.]; Akonan et al., 2010[Akonan, L., Molou, K. Y. G., Adohi-Krou, A., Abou, A. & Tenon, A. J. (2010). Acta Cryst. E66, o442.]; Lokaj et al., 2009[Lokaj, J., Kettmann, V., Milata, V. & Solčan, T. (2009). Acta Cryst. E65, o1788.]).

5. Synthesis and crystallization

2-Chloro­ethanol (1.3 ml, 19.2 mmol) and potassium carbonate (1.32 g, 9.6 mmol) were added to 2-methyl­thio-5-nitro-1H-benzimidazole (1.15 g, 4.8 mmol) in dimethyl sulfoxide (DMSO) (10 ml). The reaction mixture was agitated for 5 h at room temperature. 50 ml of water was then added to the reaction mixture, and the products were extracted with di­chloro­methane (3 × 50 ml). The combined organic extracts were washed with ammonium chloride solution (10 g of ammonium chloride in 100 ml of water), dried over Na2SO4, filtered and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel (elution: methanol/ethyl acetate, 20:80, v/v). The resulting powder was dissolved in di­chloro­methane and after three days, yellow crystals suitable for single-crystal X-ray diffraction analysis were obtained in 72% yield with a melting point of 425 K.

1H NMR (DMSO, 300 MHz) δ(p.p.m.): 2.7 (s, 3H, CH3); 3 (s, 2H, H2O); 3.7 (m, 2H, CH2O); 4.3 (m, 2H, CH2N); 5 (t, 1H, OH); 7.5–8.5 (m, 3H, C6H3).

13C (DMSO, 75 MHz) δ (p.p.m.): 114.28 (CH3); 47 (CH2O); 59 (CH2N); 106.56; 110.03; 112.87; 117.13; 136.38; 147.37; 155.52 (C4, C5, C6, C7, C8, C9); 162.23 (C=N).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The water H atoms were located in a difference Fourier map; their positional parameters and Uiso(H) were refined with O—H distances restrained to be 0.82 Å with a standard deviation of 0.02 Å. Other H atoms were placed in calculated positions [O—H = 0.82, N—H = 0.86, C—H = 0.93 (aromatic), 0.96 (meth­yl) or 0.97 Å (methyl­ene)] and refined using a riding-model approximation with Uiso(H) constrained to 1.2 (amine, aromatic and methyl­ene group) or 1.5 (hydroxyl, methyl group) times Ueq of the respective parent atom.

Table 2
Experimental details

Crystal data
Chemical formula C10H12N3O3S+·Cl·H2O
Mr 307.75
Crystal system, space group Monoclinic, P21/c
Temperature (K) 298
a, b, c (Å) 8.8587 (5), 22.1427 (8), 7.1657 (2)
β (°) 108.497 (3)
V3) 1332.98 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.46
Crystal size (mm) 0.30 × 0.15 × 0.10
 
Data collection
Diffractometer Nonius KappaCCD
No. of measured, independent and observed [I > 2σ(I)] reflections 15850, 3856, 3030
Rint 0.029
(sin θ/λ)max−1) 0.705
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.110, 1.06
No. of reflections 3856
No. of parameters 183
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.24
Computer programs: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SIR94 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR94 (Burla et al., 2005); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

3-(2-Hydroxyethyl)-2-methylsulfanyl-6-nitro-3H-benzimidazol-1-ium chloride monohydrate top
Crystal data top
C10H12N3O3S+·Cl·H2OF(000) = 640
Mr = 307.75Dx = 1.534 Mg m3
Monoclinic, P21/cMelting point: 425 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.8587 (5) ÅCell parameters from 15850 reflections
b = 22.1427 (8) Åθ = 4.1–30.1°
c = 7.1657 (2) ŵ = 0.46 mm1
β = 108.497 (3)°T = 298 K
V = 1332.98 (10) Å3Block, yellow
Z = 40.30 × 0.15 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
3030 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 30.1°, θmin = 4.1°
f and ω scansh = 1212
15850 measured reflectionsk = 3131
3856 independent reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0512P)2 + 0.4116P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3856 reflectionsΔρmax = 0.29 e Å3
183 parametersΔρmin = 0.24 e Å3
2 restraintsExtinction correction: SHELXL2014 (Sheldrick 2015, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
48 constraintsExtinction coefficient: 0.010 (3)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.13738 (5)0.08560 (2)0.42268 (6)0.05068 (14)
S20.57871 (5)0.21143 (2)0.26622 (7)0.04747 (14)
O30.15176 (14)0.05681 (6)0.56505 (18)0.0472 (3)
N40.36705 (14)0.12789 (5)0.06943 (17)0.0345 (3)
O50.1477 (2)0.20574 (6)0.1828 (3)0.0718 (4)
H50.16680.17730.26030.108*
O60.45778 (19)0.14042 (6)0.3012 (2)0.0634 (4)
C70.34801 (17)0.05387 (6)0.1321 (2)0.0342 (3)
O80.24519 (18)0.14988 (6)0.0528 (2)0.0679 (4)
N90.56755 (14)0.08753 (5)0.29958 (17)0.0314 (2)
H90.65630.08380.39310.038*
C100.33709 (16)0.06625 (6)0.06760 (19)0.0313 (3)
C110.50505 (17)0.13941 (6)0.2131 (2)0.0333 (3)
N120.35085 (17)0.11931 (6)0.1646 (2)0.0430 (3)
C130.46514 (15)0.04077 (6)0.21301 (19)0.0288 (3)
C140.1141 (2)0.18374 (9)0.0101 (3)0.0561 (5)
H14A0.04770.21270.10140.067*
H14B0.05480.14630.02290.067*
C150.21856 (18)0.02957 (7)0.0142 (2)0.0395 (3)
H150.13720.05460.08810.047*
C160.47534 (16)0.02074 (6)0.2500 (2)0.0310 (3)
H160.56060.03830.34590.037*
C170.26321 (19)0.17270 (8)0.0631 (2)0.0443 (4)
H17A0.23470.15830.19770.053*
H17B0.32070.21040.05500.053*
C180.21161 (17)0.03179 (7)0.0491 (2)0.0390 (3)
H180.12690.04930.14610.047*
C190.7761 (2)0.19682 (8)0.4278 (3)0.0560 (5)
H19A0.77030.17560.54210.084*
H19B0.83110.23440.46730.084*
H19C0.83270.17270.36060.084*
H3B0.076 (2)0.0647 (10)0.524 (3)0.060 (6)*
H3A0.152 (3)0.0212 (7)0.573 (4)0.070 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0492 (2)0.0521 (3)0.0514 (2)0.00027 (17)0.01683 (18)0.00853 (17)
S20.0580 (3)0.02568 (18)0.0586 (3)0.00229 (15)0.0185 (2)0.00067 (15)
O30.0382 (6)0.0495 (7)0.0520 (7)0.0023 (5)0.0116 (5)0.0069 (5)
N40.0362 (6)0.0320 (6)0.0354 (6)0.0051 (4)0.0116 (5)0.0048 (4)
O50.1054 (13)0.0430 (7)0.0891 (11)0.0073 (7)0.0620 (10)0.0007 (7)
O60.0788 (10)0.0336 (6)0.0715 (9)0.0019 (6)0.0152 (7)0.0062 (6)
C70.0393 (7)0.0307 (6)0.0376 (7)0.0053 (5)0.0193 (6)0.0049 (5)
O80.0661 (9)0.0436 (7)0.0917 (11)0.0218 (6)0.0217 (8)0.0198 (7)
N90.0322 (6)0.0264 (5)0.0335 (6)0.0009 (4)0.0075 (4)0.0016 (4)
C100.0325 (6)0.0329 (6)0.0299 (6)0.0013 (5)0.0119 (5)0.0003 (5)
C110.0380 (7)0.0283 (6)0.0360 (7)0.0018 (5)0.0150 (5)0.0011 (5)
N120.0507 (8)0.0323 (6)0.0540 (8)0.0091 (5)0.0278 (6)0.0085 (6)
C130.0276 (6)0.0301 (6)0.0296 (6)0.0013 (5)0.0103 (5)0.0019 (5)
C140.0517 (10)0.0490 (10)0.0725 (12)0.0175 (8)0.0269 (9)0.0167 (9)
C150.0352 (7)0.0463 (8)0.0379 (7)0.0097 (6)0.0129 (6)0.0094 (6)
C160.0330 (6)0.0297 (6)0.0322 (6)0.0002 (5)0.0128 (5)0.0003 (5)
C170.0451 (8)0.0437 (8)0.0447 (8)0.0122 (7)0.0151 (7)0.0151 (7)
C180.0317 (7)0.0491 (8)0.0335 (7)0.0004 (6)0.0066 (5)0.0011 (6)
C190.0531 (10)0.0394 (8)0.0723 (12)0.0149 (7)0.0153 (9)0.0057 (8)
Geometric parameters (Å, º) top
S2—C111.7194 (14)N9—H90.8600
S2—C191.794 (2)C10—C181.388 (2)
O3—H3B0.833 (16)C10—C131.3932 (18)
O3—H3A0.792 (16)C13—C161.3849 (18)
N4—C111.3492 (18)C14—C171.506 (2)
N4—C101.3898 (18)C14—H14A0.9700
N4—C171.4758 (18)C14—H14B0.9700
O5—C141.405 (3)C15—C181.379 (2)
O5—H50.8200C15—H150.9300
O6—N121.219 (2)C16—H160.9300
C7—C161.3853 (19)C17—H17A0.9700
C7—C151.393 (2)C17—H17B0.9700
C7—N121.4667 (19)C18—H180.9300
O8—N121.2251 (18)C19—H19A0.9600
N9—C111.3390 (17)C19—H19B0.9600
N9—C131.3867 (16)C19—H19C0.9600
C11—S2—C19101.51 (8)C17—C14—H14A109.2
H3B—O3—H3A105 (2)O5—C14—H14B109.2
C11—N4—C10108.48 (11)C17—C14—H14B109.2
C11—N4—C17126.35 (13)H14A—C14—H14B107.9
C10—N4—C17125.16 (12)C18—C15—C7119.69 (13)
C14—O5—H5109.5C18—C15—H15120.2
C16—C7—C15124.82 (13)C7—C15—H15120.2
C16—C7—N12117.17 (13)C13—C16—C7114.40 (12)
C15—C7—N12118.01 (13)C13—C16—H16122.8
C11—N9—C13108.53 (11)C7—C16—H16122.8
C11—N9—H9125.7N4—C17—C14111.36 (13)
C13—N9—H9125.7N4—C17—H17A109.4
C18—C10—N4131.27 (13)C14—C17—H17A109.4
C18—C10—C13122.29 (13)N4—C17—H17B109.4
N4—C10—C13106.44 (11)C14—C17—H17B109.4
N9—C11—N4109.42 (12)H17A—C17—H17B108.0
N9—C11—S2128.39 (11)C15—C18—C10116.82 (13)
N4—C11—S2122.18 (11)C15—C18—H18121.6
O6—N12—O8123.47 (15)C10—C18—H18121.6
O6—N12—C7118.44 (13)S2—C19—H19A109.5
O8—N12—C7118.09 (15)S2—C19—H19B109.5
C16—C13—N9130.92 (12)H19A—C19—H19B109.5
C16—C13—C10121.98 (12)S2—C19—H19C109.5
N9—C13—C10107.10 (11)H19A—C19—H19C109.5
O5—C14—C17112.04 (17)H19B—C19—H19C109.5
O5—C14—H14A109.2
C11—N4—C10—C18179.32 (14)C11—N9—C13—C100.53 (15)
C17—N4—C10—C180.1 (2)C18—C10—C13—C160.1 (2)
C11—N4—C10—C131.53 (14)N4—C10—C13—C16179.10 (12)
C17—N4—C10—C13179.07 (13)C18—C10—C13—N9179.86 (12)
C13—N9—C11—N41.51 (15)N4—C10—C13—N90.61 (14)
C13—N9—C11—S2178.15 (11)C16—C7—C15—C180.1 (2)
C10—N4—C11—N91.90 (15)N12—C7—C15—C18179.95 (13)
C17—N4—C11—N9178.70 (13)N9—C13—C16—C7179.86 (13)
C10—N4—C11—S2177.78 (10)C10—C13—C16—C70.51 (19)
C17—N4—C11—S21.6 (2)C15—C7—C16—C130.5 (2)
C19—S2—C11—N911.50 (16)N12—C7—C16—C13179.58 (12)
C19—S2—C11—N4168.88 (13)C11—N4—C17—C14106.73 (18)
C16—C7—N12—O65.1 (2)C10—N4—C17—C1472.56 (19)
C15—C7—N12—O6174.94 (15)O5—C14—C17—N460.0 (2)
C16—C7—N12—O8174.90 (14)C7—C15—C18—C100.2 (2)
C15—C7—N12—O85.0 (2)N4—C10—C18—C15179.29 (14)
C11—N9—C13—C16179.79 (14)C13—C10—C18—C150.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···Cl10.822.403.1840 (15)161
C17—H17B···S20.972.683.1514 (18)110
O3—H3B···Cl10.83 (2)2.28 (2)3.1090 (14)178 (2)
O3—H3A···Cl1i0.79 (2)2.37 (2)3.1561 (14)174 (2)
C14—H14B···O8ii0.972.603.189 (2)119
N9—H9···O3iii0.861.852.6949 (16)165
Symmetry codes: (i) x, y, z+1; (ii) x, y, z; (iii) x+1, y, z.
 

Acknowledgements

The authors are grateful to the Spectropôle Service of the Faculty of Sciences and Techniques of Saint Jérôme (France) for the use of the diffractometer.

References

First citationAbou, A., Bany, G. E., Kakou-Yao, R., Seikou, T. & Ebby, N. D. (2007). Acta Cryst. E63, o4218.  CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Türktekin, S., Şireci, N., Küçükbay, H. & Büyükgüngör, O. (2006). Acta Cryst. E62, o185–o187.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkonan, L., Molou, K. Y. G., Adohi-Krou, A., Abou, A. & Tenon, A. J. (2010). Acta Cryst. E66, o442.  CrossRef IUCr Journals Google Scholar
First citationAlasmary, F. A. S., Snelling, A. M., Zain, M. E., Alafeefy, A. M., Awaad, A. S. & Karodia, N. K. (2015). Molecules, 20, 15206–15223.  CrossRef CAS PubMed Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChen, S. H., Yang, F. R., Wang, M. T. & Wang, N. N. (2010). C. R. Chim. 13, 1391–1396.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGao, X. J., Jin, S., Liang, S., Chen, W. & Wang, D. (2013). J. Mol. Struct. 1039, 144–152.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationJaniak, J. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationKakou-Yao, R., Abou, A., Adjou, A., Bany, G. E. & Ebby, N. D. (2007). Acta Cryst. E63, o4463.  CrossRef IUCr Journals Google Scholar
First citationKerimov, I., İlgar, , Ayhan-Kılcıgil, G., Özdamar, E. D., Can-Eke, B., Çoban, T., Özbey, S. & Kazak, C. (2012). Arch. Pharm. Pharm. Med. Chem. 345, 549–556.  Google Scholar
First citationKüçükbay, H., Durmaz, R., Okuyucu, N., Günal, S. & Kazaz, C. (2004). Arzneim.-Forsch. Drug. Res. 54, 64–68.  Google Scholar
First citationKüçükbay, H., Durmaz, R., Orhan, E. & Günal, S. (2003). Farmaco, 58, 431–437.  PubMed CAS Google Scholar
First citationLiu, J. & Pan, Q. (2014). Z. Kristallogr. New Cryst. Struct. 229, 111–112.  CAS Google Scholar
First citationLokaj, J., Kettmann, V., Milata, V. & Solčan, T. (2009). Acta Cryst. E65, o1788.  CrossRef IUCr Journals Google Scholar
First citationMorozov, P. J., Kurbatov, S. V., Dolgushin, F. M., Antipin, M. Y. & Olekhnovich, L. P. (2004). Russ. Chem. Bull. 9, 1990–1994.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPuratchikody, A., Nagalakshmi, G. & Doble, M. (2008). Chem. Pharm. Bull. 56, 273–281.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSamsonov, V. A., Gatilov, Y. V. & Savel'ev, V. A. (2013). Russ. J. Org. Chem. 49, 1208–1214.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVerdan, S., Melich, X., Bernardinelli, G. & Williams, A. F. (2009). CrystEngComm, 11, 1416–1426.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYavo, E. A., Kakou-Yao, R., Coulibaly, S., Abou, A. & Tenon, A. J. (2007). Acta Cryst. E63, o4551.  CrossRef IUCr Journals Google Scholar
First citationYuasa, J., Ogawa, T. & Kawai, T. (2010). Chem. Commun. 46, 3693–3695.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds