research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of [Mn(bdc)(Hspar)2(H2O)0.25]·2H2O containing MnO6+1 capped trigonal prisms and [Cu(Hspar)2](bdc)·2H2O containing CuO4 squares (Hspar = sparfloxacin and bdc = benzene-1,4-di­carboxyl­ate)

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry and Life Science, Guangdong University of Petrochemical Technology, Maoming 525000, People's Republic of China, bDepartment of Pharmacy, Mudanjiang Medical University, Heilongjiang 157011, People's Republic of China, and cDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

Edited by J. Simpson, University of Otago, New Zealand (Received 15 December 2015; accepted 16 December 2015; online 1 January 2016)

The syntheses and crystal structures of 0.25-aqua­(benzene-1,4-di­carboxyl­ato-κ2O,O′)bis­(sparfloxacin-κ2O,O′)manganese(II) dihydrate, [Mn(C8H4O4)(C19H22F2N4O3)2(H2O)0.25]·2H2O or [Mn(bdc)(Hspar)2(H2O)0.25]·2H2O, (I), and bis­(sparfloxacin-κ2O,O′)copper(II) benzene-1,4-di­carboxyl­ate dihydrate, [Cu(C19H22F2N4O3)2](C8H4O4)·2H2O or [Cu(Hspar)2](bdc)·2H2O, (II), are reported (Hspar = sparfloxacin and bdc = benzene-1,4-di­carboxyl­ate). The Mn2+ ion in (I) is coordinated by two O,O′-bidentate Hspar neutral mol­ecules (which exist as zwitterions) and an O,O′-bidentate bdc dianion to generate a distorted MnO6 trigonal prism. A very long bond [2.580 (12) Å] from the Mn2+ ion to a 0.25-occupied water mol­ecule projects through a square face of the prism. In (II), the Cu2+ ion lies on a crystallographic inversion centre and a CuO4 square-planar geometry arises from its coordination by two O,O′-bidentate Hspar mol­ecules. The bdc dianion acts as a counter-ion to the cationic complex and does not bond to the metal ion. The Hspar ligands in both (I) and (II) feature intra­molecular N—H⋯O hydrogen bonds, which close S(6) rings. In the crystals of both (I) and (II), the components are linked by N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds, generating three-dimensional networks.

1. Chemical context

Sparfloxacin, C19H22F2N4O3 (Hspar; systematic name: 5-amino-1-cyclo­propyl-7-[(3R*,5S*)(3,5-di­methyl­piperazin-1-yl]-6,8-di­fluoro-4-oxo-quinoline-3-carb­oxy­lic acid) (Miyamoto et al., 1990[Miyamoto, T., Matsumoto, J.-I., Chiba, K., Egawa, H., Shibamori, K., Minamida, A., Nishimura, Y., Okada, H., Kataoka, M., Fujita, M., Hirose, T. & Nakano, J. (1990). J. Med. Chem. 33, 1645-1656.]; Qadri et al., 1992[Qadri, S. M. H., Ueno, Y., Burns, J. J., Almodovar, E. & Rabea, N. (1992). Chemotherapy, 38, 99-106.]) is a member of the quinolone (Andersson & MacGowan, 2003[Andersson, M. I. & MacGowan, A. P. (2003). J. Antimicrob. Chemother. 51 Suppl. S1, 1-11.]) family of anti­biotics; other well-known examples of this group of compounds include ciprofloxacin (C17H18FN3O3) and enroflaxacin (C19H22FN3O3). As well as their biological significance, this class of compounds is of inter­est in coordination chemistry due to their potential to act as multi-dentate and bridging ligands in the construction of mononuclear and dinuclear complexes (An et al., 2008[An, Z., Liu, L.-R. & Liu, Y.-Q. (2008). Acta Cryst. E64, m176.], 2010[An, Z., Gao, J. & Harrison, W. T. A. (2010). J. Coord. Chem. 63, 3871-3879.]) and coordination polymers (Xiao et al., 2005[Xiao, D.-R., Wang, E.-B., An, H.-Y., Su, Z.-M., Li, Y.-G., Gao, L., Sun, C.-Y. & Xu, L. (2005). Chem. Eur. J. 11, 6673-6686.]; Yu et al., 2009[Yu, L.-C., Tang, Z.-L., Yi, P.-G. & Liu, S.-L. (2009). J. Coord. Chem. 62, 894-902.]).

As well as hydrated Hspar, which occurs in the crystal in its zwitterionic form, i.e. proton transfer from the –CO2H carb­oxy­lic acid group to the remote secondary amine moiety of the piperazine ring (Sivalakshmidevi et al., 2000[Sivalakshmidevi, A., Vyas, K. & Om Reddy, G. (2000). Acta Cryst. C56, e115-e116.]), the crystal structures of its anionic (spar) complexes with nickel (Skyrianou et al., 2009[Skyrianou, K. C., Raptopoulou, C. P., Psycharis, V., Kessissoglou, D. P. & Psomas, G. (2009). Polyhedron, 28, 3265-3271.]), copper (Efthimiadou et al., 2006[Efthimiadou, E. K., Sanakis, Y., Raptopoulou, C. P., Karaliota, K., Katsaros, N. & Psomas, G. (2006). Bioorg. Med. Chem. Lett. 16, 3864-3867.]) and zinc (Tarushi et al., 2011[Tarushi, A., Polatoglou, E., Kljun, J., Turel, I., Psomas, G. & Kessissoglou, D. P. (2011). Dalton Trans. 40, 9461-9473.]) have been reported. Hydrated mol­ecular salts of the H2spar+ cation (i.e. containing both –CO2H and NH2+ groups) with BF4 (Shingnapurkar et al., 2007[Shingnapurkar, D., Butcher, R., Afrasiabi, Z., Sinn, E., Ahmed, F., Sarkar, F. & Padhye, S. (2007). Inorg. Chem. Commun. 10, 459-462.]) and SO42− counter-ions (Li et al., 2011[Li, T., Yang, L., Wang, Y. C. & Lian, Q. (2011). Acta Cryst. E67, o3366-o3367.]) are known. As part of our own studies in this area, we have recently described the structure of [Cd(spar)2]·H2O (An et al., 2012[An, Z., Gao, J. & Harrison, W. T. A. (2012). Crystals, 2, 1366-1373.]), a one-dimensional coordination polymer in which chains of CdO6 octa­hedra bridged by the spar species are found.

[Scheme 1]
[Scheme 2]

As a continuation of these studies, we now describe the syntheses and crystal structures of the title mixed-ligand complexes [Mn(bdc)(Hspar)2(H2O)0.25]·2H2O (I)[link] and [Cu(Hspar)2](bdc)·2H2O (II)[link] (bdc = benzene-1,4-di­carboxyl­ate, C8H4O42−).

2. Structural commentary

2.1. Compound (I)

Compound (I)[link] is a hydrated neutral mononuclear complex: the asymmetric unit contains an Mn2+ cation, two neutral, zwitterionic Hspar mol­ecules, a bdc dianion and three water mol­ecules, one of which, O13, was modelled with a site occupancy factor of [1\over4] (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing 50% displacement ellipsoids. H atoms bound to C atoms have been omitted for clarity and hydrogen bonds and the long Mn1⋯O13 contact are shown as double-dashed lines.

The manganese ion in (I)[link] is coordinated by two bidentate Hspar mol­ecules, with the quinoline O atom and its syn-carboxyl­ate O atom (O3 and O2, respectively, in the C1-containing mol­ecule and O6 and O5, respectively, in the C20-mol­ecule) serving as the donor atoms, which generates a six-membered chelate ring in each case, with O—Mn—O bite angles of 81.86 (8) and 82.05 (8)°, respectively. The metal coordination sphere also features an O,O-bidentate bdc dianion and a very long [2.580 (12) Å] Mn—O bond to the partly occupied O13 water mol­ecule. Together, these lead to a distorted MnO6+1 trigonal–prismatic polyhedron (Table 1[link]) with the Mn—Ow bond capping through the square face defined by the two Hspar ligands (Fig. 2[link]). The mean Mn—O separation of 2.137 Å for the Hspar bonds is significantly shorter than the mean of the Mn—O (bdc) bonds of 2.297 Å and the bond-valence sum (BVS) (Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]) for the metal ion for the six shorter bonds is 1.89 (expected value = 2.00). If the seventh bond to O13 is added, the manganese BVS increases to 1.99.

Table 1
Selected geometric parameters (Å, °) for (I)[link]

Mn1—O5 2.079 (2) C1—O2 1.256 (4)
Mn1—O2 2.102 (2) C20—O4 1.254 (4)
Mn1—O3 2.171 (2) C20—O5 1.257 (4)
Mn1—O6 2.188 (2) C45—O8 1.251 (4)
Mn1—O7 2.282 (2) C45—O7 1.253 (4)
Mn1—O8 2.306 (2) C46—O10 1.241 (4)
Mn1—O13 2.580 (12) C46—O9 1.256 (4)
C1—O1 1.251 (4)    
       
O5—Mn1—O2 94.69 (10) O3—Mn1—O7 115.05 (9)
O5—Mn1—O3 156.29 (10) O6—Mn1—O7 132.68 (9)
O2—Mn1—O3 81.86 (8) O5—Mn1—O8 113.13 (10)
O5—Mn1—O6 82.05 (8) O2—Mn1—O8 129.45 (10)
O2—Mn1—O6 141.70 (10) O3—Mn1—O8 86.27 (8)
O3—Mn1—O6 86.26 (8) O6—Mn1—O8 85.54 (8)
O5—Mn1—O7 87.81 (10) O7—Mn1—O8 56.58 (8)
O2—Mn1—O7 84.96 (10)    
[Figure 2]
Figure 2
Detail of (I)[link] showing the capped trigonal prismatic coordination of the metal ion.

The conformation of the –O2–C1–C2–C3–O3–Mn1– chelate ring approximates to a shallow envelope with the metal atom as the flap, displaced by −0.222 (4) Å from the mean plane of the ligand atoms (r.m.s. deviation = 0.022 Å). The –O5–C20–C21–C22–O6–Mn1– ring can be described in the same way, with Mn1 displaced by 0.128 (4) Å from the other atoms (r.m.s. deviation = 0.019 Å). The dihedral angle between the near-planar segments of the chelate rings is 29.74 (13)°. Both Hspar mol­ecules are orientated in the same sense with respect to the metal ion, with the NH2 groups mutually syn.

The capped trigonal–prismatic geometry of the MnO6+1 grouping is unusual and calls for some further comment: the dihedral angle between the top (O3/O6/O8) and bottom (O2/O5/O7) triangular faces of the prism is 14.40 (11)°, which is largely due to the O7⋯O8 edge of the prism (the two O atoms of the bdc dianion) being much shorter [2.174 (3) Å] than the O2⋯O3 [2.799 (3) Å] and O5⋯O6 [2.802 (3) Å] edges, which correspond to the C1- and C-20 Hspar mol­ecules, respectively. The metal atom is displaced from the top and bottom faces of the prism by −1.2513 (14) and 1.3670 (12) Å, respectively. The degree of twist of the prism may be estimated from the pseudo torsion angles involving the centroids of the triangular faces (denoted X1 for the O3/O6/O8 face and X2 for the O2/O5/O7 face) and the pairs of atoms forming the edges of the prism: values of X1⋯O7⋯O8⋯X2 (–14.6), X1⋯O5⋯O6⋯X2 (–11.2) and X1⋯O2⋯O3⋯X2 (–8.5°) arise. These angles would be zero for a perfect triangular prism.

The most important geometrical features of the first Hspar mol­ecule (containing C1) are as follows: the C1—O1 and C1—O2 bond lengths of 1.251 (4) and 1.256 (4) Å, respectively, are typical for a delocalized carboxyl­ate group and the dihedral angle between C1/O1/O2 and the adjacent N2-containing ring (r.m.s. deviation = 0.045 Å) is 8.6 (8)°. The dihedral angle between the cyclo­propane ring and the N2 ring is 67.5 (3)°. The N2 bond-angle sum of 359.8° is consistent with a bonding model of sp2 hybridization for this atom. The dihedral angle between the N2 ring and the C5 ring (r.m.s. deviation = 0.028 Å), which are fused at the C4—C9 bond, is 7.9 (2)°, indicating a substantial puckering to the quinolone system. The piperazinium ring adopts a typical chair conformation with the exocyclic N—Cq (q = quinolone) bond in an equatorial orientation. The dihedral angle between the four C atoms that form the `seat' of the chair and the C5 ring is 60.3 (2)°. There was some suggestion that atoms C14 and C17 of this ring are positionally disordered, but refinements that attempted to model this effect were inconclusive.

The second Hspar mol­ecule (containing C20) has a broadly similar geometry: the C20—O4 and C20—O5 bond lengths are 1.254 (4) and 1.257 (4) Å, respectively, and the dihedral angle between C20/O4/O5 and the N6 ring (r.m.s. deviation = 0.050 Å) is 8.8 (7)°. The dihedral angle between the N6 (bond-angle sum = 359.7°) ring and the pendent three-membered ring is 69.8 (2)°. The N6 and C24 rings (r.m.s. deviation for the latter = 0.020 Å), fused at the C23—C28 bond, are tilted by 8.1 (2)°. The piperazine ring adopts a chair conformation and the dihedral angle between the chair seat and the C24 ring is 58.71 (9)°. Each Hspar mol­ecule features an intra­molecular N—H⋯O hydrogen bond (Table 2[link]), which closes an S(6) ring. The C45/O7/O8 and C46/O9/O10 carboxyl­ate groups of the bdc dianion are rotated by 3.90 (7) and 25.28 (14)°, respectively with respect to the central ring plane. The O7—Mn1—O8 bite angle is 56.58 (8)°.

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg9 is the centroid of the C39–C44 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O8i 0.86 2.24 3.041 (3) 156
N1—H1B⋯O3 0.86 2.02 2.651 (3) 129
N4—H4A⋯O1ii 0.90 1.80 2.647 (4) 156
N4—H4B⋯O11iii 0.90 2.01 2.845 (3) 153
N5—H5A⋯O8i 0.86 2.13 2.954 (3) 160
N5—H5B⋯O6 0.86 2.01 2.651 (3) 131
N8—H8A⋯O4iv 0.90 1.85 2.750 (3) 175
N8—H8B⋯O11v 0.90 1.94 2.821 (3) 166
O11—H1W⋯O9vi 0.85 1.76 2.606 (3) 174
O11—H2W⋯O7vii 0.85 1.97 2.804 (3) 171
O12—H3W⋯O10i 0.85 2.11 2.924 (4) 159
O12—H4W⋯O10vi 0.85 2.00 2.844 (4) 174
O13—H5W⋯O2vii 0.95 2.41 3.000 (12) 120
C13—H13B⋯O4vii 0.97 2.56 3.526 (5) 178
C35—H35⋯O12v 0.98 2.38 3.321 (4) 161
C38—H38A⋯O13v 0.96 2.51 3.097 (12) 120
C12—H12ACg9viii 0.97 2.59 3.529 (4) 162
Symmetry codes: (i) -x, -y+1, -z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) x+1, y, z+1; (vii) -x+1, -y+1, -z; (viii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

2.2. Compound (II)

Compound (II)[link] can be regarded as a hydrated mol­ecular salt: the asymmetric unit contains a Cu2+ cation lying on a crystallographic inversion centre, a neutral, zwitterionic, Hspar mol­ecule, half a bdc dianion and a water mol­ecule of crystallization (Fig. 3[link]).

[Figure 3]
Figure 3
The mol­ecular structure of (II)[link] showing 50% probability displacement ellipsoids. Only one orientation of the disordered cyclo­propyl ring is shown. Hydrogen bonds are shown as double-dashed lines. [Symmetry codes: (i) 1 − x, −y, 1 − z; (ii) −x, −y, −z.]

The copper ion in (II)[link] is coordinated by two O,O-bidentate Hspar mol­ecules in the usual bonding mode of quinoline O atom + syn-carboxyl­ate O atom (O3 and O2, respectively) with a bite angle of 93.24 (8)°, which generates a six-membered chelate ring. The result is a CuO4 square-planar coordination polyhedron (Table 3[link]) with a mean Cu—O separation of 1.898 Å. There are no atoms in possible axial sites within 3.5 Å of the metal ion. The –O2–C1–C2–C3–O3–Cu1– chelate ring is a shallow envelope, with the metal atom displaced by 0.124 (3) Å from the mean plane of the almost planar ligand atoms (r.m.s. deviation = 0.023 Å).

Table 3
Selected geometric parameters (Å, °) for (II)[link]

Cu1—O2 1.889 (2) C1—O2 1.283 (4)
Cu1—O3 1.9064 (18) C23—O4 1.244 (4)
C1—O1 1.226 (4) C23—O5 1.253 (4)
       
O2—Cu1—O3 93.24 (8)    

In the Hspar mol­ecule, the C1—O1 and C1—O2 bond lengths are distinctly different at 1.226 (4) Å and 1.283 (4) Å, respectively, unlike the situation in (I)[link], where they are almost the same length. The dihedral angle between the C1/O1/O2 grouping in (II)[link] and its attached ring is 6.2 (5)° and the dihedral angle between the fused rings of the quinolone system is 3.2 (2)°. The cyclo­propane ring in (II)[link] is disordered over two orientations in a 0.670 (8): 0.330 (8) ratio. The piperazine ring adopts a chair conformation as usual, and N4 (the secondary amine group) is protonated. The dihedral angle between the four carbon atoms forming the `seat' of the chair and the F-bearing aromatic ring is 63.77 (10)°.

In the bdc dianion, the C23/O4/O5 carboxyl­ate group is rotated by 2.7 (6)° with respect to the aromatic ring plane. The C23—O4 and C23—O5 bond lengths of 1.244 (4) and 1.253 (4) Å, respectively, are consistent with the approximately equal delocalization of the negative charge over both C—O bonds.

3. Supra­molecular features

In the crystal of (I)[link], a number of N—H⋯O, O—H⋯O and weak C—H⋯O hydrogen bonds (Table 2[link]) link the components into a three-dimensional network. A short C—H⋯π inter­action is also observed.

In (II)[link], the packing is consolidated by N—H⋯O, O—H⋯O and weak C—H⋯O hydrogen bonds (Table 4[link]), resulting in a three-dimensional network.

Table 4
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O6i 0.86 2.19 2.995 (4) 155
N1—H1B⋯O3 0.86 1.98 2.604 (3) 129
N4—H4A⋯O5ii 0.90 1.80 2.658 (3) 160
N4—H4B⋯O4iii 0.90 1.90 2.777 (3) 166
O6—H1W⋯O1iv 0.84 1.95 2.716 (3) 151
O6—H2W⋯O1v 0.84 2.46 3.048 (4) 128
C12—H12A⋯O6vi 0.97 2.55 3.494 (5) 166
C13B—H13D⋯O1ii 0.97 2.52 3.113 (6) 119
C13B—H13D⋯O2ii 0.97 2.41 3.258 (6) 146
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) [-x, y+{\script{3\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y, -z+1; (v) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

4. Database survey

So far as a search of the Cambridge Structural Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) reveals, (I)[link] is the first crystal structure of a complex containing Mn2+ ions and Hspar mol­ecules. The O,O-chelating mode of the Hspar mol­ecules is normal for other divalent transition metals (Skyrianou et al., 2009[Skyrianou, K. C., Raptopoulou, C. P., Psycharis, V., Kessissoglou, D. P. & Psomas, G. (2009). Polyhedron, 28, 3265-3271.]; Efthimiadou et al., 2006[Efthimiadou, E. K., Sanakis, Y., Raptopoulou, C. P., Karaliota, K., Katsaros, N. & Psomas, G. (2006). Bioorg. Med. Chem. Lett. 16, 3864-3867.]; Tarushi et al., 2011[Tarushi, A., Polatoglou, E., Kljun, J., Turel, I., Psomas, G. & Kessissoglou, D. P. (2011). Dalton Trans. 40, 9461-9473.]), as is that of the O,O-bidentate bdc dianion for Mn2+ (e.g. Ma et al., 2003[Ma, C., Chen, C., Liu, Q., Liao, D., Li, L. & Sun, L. (2003). New J. Chem. 27, 890-894.]), but the resulting trigonal–prismatic coordination geometry for the manganese ion in (I)[link] is very unusual, although not unknown. An analogous structure is seen for [Mn(acac)2(bipy)] (acac = acetyl­acetonate, bipy = 2,2′-bi­pyridine; van Gorkum et al., 2005[Gorkum, R. van, Buda, F., Kooijman, H., Spek, A. L., Bouwman, E. & Reedijk, J. (2005). Eur. J. Inorg. Chem. pp. 2255-2261.]), where an almost regular MnN2O4 trigonal prism occurs (i.e. there is no capping): as these authors note, the high-spin d5 electronic configuration of Mn2+ is the `least unexpected' to show a trigonal–prismatic geometry because it has no crystal-field stabilization energy, which normally favours octa­hedral over trigonal–prismatic geometry (Karpishin et al., 1993[Karpishin, T. B., Stack, T. D. P. & Raymond, K. N. (1993). J. Am. Chem. Soc. 115, 182-192.]). Based on DFT calculations, it was concluded that the trigonal–prismatic and octa­hedral geometries for [Mn(acac)2(bipy)] have almost the same energy and the trigonal–prismatic geometry is adopted in the crystal because of favourable packing inter­actions (van Gorkum et al., 2005[Gorkum, R. van, Buda, F., Kooijman, H., Spek, A. L., Bouwman, E. & Reedijk, J. (2005). Eur. J. Inorg. Chem. pp. 2255-2261.]). The ligands in (I)[link] are far bulkier and more flexible than acac or bipy and it is difficult to speculate on whether packing effects are equally important in establishing the capped trigonal–prismatic metal-ion coordination geometry in (I)[link].

Compound (II)[link] complements several previously studied Cu–sparfloxacin complexes including [Cu(spar)2]·2.8H2O (Efthimiadou et al., 2006[Efthimiadou, E. K., Sanakis, Y., Raptopoulou, C. P., Karaliota, K., Katsaros, N. & Psomas, G. (2006). Bioorg. Med. Chem. Lett. 16, 3864-3867.]), in which centrosymmetric neutral Cu(spar)2 mol­ecules occur, compared to the centrosymmetric [Cu(Hspar)2]2+ cations seen here. In [Cu(H2spar)(H2O)(phen)]BF4·3H2O (phen = 1,10-phenanthroline; Shingnapurkar et al., 2007[Shingnapurkar, D., Butcher, R., Afrasiabi, Z., Sinn, E., Ahmed, F., Sarkar, F. & Padhye, S. (2007). Inorg. Chem. Commun. 10, 459-462.]), the metal ion is chelated by the O,O-bidentate H2spar+ cation (deprotonated at the carboxyl group and protonated at both the primary and secondary amine N atoms) and the N,N-bidentate phen ligand in a square-planar arrangement; the water mol­ecule completes the square-based pyramidal coordination polyhedron in the apical site. Finally, in the novel bimetallic complex [Cu2(spar)4]·4H2O (Shingnapurkar et al., 2007[Shingnapurkar, D., Butcher, R., Afrasiabi, Z., Sinn, E., Ahmed, F., Sarkar, F. & Padhye, S. (2007). Inorg. Chem. Commun. 10, 459-462.]), the Cu2+ ions are chelated by two spar anions in the basal plane, with a long apical Cu—N bond [2.463 (4) Å] arising from the –NH2 group of an adjacent spar anion generating a centrosymmetric, bimetallic assembly. It is thus notable that sparfloxacin can bind to Cu2+ ions in its anionic, neutral and cationic forms and we are continuing our explorations of these systems.

5. Synthesis and crystallization

To prepare (I)[link], a mixture of Mn(CH3CO2)2·4H2O (0.25 mmol), sparfloxacin (0.5 mmol), 1,4-benzene­dicarb­oxy­lic acid (0.25 mmol), sodium hydroxide (1 mmol) and water (15 ml) was stirred for 30 minutes in air. The mixture was placed in a sealed 25 ml Teflon-lined hydro­thermal reactor and heated to 423 K for 72 h under autogenous pressure. Upon cooling, colourless prisms of (I)[link] were recovered from the reaction by vacuum filtration and rinsing with water. Analysis calculated (found) (%) for C46H52.5MnF4N8O12.25: C 52.90 (52.63), H 5.07 (4.91), N 10.73 (10.58). IR (KBr, cm−1): br3420, br3300, s1633 (C=O pyridone), s1562 (CO2 asym), s1443, s1375 (CO2 symm), s1292, w1184, m819, m756, m686, m517 [IR assignments following Llinàs et al. (2008[Llinàs, A., Burley, J. C., Prior, T. J., Glen, R. C. & Goodman, J. M. (2008). Cryst. Growth Des. 8, 114-118.])].

Compound (II)[link] was prepared by the same method with [Cu(CH3CO2)2]·H2O (0.25 mmol) used in place of the manganese acetate tetra­hydrate and the vessel heated to 413 K for 72 h. Upon cooling, green blocks of (II)[link] were obtained from the reaction mixture. Analysis calculated (found) (%) for C46H50CuF4N8O12: C 52.80 (52.70), H 4.82 (4.72), N 10.71 (10.64). IR (KBr, cm−1): br3427, br3304, s1633 (C=O pyridone), s1556 (CO2 asym), s1435, s1358 (CO2 symm), s1294, w1182, w1012, w928, w814, m748, m527.

Both (I)[link] and (II)[link] appear to be indefinitely stable when stored in dry air.

6. Refinement

Crystal data, data collection and structure refinement details for (I)[link] and (II)[link] are summarized in Table 5[link]. In (I)[link], the O13 water mol­ecule is close to an inversion-generated clone and cannot be more than 50% occupied. Its site occupancy was refined and converged to close to 0.25: in the final cycles of refinement, it was fixed at [1\over4]. In (II)[link], the pendant cyclo­propane group is disordered over two orientations in a 0.670 (8): 0.330 (8) ratio and one of the fluorine atoms is disordered over two sites in a 0.544 (11):0.456 (11) ratio. For both structures, the C-bound H atoms were geometrically placed and refined as riding atoms with the constraint Uiso(H) = 1.2–1.5Ueq(C) applied. The N- and O-bound H atoms were located in difference maps and refined as riding atoms in their as-found relative positions.

Table 5
Experimental details

  (I) (II)
Crystal data
Chemical formula [Mn(C8H4O4)(C19H22F2N4O3)2(H2O)0.25]·2H2O [Cu(C19H22F2N4O3)2](C8H4O4)·2H2O
Mr 1044.40 1048.50
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/c
Temperature (K) 296 296
a, b, c (Å) 13.1128 (7), 20.8621 (12), 17.6284 (10) 13.6039 (2), 7.8019 (1), 22.0870 (3)
β (°) 106.725 (1) 103.764 (1)
V3) 4618.4 (4) 2276.91 (5)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.38 0.57
Crystal size (mm) 0.20 × 0.18 × 0.15 0.20 × 0.17 × 0.13
 
Data collection
Diffractometer Bruker SMART CCD Bruker SMART CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.929, 0.946 0.895, 0.930
No. of measured, independent and observed [I > 2σ(I)] reflections 43573, 10603, 5832 20662, 5168, 3641
Rint 0.082 0.049
(sin θ/λ)max−1) 0.650 0.647
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.155, 1.04 0.052, 0.142, 1.06
No. of reflections 10603 5168
No. of parameters 648 323
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.59, −0.34 0.56, −0.57
Computer programs: SMART and SAINT (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both compounds, data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

(I) 0.25-Aqua(benzene-1,4-dicarboxylato-κ2O,O')bis(sparfloxacin-κ2O,O')manganese(II) dihydrate top
Crystal data top
[Mn(C8H4O4)(C19H22F2N4O3)2(H2O)0.25]·2H2OF(000) = 2174
Mr = 1044.40Dx = 1.502 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.1128 (7) ÅCell parameters from 3519 reflections
b = 20.8621 (12) Åθ = 2.4–20.8°
c = 17.6284 (10) ŵ = 0.38 mm1
β = 106.725 (1)°T = 296 K
V = 4618.4 (4) Å3Prism, colourless
Z = 40.20 × 0.18 × 0.15 mm
Data collection top
Bruker SMART CCD
diffractometer
10603 independent reflections
Radiation source: fine-focus sealed tube5832 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1617
Tmin = 0.929, Tmax = 0.946k = 2726
43573 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0624P)2 + 0.3922P]
where P = (Fo2 + 2Fc2)/3
10603 reflections(Δ/σ)max = 0.001
648 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.24557 (4)0.50546 (2)0.08355 (3)0.03353 (14)
C10.3662 (3)0.37777 (17)0.0926 (2)0.0436 (8)
C20.3073 (2)0.34168 (14)0.04545 (17)0.0343 (7)
C30.2279 (2)0.36801 (15)0.01256 (16)0.0328 (7)
C40.1766 (2)0.32345 (14)0.02819 (17)0.0341 (7)
C50.0966 (2)0.34353 (16)0.06350 (18)0.0388 (8)
C60.0445 (3)0.29665 (18)0.0930 (2)0.0488 (9)
C70.0655 (3)0.23150 (18)0.0926 (2)0.0530 (10)
C80.1433 (3)0.21331 (16)0.0586 (2)0.0497 (9)
C90.2041 (2)0.25707 (15)0.03201 (18)0.0380 (8)
C100.3369 (2)0.27935 (15)0.02990 (18)0.0391 (8)
H100.39350.26470.04700.047*
C110.3414 (3)0.17419 (15)0.0295 (2)0.0467 (9)
H110.31100.13860.00610.056*
C120.3858 (3)0.15806 (17)0.1143 (2)0.0547 (10)
H12A0.38130.11380.12990.066*
H12B0.37880.18960.15290.066*
C130.4591 (3)0.17312 (19)0.0659 (2)0.0644 (11)
H13A0.49880.13800.05200.077*
H13B0.49630.21390.07500.077*
C140.0986 (3)0.1819 (2)0.1131 (2)0.0652 (11)
H14A0.12360.14570.07810.078*
H14B0.13310.22020.08670.078*
C150.1268 (3)0.1725 (2)0.1865 (2)0.0589 (10)
H150.10850.21200.21750.071*
C160.0533 (3)0.12232 (19)0.2441 (2)0.0574 (10)
H160.08150.16020.27630.069*
C170.0725 (3)0.1306 (2)0.1677 (3)0.0833 (15)
H17A0.04760.09320.13490.100*
H17B0.14830.13530.17470.100*
C180.2450 (3)0.1593 (2)0.1752 (3)0.0715 (12)
H18A0.28590.19640.15270.107*
H18B0.25600.14990.22560.107*
H18C0.26730.12340.14030.107*
C190.1081 (3)0.06386 (17)0.2888 (2)0.0610 (11)
H19A0.08330.02610.25790.091*
H19B0.09220.06070.33850.091*
H19C0.18370.06780.29820.091*
N10.0748 (2)0.40641 (14)0.07178 (16)0.0518 (8)
H1A0.02840.41700.09550.062*
H1B0.10740.43560.05330.062*
N20.2918 (2)0.23737 (12)0.00780 (15)0.0383 (6)
N30.0158 (2)0.18803 (16)0.1292 (2)0.0799 (12)
N40.0632 (2)0.11872 (13)0.23537 (16)0.0450 (7)
H4A0.07310.11950.28380.054*
H4B0.08840.08110.21260.054*
O10.4253 (2)0.34607 (12)0.12306 (16)0.0638 (7)
O20.3552 (2)0.43743 (11)0.10042 (16)0.0626 (7)
O30.20213 (16)0.42675 (10)0.01847 (12)0.0388 (5)
F10.02880 (15)0.31754 (10)0.12892 (12)0.0642 (6)
F20.15513 (17)0.14946 (10)0.04660 (15)0.0718 (7)
C200.3488 (3)0.64075 (16)0.07543 (19)0.0410 (8)
C210.3025 (2)0.66361 (14)0.01229 (17)0.0327 (7)
C220.2345 (2)0.62688 (14)0.02221 (16)0.0304 (7)
C230.1873 (2)0.66087 (14)0.07591 (16)0.0306 (7)
C240.1099 (2)0.63154 (14)0.10809 (17)0.0330 (7)
C250.0609 (2)0.66937 (16)0.15148 (19)0.0391 (8)
C260.0803 (2)0.73363 (16)0.1662 (2)0.0418 (8)
C270.1566 (3)0.76117 (15)0.1359 (2)0.0421 (8)
C280.2130 (2)0.72662 (15)0.09484 (18)0.0340 (7)
C290.3311 (2)0.72359 (15)0.01592 (18)0.0366 (7)
H290.38080.74490.00330.044*
C300.3460 (3)0.81431 (15)0.1034 (2)0.0458 (9)
H300.31270.85430.07930.055*
C310.3993 (3)0.81582 (18)0.1898 (2)0.0588 (10)
H31A0.39640.77740.22010.071*
H31B0.39760.85570.21770.071*
C320.4648 (3)0.81376 (19)0.1328 (3)0.0674 (12)
H32A0.50230.85240.12610.081*
H32B0.50120.77400.12850.081*
C330.0843 (2)0.76537 (17)0.2025 (2)0.0481 (9)
H33A0.09220.74430.24950.058*
H33B0.11940.73940.15680.058*
C340.1347 (2)0.83148 (17)0.19441 (19)0.0437 (8)
H340.13180.85060.14430.052*
C350.0423 (2)0.87778 (15)0.27129 (18)0.0380 (8)
H350.05480.90110.22660.046*
C360.0863 (2)0.81119 (15)0.2745 (2)0.0439 (8)
H36A0.16030.81350.27470.053*
H36B0.08400.79090.32350.053*
C370.2504 (3)0.8294 (2)0.1959 (2)0.0652 (11)
H37A0.25360.81230.24570.098*
H37B0.29080.80250.15370.098*
H37C0.27940.87190.18920.098*
C380.0920 (3)0.91361 (16)0.3473 (2)0.0535 (10)
H38A0.05180.95180.34870.080*
H38B0.16390.92500.35000.080*
H38C0.09210.88680.39160.080*
N50.0885 (2)0.56800 (12)0.10051 (15)0.0446 (7)
H5A0.04440.55130.12270.053*
H5B0.11890.54440.07350.053*
N60.2939 (2)0.75471 (11)0.06912 (15)0.0360 (6)
N70.0278 (2)0.77193 (14)0.20811 (18)0.0532 (8)
N80.07495 (19)0.87282 (12)0.26085 (14)0.0377 (6)
H8A0.08460.85760.30600.045*
H8B0.10300.91250.25330.045*
O40.4009 (2)0.68048 (11)0.10270 (14)0.0559 (7)
O50.3336 (2)0.58419 (12)0.10073 (15)0.0627 (8)
O60.21452 (16)0.56810 (10)0.00687 (12)0.0382 (5)
F30.00977 (15)0.63937 (9)0.18330 (11)0.0524 (5)
F40.16868 (16)0.82596 (9)0.14286 (13)0.0595 (6)
C390.0089 (2)0.50896 (15)0.28773 (18)0.0386 (8)
C400.1129 (3)0.51354 (16)0.28443 (19)0.0417 (8)
H400.12660.51630.23560.050*
C410.1973 (3)0.51408 (16)0.35408 (19)0.0433 (8)
H410.26690.51750.35130.052*
C420.1783 (3)0.50961 (15)0.42676 (18)0.0396 (8)
C430.0744 (3)0.50486 (19)0.4288 (2)0.0557 (10)
H430.06080.50120.47760.067*
C440.0102 (3)0.50530 (18)0.3607 (2)0.0544 (10)
H440.07970.50320.36400.065*
C450.0824 (3)0.50855 (15)0.21292 (19)0.0383 (8)
C460.2660 (3)0.50852 (18)0.5041 (2)0.0501 (9)
O70.17498 (19)0.50044 (13)0.21779 (14)0.0646 (8)
O80.06601 (16)0.51510 (10)0.14685 (12)0.0407 (5)
O90.2441 (2)0.48093 (17)0.56076 (15)0.0837 (10)
O100.3529 (2)0.53337 (14)0.50676 (15)0.0693 (8)
O110.65934 (16)0.49527 (10)0.28884 (12)0.0432 (6)
H1W0.69390.48920.33690.052*
H2W0.71310.49870.27170.052*
O120.4787 (2)0.45928 (17)0.39436 (16)0.0930 (10)
H3W0.44430.45090.42740.112*
H4W0.52670.48090.42680.112*
O130.4286 (9)0.5077 (5)0.0220 (7)0.076 (3)*0.25
H5W0.45670.54070.05930.091*0.25
H6W0.50000.50000.00000.091*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0424 (3)0.0305 (3)0.0320 (2)0.0020 (2)0.0176 (2)0.0009 (2)
C10.046 (2)0.041 (2)0.049 (2)0.0027 (16)0.0222 (16)0.0071 (17)
C20.0387 (18)0.0330 (18)0.0333 (17)0.0017 (14)0.0137 (14)0.0015 (13)
C30.0371 (17)0.0343 (18)0.0263 (15)0.0020 (14)0.0081 (13)0.0003 (13)
C40.0339 (17)0.0375 (18)0.0317 (16)0.0003 (14)0.0106 (13)0.0061 (13)
C50.0384 (19)0.042 (2)0.0365 (18)0.0061 (15)0.0120 (14)0.0119 (15)
C60.039 (2)0.065 (3)0.049 (2)0.0115 (18)0.0243 (16)0.0196 (18)
C70.040 (2)0.058 (2)0.066 (2)0.0037 (18)0.0230 (18)0.025 (2)
C80.047 (2)0.036 (2)0.069 (3)0.0022 (16)0.0215 (19)0.0094 (18)
C90.0375 (18)0.0371 (19)0.0399 (18)0.0018 (15)0.0119 (15)0.0057 (14)
C100.0423 (19)0.041 (2)0.0382 (18)0.0003 (15)0.0189 (15)0.0016 (15)
C110.054 (2)0.0290 (19)0.060 (2)0.0003 (16)0.0196 (18)0.0022 (16)
C120.068 (3)0.038 (2)0.057 (2)0.0013 (18)0.017 (2)0.0057 (17)
C130.053 (2)0.049 (2)0.097 (3)0.0092 (19)0.029 (2)0.016 (2)
C140.049 (2)0.069 (3)0.084 (3)0.006 (2)0.029 (2)0.027 (2)
C150.046 (2)0.065 (3)0.074 (3)0.0120 (19)0.032 (2)0.018 (2)
C160.047 (2)0.058 (3)0.071 (3)0.0030 (18)0.0230 (19)0.018 (2)
C170.059 (3)0.086 (3)0.118 (4)0.025 (2)0.046 (3)0.062 (3)
C180.048 (2)0.081 (3)0.095 (3)0.006 (2)0.035 (2)0.024 (3)
C190.066 (3)0.047 (2)0.070 (3)0.0023 (19)0.019 (2)0.0178 (19)
N10.0566 (19)0.0507 (19)0.0611 (19)0.0077 (15)0.0377 (15)0.0062 (15)
N20.0419 (16)0.0286 (15)0.0485 (16)0.0008 (12)0.0195 (13)0.0028 (12)
N30.0408 (19)0.079 (3)0.131 (3)0.0176 (17)0.0425 (19)0.071 (2)
N40.0458 (17)0.0467 (18)0.0501 (17)0.0003 (14)0.0260 (13)0.0048 (14)
O10.0841 (19)0.0505 (16)0.0784 (19)0.0172 (14)0.0578 (16)0.0129 (13)
O20.0676 (17)0.0416 (16)0.100 (2)0.0070 (13)0.0576 (16)0.0205 (14)
O30.0457 (13)0.0321 (13)0.0436 (13)0.0036 (10)0.0209 (10)0.0044 (10)
F10.0519 (13)0.0850 (16)0.0689 (14)0.0212 (11)0.0385 (11)0.0319 (12)
F20.0669 (15)0.0401 (13)0.118 (2)0.0066 (11)0.0416 (13)0.0121 (12)
C200.052 (2)0.040 (2)0.0397 (18)0.0097 (16)0.0279 (16)0.0038 (15)
C210.0347 (17)0.0329 (17)0.0338 (16)0.0065 (14)0.0154 (13)0.0029 (13)
C220.0345 (17)0.0328 (18)0.0255 (15)0.0014 (13)0.0111 (12)0.0015 (13)
C230.0295 (16)0.0346 (17)0.0296 (15)0.0033 (13)0.0114 (13)0.0007 (13)
C240.0351 (17)0.0347 (18)0.0317 (16)0.0057 (14)0.0137 (13)0.0023 (13)
C250.0353 (18)0.046 (2)0.0446 (19)0.0070 (15)0.0252 (15)0.0051 (15)
C260.0342 (18)0.047 (2)0.051 (2)0.0016 (15)0.0229 (15)0.0113 (16)
C270.0406 (19)0.0324 (19)0.059 (2)0.0032 (15)0.0237 (17)0.0113 (16)
C280.0299 (16)0.0356 (18)0.0397 (17)0.0036 (14)0.0151 (14)0.0019 (14)
C290.0374 (18)0.0364 (18)0.0421 (18)0.0039 (15)0.0214 (14)0.0006 (15)
C300.051 (2)0.0261 (18)0.067 (2)0.0064 (15)0.0277 (18)0.0099 (16)
C310.065 (3)0.048 (2)0.063 (3)0.0039 (19)0.017 (2)0.0184 (19)
C320.048 (2)0.056 (3)0.105 (3)0.0159 (19)0.033 (2)0.031 (2)
C330.0345 (19)0.055 (2)0.060 (2)0.0084 (16)0.0215 (16)0.0211 (18)
C340.0398 (19)0.057 (2)0.0363 (18)0.0026 (16)0.0144 (15)0.0093 (16)
C350.0423 (19)0.0405 (19)0.0336 (17)0.0063 (15)0.0146 (14)0.0005 (14)
C360.0354 (19)0.048 (2)0.052 (2)0.0035 (16)0.0185 (16)0.0131 (17)
C370.042 (2)0.077 (3)0.080 (3)0.004 (2)0.0228 (19)0.028 (2)
C380.072 (3)0.037 (2)0.045 (2)0.0032 (18)0.0061 (18)0.0001 (16)
N50.0535 (17)0.0410 (17)0.0513 (17)0.0104 (13)0.0345 (14)0.0059 (13)
N60.0394 (15)0.0280 (14)0.0470 (16)0.0041 (11)0.0226 (12)0.0065 (12)
N70.0319 (15)0.064 (2)0.071 (2)0.0095 (14)0.0270 (14)0.0376 (17)
N80.0455 (16)0.0370 (15)0.0344 (14)0.0041 (12)0.0177 (12)0.0004 (12)
O40.0775 (18)0.0497 (15)0.0598 (16)0.0206 (13)0.0504 (14)0.0114 (12)
O50.091 (2)0.0476 (16)0.0744 (18)0.0278 (14)0.0633 (16)0.0244 (13)
O60.0501 (13)0.0321 (13)0.0400 (12)0.0090 (10)0.0251 (10)0.0071 (10)
F30.0562 (12)0.0552 (13)0.0614 (13)0.0126 (10)0.0417 (10)0.0118 (10)
F40.0617 (13)0.0364 (12)0.0949 (16)0.0015 (10)0.0457 (12)0.0127 (11)
C390.0347 (18)0.044 (2)0.0374 (17)0.0039 (15)0.0105 (14)0.0026 (15)
C400.0397 (19)0.053 (2)0.0344 (17)0.0005 (16)0.0143 (14)0.0001 (15)
C410.0341 (18)0.055 (2)0.0433 (19)0.0001 (15)0.0145 (15)0.0023 (16)
C420.0400 (19)0.043 (2)0.0354 (17)0.0008 (15)0.0105 (14)0.0024 (14)
C430.048 (2)0.094 (3)0.0303 (18)0.006 (2)0.0192 (15)0.0058 (18)
C440.0374 (19)0.088 (3)0.041 (2)0.0055 (19)0.0171 (16)0.0001 (19)
C450.0412 (19)0.0384 (19)0.0376 (18)0.0061 (15)0.0152 (15)0.0006 (14)
C460.049 (2)0.063 (3)0.0366 (19)0.0037 (19)0.0100 (16)0.0060 (17)
O70.0348 (14)0.119 (2)0.0441 (14)0.0013 (14)0.0173 (11)0.0041 (14)
O80.0404 (13)0.0515 (14)0.0339 (12)0.0040 (10)0.0163 (10)0.0003 (10)
O90.0639 (19)0.145 (3)0.0373 (15)0.0127 (18)0.0075 (13)0.0132 (17)
O100.0480 (17)0.096 (2)0.0560 (16)0.0152 (16)0.0026 (13)0.0057 (15)
O110.0371 (12)0.0573 (15)0.0366 (12)0.0025 (11)0.0128 (10)0.0039 (10)
O120.076 (2)0.146 (3)0.0573 (18)0.027 (2)0.0191 (15)0.0331 (19)
Geometric parameters (Å, º) top
Mn1—O52.079 (2)C23—C241.434 (4)
Mn1—O22.102 (2)C24—N51.354 (4)
Mn1—O32.171 (2)C24—C251.380 (4)
Mn1—O62.188 (2)C25—F31.365 (3)
Mn1—O72.282 (2)C25—C261.375 (4)
Mn1—O82.306 (2)C26—C271.386 (4)
Mn1—O132.580 (12)C26—N71.398 (4)
C1—O11.251 (4)C27—F41.362 (3)
C1—O21.256 (4)C27—C281.378 (4)
C1—C21.491 (4)C28—N61.397 (4)
C2—C101.362 (4)C29—N61.343 (4)
C2—C31.439 (4)C29—H290.9300
C3—O31.267 (3)C30—N61.463 (4)
C3—C41.452 (4)C30—C311.482 (5)
C4—C91.428 (4)C30—C321.493 (5)
C4—C51.429 (4)C30—H300.9800
C5—N11.359 (4)C31—C321.498 (5)
C5—C61.377 (4)C31—H31A0.9700
C6—F11.367 (4)C31—H31B0.9700
C6—C71.387 (5)C32—H32A0.9700
C7—C81.377 (5)C32—H32B0.9700
C7—N31.381 (4)C33—N71.450 (4)
C8—F21.364 (4)C33—C341.519 (5)
C8—C91.380 (4)C33—H33A0.9700
C9—N21.398 (4)C33—H33B0.9700
C10—N21.336 (4)C34—N81.484 (4)
C10—H100.9300C34—C371.524 (4)
C11—N21.471 (4)C34—H340.9800
C11—C121.478 (5)C35—N81.499 (4)
C11—C131.491 (5)C35—C361.499 (4)
C11—H110.9800C35—C381.509 (4)
C12—C131.491 (5)C35—H350.9800
C12—H12A0.9700C36—N71.453 (4)
C12—H12B0.9700C36—H36A0.9700
C13—H13A0.9700C36—H36B0.9700
C13—H13B0.9700C37—H37A0.9600
C14—N31.450 (4)C37—H37B0.9600
C14—C151.457 (5)C37—H37C0.9600
C14—H14A0.9700C38—H38A0.9600
C14—H14B0.9700C38—H38B0.9600
C15—N41.511 (4)C38—H38C0.9600
C15—C181.530 (5)N5—H5A0.8600
C15—H150.9800N5—H5B0.8600
C16—C171.450 (5)N8—H8A0.9000
C16—N41.493 (4)N8—H8B0.9000
C16—C191.516 (5)C39—C441.382 (4)
C16—H160.9800C39—C401.385 (4)
C17—N31.470 (4)C39—C451.505 (4)
C17—H17A0.9700C40—C411.397 (4)
C17—H17B0.9700C40—H400.9300
C18—H18A0.9600C41—C421.377 (4)
C18—H18B0.9600C41—H410.9300
C18—H18C0.9600C42—C431.376 (5)
C19—H19A0.9600C42—C461.510 (4)
C19—H19B0.9600C43—C441.380 (5)
C19—H19C0.9600C43—H430.9300
N1—H1A0.8600C44—H440.9300
N1—H1B0.8600C45—O81.251 (4)
N4—H4A0.9000C45—O71.253 (4)
N4—H4B0.9000C46—O101.241 (4)
C20—O41.254 (4)C46—O91.256 (4)
C20—O51.257 (4)O11—H1W0.8467
C20—C211.492 (4)O11—H2W0.8454
C21—C291.359 (4)O12—H3W0.8505
C21—C221.436 (4)O12—H4W0.8491
C22—O61.267 (3)O13—H5W0.9503
C22—C231.457 (4)O13—H6W1.1238
C23—C281.429 (4)
O5—Mn1—O294.69 (10)O6—C22—C23120.6 (3)
O5—Mn1—O3156.29 (10)C21—C22—C23116.6 (3)
O2—Mn1—O381.86 (8)C28—C23—C24117.6 (3)
O5—Mn1—O682.05 (8)C28—C23—C22120.2 (3)
O2—Mn1—O6141.70 (10)C24—C23—C22122.1 (3)
O3—Mn1—O686.26 (8)N5—C24—C25119.9 (3)
O5—Mn1—O787.81 (10)N5—C24—C23121.9 (3)
O2—Mn1—O784.96 (10)C25—C24—C23118.1 (3)
O3—Mn1—O7115.05 (9)F3—C25—C26118.7 (3)
O6—Mn1—O7132.68 (9)F3—C25—C24116.4 (3)
O5—Mn1—O8113.13 (10)C26—C25—C24124.8 (3)
O2—Mn1—O8129.45 (10)C25—C26—C27116.5 (3)
O3—Mn1—O886.27 (8)C25—C26—N7124.3 (3)
O6—Mn1—O885.54 (8)C27—C26—N7119.1 (3)
O7—Mn1—O856.58 (8)F4—C27—C28120.0 (3)
O1—C1—O2122.8 (3)F4—C27—C26117.0 (3)
O1—C1—C2117.1 (3)C28—C27—C26122.8 (3)
O2—C1—C2120.0 (3)C27—C28—N6121.6 (3)
C10—C2—C3118.7 (3)C27—C28—C23119.9 (3)
C10—C2—C1115.6 (3)N6—C28—C23118.5 (3)
C3—C2—C1125.6 (3)N6—C29—C21125.7 (3)
O3—C3—C2122.9 (3)N6—C29—H29117.2
O3—C3—C4120.6 (3)C21—C29—H29117.2
C2—C3—C4116.5 (3)N6—C30—C31118.0 (3)
C9—C4—C5118.1 (3)N6—C30—C32117.0 (3)
C9—C4—C3119.9 (3)C31—C30—C3260.5 (3)
C5—C4—C3122.0 (3)N6—C30—H30116.6
N1—C5—C6120.2 (3)C31—C30—H30116.6
N1—C5—C4122.2 (3)C32—C30—H30116.6
C6—C5—C4117.5 (3)C30—C31—C3260.1 (2)
F1—C6—C5116.1 (3)C30—C31—H31A117.8
F1—C6—C7118.8 (3)C32—C31—H31A117.8
C5—C6—C7125.0 (3)C30—C31—H31B117.8
C8—C7—N3122.1 (3)C32—C31—H31B117.8
C8—C7—C6116.4 (3)H31A—C31—H31B114.9
N3—C7—C6121.4 (3)C30—C32—C3159.4 (2)
F2—C8—C7117.9 (3)C30—C32—H32A117.8
F2—C8—C9119.4 (3)C31—C32—H32A117.8
C7—C8—C9122.6 (3)C30—C32—H32B117.8
C8—C9—N2121.0 (3)C31—C32—H32B117.8
C8—C9—C4119.7 (3)H32A—C32—H32B115.0
N2—C9—C4119.3 (3)N7—C33—C34109.1 (3)
N2—C10—C2125.8 (3)N7—C33—H33A109.9
N2—C10—H10117.1C34—C33—H33A109.9
C2—C10—H10117.1N7—C33—H33B109.9
N2—C11—C12118.9 (3)C34—C33—H33B109.9
N2—C11—C13116.8 (3)H33A—C33—H33B108.3
C12—C11—C1360.3 (2)N8—C34—C33109.7 (3)
N2—C11—H11116.4N8—C34—C37107.8 (3)
C12—C11—H11116.4C33—C34—C37112.4 (3)
C13—C11—H11116.4N8—C34—H34109.0
C11—C12—C1360.3 (2)C33—C34—H34109.0
C11—C12—H12A117.7C37—C34—H34109.0
C13—C12—H12A117.7N8—C35—C36108.1 (2)
C11—C12—H12B117.7N8—C35—C38108.0 (3)
C13—C12—H12B117.7C36—C35—C38111.2 (3)
H12A—C12—H12B114.9N8—C35—H35109.8
C12—C13—C1159.4 (2)C36—C35—H35109.8
C12—C13—H13A117.8C38—C35—H35109.8
C11—C13—H13A117.8N7—C36—C35112.6 (3)
C12—C13—H13B117.8N7—C36—H36A109.1
C11—C13—H13B117.8C35—C36—H36A109.1
H13A—C13—H13B115.0N7—C36—H36B109.1
N3—C14—C15110.5 (3)C35—C36—H36B109.1
N3—C14—H14A109.6H36A—C36—H36B107.8
C15—C14—H14A109.6C34—C37—H37A109.5
N3—C14—H14B109.6C34—C37—H37B109.5
C15—C14—H14B109.6H37A—C37—H37B109.5
H14A—C14—H14B108.1C34—C37—H37C109.5
C14—C15—N4111.6 (3)H37A—C37—H37C109.5
C14—C15—C18114.5 (3)H37B—C37—H37C109.5
N4—C15—C18108.2 (3)C35—C38—H38A109.5
C14—C15—H15107.4C35—C38—H38B109.5
N4—C15—H15107.4H38A—C38—H38B109.5
C18—C15—H15107.4C35—C38—H38C109.5
C17—C16—N4110.9 (3)H38A—C38—H38C109.5
C17—C16—C19113.2 (3)H38B—C38—H38C109.5
N4—C16—C19109.4 (3)C24—N5—H5A120.0
C17—C16—H16107.7C24—N5—H5B120.0
N4—C16—H16107.7H5A—N5—H5B120.0
C19—C16—H16107.7C29—N6—C28119.1 (3)
C16—C17—N3109.0 (4)C29—N6—C30118.6 (3)
C16—C17—H17A109.9C28—N6—C30122.0 (3)
N3—C17—H17A109.9C26—N7—C33123.6 (3)
C16—C17—H17B109.9C26—N7—C36121.4 (3)
N3—C17—H17B109.9C33—N7—C36113.5 (2)
H17A—C17—H17B108.3C34—N8—C35115.3 (2)
C15—C18—H18A109.5C34—N8—H8A108.4
C15—C18—H18B109.5C35—N8—H8A108.4
H18A—C18—H18B109.5C34—N8—H8B108.4
C15—C18—H18C109.5C35—N8—H8B108.4
H18A—C18—H18C109.5H8A—N8—H8B107.5
H18B—C18—H18C109.5C20—O5—Mn1136.7 (2)
C16—C19—H19A109.5C22—O6—Mn1131.53 (18)
C16—C19—H19B109.5C44—C39—C40119.2 (3)
H19A—C19—H19B109.5C44—C39—C45120.3 (3)
C16—C19—H19C109.5C40—C39—C45120.6 (3)
H19A—C19—H19C109.5C39—C40—C41120.3 (3)
H19B—C19—H19C109.5C39—C40—H40119.9
C5—N1—H1A120.0C41—C40—H40119.9
C5—N1—H1B120.0C42—C41—C40120.5 (3)
H1A—N1—H1B120.0C42—C41—H41119.8
C10—N2—C9118.7 (3)C40—C41—H41119.8
C10—N2—C11119.4 (3)C43—C42—C41118.3 (3)
C9—N2—C11121.7 (3)C43—C42—C46118.5 (3)
C7—N3—C14124.6 (3)C41—C42—C46123.1 (3)
C7—N3—C17120.4 (3)C42—C43—C44122.1 (3)
C14—N3—C17112.1 (3)C42—C43—H43119.0
C16—N4—C15113.7 (3)C44—C43—H43119.0
C16—N4—H4A108.8C43—C44—C39119.6 (3)
C15—N4—H4A108.8C43—C44—H44120.2
C16—N4—H4B108.8C39—C44—H44120.2
C15—N4—H4B108.8O8—C45—O7120.5 (3)
H4A—N4—H4B107.7O8—C45—C39120.6 (3)
C1—O2—Mn1135.6 (2)O7—C45—C39118.9 (3)
C3—O3—Mn1132.10 (19)O10—C46—O9125.4 (3)
O4—C20—O5122.2 (3)O10—C46—C42118.7 (3)
O4—C20—C21117.3 (3)O9—C46—C42115.9 (3)
O5—C20—C21120.5 (3)C45—O7—Mn191.98 (19)
C29—C21—C22118.4 (3)C45—O8—Mn190.91 (19)
C29—C21—C20116.0 (3)H1W—O11—H2W96.2
C22—C21—C20125.5 (3)H3W—O12—H4W94.9
O6—C22—C21122.8 (3)H5W—O13—H6W98.4
O1—C1—C2—C1010.0 (5)N5—C24—C25—F31.4 (4)
O2—C1—C2—C10170.0 (3)C23—C24—C25—F3178.0 (3)
O1—C1—C2—C3173.4 (3)N5—C24—C25—C26176.8 (3)
O2—C1—C2—C36.6 (5)C23—C24—C25—C260.3 (5)
C10—C2—C3—O3174.0 (3)F3—C25—C26—C27176.9 (3)
C1—C2—C3—O32.6 (5)C24—C25—C26—C271.3 (5)
C10—C2—C3—C46.4 (4)F3—C25—C26—N73.9 (5)
C1—C2—C3—C4177.0 (3)C24—C25—C26—N7177.9 (3)
O3—C3—C4—C9177.9 (3)C25—C26—C27—F4173.4 (3)
C2—C3—C4—C91.7 (4)N7—C26—C27—F45.9 (5)
O3—C3—C4—C50.5 (4)C25—C26—C27—C281.7 (5)
C2—C3—C4—C5179.9 (3)N7—C26—C27—C28179.1 (3)
C9—C4—C5—N1171.4 (3)F4—C27—C28—N69.1 (5)
C3—C4—C5—N110.2 (5)C26—C27—C28—N6176.0 (3)
C9—C4—C5—C65.5 (4)F4—C27—C28—C23169.3 (3)
C3—C4—C5—C6172.9 (3)C26—C27—C28—C235.6 (5)
N1—C5—C6—F10.7 (5)C24—C23—C28—C276.3 (4)
C4—C5—C6—F1177.7 (3)C22—C23—C28—C27170.3 (3)
N1—C5—C6—C7175.4 (3)C24—C23—C28—N6175.2 (3)
C4—C5—C6—C71.6 (5)C22—C23—C28—N68.1 (4)
F1—C6—C7—C8177.3 (3)C22—C21—C29—N66.4 (5)
C5—C6—C7—C81.3 (6)C20—C21—C29—N6175.8 (3)
F1—C6—C7—N31.5 (5)N6—C30—C31—C32106.8 (3)
C5—C6—C7—N3174.6 (4)N6—C30—C32—C31108.5 (3)
N3—C7—C8—F213.7 (6)N7—C33—C34—N854.7 (4)
C6—C7—C8—F2170.5 (3)N7—C33—C34—C37174.6 (3)
N3—C7—C8—C9170.5 (4)N8—C35—C36—N751.8 (3)
C6—C7—C8—C95.3 (5)C38—C35—C36—N7170.3 (3)
F2—C8—C9—N213.1 (5)C21—C29—N6—C285.1 (5)
C7—C8—C9—N2171.2 (3)C21—C29—N6—C30169.6 (3)
F2—C8—C9—C4166.2 (3)C27—C28—N6—C29166.3 (3)
C7—C8—C9—C49.6 (5)C23—C28—N6—C2912.2 (4)
C5—C4—C9—C89.4 (5)C27—C28—N6—C3019.2 (5)
C3—C4—C9—C8169.0 (3)C23—C28—N6—C30162.3 (3)
C5—C4—C9—N2171.3 (3)C31—C30—N6—C29116.4 (3)
C3—C4—C9—N210.2 (4)C32—C30—N6—C2947.3 (4)
C3—C2—C10—N26.6 (5)C31—C30—N6—C2858.1 (4)
C1—C2—C10—N2176.6 (3)C32—C30—N6—C28127.3 (3)
N2—C11—C12—C13106.1 (3)C25—C26—N7—C3337.3 (5)
N2—C11—C13—C12109.6 (3)C27—C26—N7—C33141.8 (4)
N3—C14—C15—N451.3 (4)C25—C26—N7—C36127.9 (4)
N3—C14—C15—C18174.7 (3)C27—C26—N7—C3652.9 (5)
N4—C16—C17—N356.3 (5)C34—C33—N7—C26135.1 (3)
C19—C16—C17—N3179.7 (3)C34—C33—N7—C3658.6 (4)
C2—C10—N2—C92.2 (5)C35—C36—N7—C26134.6 (3)
C2—C10—N2—C11171.9 (3)C35—C36—N7—C3358.8 (4)
C8—C9—N2—C10168.7 (3)C33—C34—N8—C3554.3 (3)
C4—C9—N2—C1010.6 (4)C37—C34—N8—C35176.9 (3)
C8—C9—N2—C1117.4 (5)C36—C35—N8—C3451.8 (3)
C4—C9—N2—C11163.4 (3)C38—C35—N8—C34172.3 (3)
C12—C11—N2—C10114.2 (3)O4—C20—O5—Mn1173.4 (3)
C13—C11—N2—C1045.1 (4)C21—C20—O5—Mn15.1 (6)
C12—C11—N2—C959.7 (4)O2—Mn1—O5—C20148.0 (4)
C13—C11—N2—C9128.8 (3)O3—Mn1—O5—C2067.6 (5)
C8—C7—N3—C14129.4 (4)O6—Mn1—O5—C206.4 (4)
C6—C7—N3—C1455.0 (6)O7—Mn1—O5—C20127.3 (4)
C8—C7—N3—C1730.0 (6)O8—Mn1—O5—C2075.3 (4)
C6—C7—N3—C17145.7 (4)C21—C22—O6—Mn111.2 (4)
C15—C14—N3—C7138.7 (4)C23—C22—O6—Mn1167.89 (19)
C15—C14—N3—C1760.5 (5)O5—Mn1—O6—C229.3 (3)
C16—C17—N3—C7135.3 (4)O2—Mn1—O6—C2296.8 (3)
C16—C17—N3—C1463.0 (5)O3—Mn1—O6—C22168.7 (3)
C17—C16—N4—C1550.3 (4)O7—Mn1—O6—C2270.2 (3)
C19—C16—N4—C15175.9 (3)O8—Mn1—O6—C22104.8 (3)
C14—C15—N4—C1647.4 (4)C44—C39—C40—C410.4 (5)
C18—C15—N4—C16174.3 (3)C45—C39—C40—C41179.8 (3)
O1—C1—O2—Mn1163.6 (3)C39—C40—C41—C420.5 (5)
C2—C1—O2—Mn116.4 (5)C40—C41—C42—C430.2 (5)
O5—Mn1—O2—C1171.9 (4)C40—C41—C42—C46178.7 (3)
O3—Mn1—O2—C115.5 (4)C41—C42—C43—C440.9 (5)
O6—Mn1—O2—C188.8 (4)C46—C42—C43—C44179.8 (3)
O7—Mn1—O2—C1100.8 (4)C42—C43—C44—C391.7 (6)
O8—Mn1—O2—C162.8 (4)C40—C39—C44—C431.4 (5)
C2—C3—O3—Mn17.0 (4)C45—C39—C44—C43179.1 (3)
C4—C3—O3—Mn1172.56 (19)C44—C39—C45—O8176.4 (3)
O5—Mn1—O3—C393.1 (3)C40—C39—C45—O83.1 (5)
O2—Mn1—O3—C310.0 (3)C44—C39—C45—O74.8 (5)
O6—Mn1—O3—C3153.5 (3)C40—C39—C45—O7175.7 (3)
O7—Mn1—O3—C370.5 (3)C43—C42—C46—O10156.2 (4)
O8—Mn1—O3—C3120.7 (3)C41—C42—C46—O1024.9 (5)
O4—C20—C21—C297.0 (4)C43—C42—C46—O925.0 (5)
O5—C20—C21—C29174.4 (3)C41—C42—C46—O9153.9 (4)
O4—C20—C21—C22175.4 (3)O8—C45—O7—Mn10.2 (3)
O5—C20—C21—C223.1 (5)C39—C45—O7—Mn1179.0 (2)
C29—C21—C22—O6171.0 (3)O5—Mn1—O7—C45119.6 (2)
C20—C21—C22—O66.6 (5)O2—Mn1—O7—C45145.4 (2)
C29—C21—C22—C239.9 (4)O3—Mn1—O7—C4566.9 (2)
C20—C21—C22—C23172.6 (3)O6—Mn1—O7—C4542.6 (2)
O6—C22—C23—C28178.0 (3)O8—Mn1—O7—C450.11 (18)
C21—C22—C23—C282.8 (4)O7—C45—O8—Mn10.2 (3)
O6—C22—C23—C245.5 (4)C39—C45—O8—Mn1179.0 (3)
C21—C22—C23—C24173.7 (3)O5—Mn1—O8—C4570.51 (19)
C28—C23—C24—N5172.9 (3)O2—Mn1—O8—C4547.3 (2)
C22—C23—C24—N510.5 (4)O3—Mn1—O8—C45123.57 (18)
C28—C23—C24—C253.5 (4)O6—Mn1—O8—C45149.90 (18)
C22—C23—C24—C25173.1 (3)O7—Mn1—O8—C450.11 (18)
Hydrogen-bond geometry (Å, º) top
Cg9 is the centroid of the C39–C44 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O8i0.862.243.041 (3)156
N1—H1B···O30.862.022.651 (3)129
N4—H4A···O1ii0.901.802.647 (4)156
N4—H4B···O11iii0.902.012.845 (3)153
N5—H5A···O8i0.862.132.954 (3)160
N5—H5B···O60.862.012.651 (3)131
N8—H8A···O4iv0.901.852.750 (3)175
N8—H8B···O11v0.901.942.821 (3)166
O11—H1W···O9vi0.851.762.606 (3)174
O11—H2W···O7vii0.851.972.804 (3)171
O12—H3W···O10i0.852.112.924 (4)159
O12—H4W···O10vi0.852.002.844 (4)174
O13—H5W···O2vii0.952.413.000 (12)120
C13—H13B···O4vii0.972.563.526 (5)178
C35—H35···O12v0.982.383.321 (4)161
C38—H38A···O13v0.962.513.097 (12)120
C12—H12A···Cg9viii0.972.593.529 (4)162
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x1/2, y+3/2, z+1/2; (v) x+1/2, y+1/2, z+1/2; (vi) x+1, y, z+1; (vii) x+1, y+1, z; (viii) x+1/2, y+1/2, z+1/2.
(II) Bis(sparfloxacin-κ2O,O')copper(II) benzene-1,4-dicarboxylate dihydrate top
Crystal data top
[Cu(C19H22F2N4O3)2](C8H4O4)·2H2OF(000) = 1090
Mr = 1048.50Dx = 1.529 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3693 reflections
a = 13.6039 (2) Åθ = 2.7–26.5°
b = 7.8019 (1) ŵ = 0.57 mm1
c = 22.0870 (3) ÅT = 296 K
β = 103.764 (1)°Block, green
V = 2276.91 (5) Å30.20 × 0.17 × 0.13 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
5168 independent reflections
Radiation source: fine-focus sealed tube3641 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ω scansθmax = 27.4°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1717
Tmin = 0.895, Tmax = 0.930k = 1010
20662 measured reflectionsl = 2823
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0611P)2 + 1.3659P]
where P = (Fo2 + 2Fc2)/3
5168 reflections(Δ/σ)max < 0.001
323 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.57 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.50000.00000.50000.03589 (15)
C10.4364 (3)0.1538 (4)0.60336 (15)0.0509 (8)
C20.3912 (2)0.3007 (4)0.56214 (13)0.0406 (7)
C30.4015 (2)0.3268 (3)0.50090 (13)0.0344 (6)
C40.3610 (2)0.4832 (3)0.46921 (13)0.0344 (6)
C50.3720 (2)0.5207 (3)0.40786 (13)0.0378 (6)
C60.3248 (2)0.6682 (4)0.37975 (14)0.0436 (7)
C70.2699 (2)0.7814 (4)0.40656 (14)0.0439 (7)
C80.2666 (3)0.7474 (4)0.46785 (14)0.0521 (8)
C90.3090 (2)0.6018 (4)0.49971 (13)0.0428 (7)
C100.3449 (3)0.4244 (4)0.58938 (15)0.0527 (8)
H100.34100.40650.63040.063*
C11A0.3034 (7)0.7255 (11)0.5989 (4)0.034 (2)*0.330 (8)
H11A0.35580.81160.59860.041*0.330 (8)
C11B0.2443 (4)0.6775 (6)0.5977 (2)0.0414 (13)*0.670 (8)
H11B0.17140.68620.57960.050*0.670 (8)
C120.2750 (4)0.6913 (5)0.6618 (2)0.0779 (13)
H12A0.33880.64980.68710.093*
H12B0.21670.68090.67970.093*
C13A0.1996 (8)0.7884 (13)0.5963 (5)0.050 (3)*0.330 (8)
H13A0.12940.75340.58240.060*0.330 (8)
H13B0.21410.90630.58750.060*0.330 (8)
C13B0.2951 (4)0.8341 (7)0.6235 (2)0.0548 (16)*0.670 (8)
H13C0.24980.93190.61780.066*0.670 (8)
H13D0.36520.86110.62500.066*0.670 (8)
C140.2694 (2)1.0478 (4)0.34509 (16)0.0477 (8)
H14A0.33601.00720.34310.057*
H14B0.27801.15080.37040.057*
C150.2084 (2)1.0892 (4)0.28020 (14)0.0399 (6)
H150.20490.98590.25450.048*
C160.0536 (2)1.0046 (4)0.31469 (13)0.0388 (6)
H160.04810.89830.29050.047*
C170.1190 (2)0.9702 (4)0.37892 (14)0.0453 (7)
H17A0.12401.07290.40420.054*
H17B0.08900.88020.39900.054*
C180.2539 (3)1.2321 (5)0.24928 (16)0.0561 (9)
H18A0.21501.24670.20720.084*
H18B0.32241.20350.24900.084*
H18C0.25321.33670.27200.084*
C190.0522 (2)1.0637 (5)0.31529 (17)0.0557 (8)
H19A0.04841.16820.33870.084*
H19B0.08520.97710.33420.084*
H19C0.09021.08330.27330.084*
N10.4226 (2)0.4198 (3)0.37568 (12)0.0482 (6)
H1A0.42520.44730.33840.058*
H1B0.45210.32810.39250.058*
N20.3048 (2)0.5684 (3)0.56173 (11)0.0517 (7)
N30.2191 (2)0.9183 (3)0.37340 (13)0.0519 (7)
N40.10343 (17)1.1367 (3)0.28308 (10)0.0355 (5)
H4A0.06591.15250.24400.043*
H4B0.10531.23680.30360.043*
O10.4311 (3)0.1573 (4)0.65800 (12)0.0909 (11)
O20.47895 (16)0.0304 (2)0.58081 (9)0.0447 (5)
O30.44457 (16)0.2185 (2)0.47204 (9)0.0438 (5)
F10.32798 (15)0.6955 (2)0.31954 (9)0.0609 (5)
F2A0.2432 (5)0.8883 (6)0.49417 (18)0.0451 (16)*0.456 (11)
F2B0.1995 (4)0.8500 (5)0.49550 (15)0.0436 (13)*0.544 (11)
C200.0172 (2)0.0098 (3)0.06024 (12)0.0350 (6)
C210.0523 (2)0.1177 (4)0.04203 (13)0.0416 (7)
H210.08770.19770.07010.050*
C220.0694 (2)0.1077 (4)0.01728 (13)0.0420 (7)
H220.11630.18050.02840.050*
C230.0320 (2)0.0165 (4)0.12619 (13)0.0415 (7)
O40.0936 (2)0.0847 (3)0.14030 (11)0.0607 (6)
O50.02068 (19)0.1251 (3)0.16135 (10)0.0598 (6)
O60.4982 (2)0.0203 (4)0.23468 (11)0.0704 (7)
H1W0.52120.00050.27290.084*
H2W0.50470.12700.23690.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0406 (3)0.0292 (2)0.0378 (3)0.0048 (2)0.0093 (2)0.0081 (2)
C10.067 (2)0.0454 (17)0.0404 (18)0.0155 (16)0.0134 (16)0.0122 (14)
C20.0490 (17)0.0345 (14)0.0355 (16)0.0092 (13)0.0048 (13)0.0046 (12)
C30.0367 (14)0.0278 (13)0.0360 (15)0.0007 (11)0.0029 (12)0.0022 (11)
C40.0380 (14)0.0273 (13)0.0336 (14)0.0008 (11)0.0001 (11)0.0034 (11)
C50.0404 (15)0.0316 (14)0.0383 (15)0.0003 (12)0.0035 (12)0.0055 (11)
C60.0482 (17)0.0397 (15)0.0403 (17)0.0002 (13)0.0052 (13)0.0144 (13)
C70.0517 (18)0.0300 (14)0.0427 (17)0.0012 (13)0.0034 (14)0.0051 (12)
C80.072 (2)0.0357 (15)0.0409 (18)0.0212 (15)0.0020 (16)0.0050 (13)
C90.0573 (18)0.0327 (14)0.0319 (15)0.0084 (13)0.0021 (13)0.0008 (12)
C100.074 (2)0.0498 (18)0.0316 (16)0.0214 (17)0.0065 (15)0.0055 (14)
C120.121 (4)0.060 (2)0.071 (3)0.025 (2)0.060 (3)0.016 (2)
C140.0425 (16)0.0394 (16)0.057 (2)0.0035 (13)0.0037 (15)0.0146 (14)
C150.0419 (16)0.0387 (15)0.0394 (16)0.0073 (13)0.0107 (13)0.0013 (12)
C160.0413 (15)0.0351 (14)0.0384 (15)0.0018 (13)0.0061 (12)0.0007 (12)
C170.0554 (18)0.0365 (16)0.0419 (17)0.0027 (13)0.0073 (14)0.0069 (12)
C180.0535 (19)0.066 (2)0.052 (2)0.0078 (17)0.0185 (16)0.0159 (17)
C190.0435 (18)0.0561 (19)0.068 (2)0.0041 (15)0.0139 (16)0.0055 (17)
N10.0643 (17)0.0419 (14)0.0408 (15)0.0110 (13)0.0172 (13)0.0104 (11)
N20.0762 (19)0.0417 (13)0.0320 (14)0.0241 (14)0.0029 (13)0.0006 (11)
N30.0474 (15)0.0411 (14)0.0632 (18)0.0071 (12)0.0052 (13)0.0232 (13)
N40.0418 (13)0.0366 (12)0.0263 (11)0.0080 (10)0.0042 (10)0.0001 (9)
O10.152 (3)0.0843 (19)0.0448 (15)0.068 (2)0.0403 (17)0.0296 (14)
O20.0549 (13)0.0389 (11)0.0418 (12)0.0145 (9)0.0142 (10)0.0134 (9)
O30.0609 (13)0.0330 (10)0.0387 (11)0.0122 (9)0.0142 (10)0.0085 (8)
F10.0745 (13)0.0592 (12)0.0513 (12)0.0185 (10)0.0193 (10)0.0265 (9)
C200.0431 (15)0.0351 (14)0.0260 (13)0.0060 (12)0.0066 (11)0.0048 (11)
C210.0536 (17)0.0391 (15)0.0287 (15)0.0068 (13)0.0032 (13)0.0030 (12)
C220.0532 (18)0.0396 (15)0.0336 (16)0.0070 (13)0.0110 (13)0.0041 (12)
C230.0573 (18)0.0387 (15)0.0281 (15)0.0126 (14)0.0097 (13)0.0064 (12)
O40.0901 (18)0.0541 (14)0.0470 (13)0.0027 (13)0.0346 (13)0.0105 (11)
O50.0852 (18)0.0659 (15)0.0255 (11)0.0022 (13)0.0072 (11)0.0046 (11)
O60.0863 (19)0.0776 (18)0.0439 (14)0.0018 (15)0.0089 (13)0.0074 (12)
Geometric parameters (Å, º) top
Cu1—O21.889 (2)C13A—H13B0.9700
Cu1—O2i1.889 (2)C13B—H13C0.9700
Cu1—O3i1.9064 (18)C13B—H13D0.9700
Cu1—O31.9064 (18)C14—N31.444 (4)
C1—O11.226 (4)C14—C151.510 (4)
C1—O21.283 (4)C14—H14A0.9700
C1—C21.501 (4)C14—H14B0.9700
C2—C101.368 (4)C15—N41.492 (3)
C2—C31.407 (4)C15—C181.515 (4)
C3—O31.281 (3)C15—H150.9800
C3—C41.449 (4)C16—N41.494 (4)
C4—C91.428 (4)C16—C171.508 (4)
C4—C51.428 (4)C16—C191.515 (4)
C5—N11.353 (4)C16—H160.9800
C5—C61.390 (4)C17—N31.454 (4)
C6—F11.358 (3)C17—H17A0.9700
C6—C71.377 (4)C17—H17B0.9700
C7—N31.384 (4)C18—H18A0.9600
C7—C81.391 (4)C18—H18B0.9600
C8—F2A1.317 (5)C18—H18C0.9600
C8—C91.387 (4)C19—H19A0.9600
C8—F2B1.453 (5)C19—H19B0.9600
C9—N21.409 (4)C19—H19C0.9600
C10—N21.332 (4)N1—H1A0.8600
C10—H100.9300N1—H1B0.8600
C11A—N21.478 (9)N4—H4A0.9000
C11A—C13A1.483 (14)N4—H4B0.9000
C11A—C121.551 (9)C20—C22ii1.387 (4)
C11A—H11A0.9800C20—C211.395 (4)
C11B—C121.380 (6)C20—C231.518 (4)
C11B—C13B1.451 (7)C21—C221.386 (4)
C11B—N21.532 (5)C21—H210.9300
C11B—H11B0.9800C22—C20ii1.387 (4)
C12—C13B1.463 (6)C22—H220.9300
C12—C13A1.736 (11)C23—O41.244 (4)
C12—H12A0.9700C23—O51.253 (4)
C12—H12B0.9700O6—H1W0.8412
C13A—H13A0.9700O6—H2W0.8376
O2—Cu1—O2i180.0C15—C14—H14A109.5
O2—Cu1—O3i86.76 (8)N3—C14—H14B109.5
O2i—Cu1—O3i93.24 (8)C15—C14—H14B109.5
O2—Cu1—O393.24 (8)H14A—C14—H14B108.1
O2i—Cu1—O386.76 (8)N4—C15—C14109.1 (2)
O3i—Cu1—O3180.0N4—C15—C18109.5 (2)
O1—C1—O2122.4 (3)C14—C15—C18113.2 (3)
O1—C1—C2117.9 (3)N4—C15—H15108.3
O2—C1—C2119.6 (3)C14—C15—H15108.3
C10—C2—C3118.8 (3)C18—C15—H15108.3
C10—C2—C1115.9 (3)N4—C16—C17109.3 (2)
C3—C2—C1125.0 (3)N4—C16—C19109.4 (2)
O3—C3—C2123.0 (2)C17—C16—C19113.3 (3)
O3—C3—C4118.8 (2)N4—C16—H16108.3
C2—C3—C4118.3 (2)C17—C16—H16108.3
C9—C4—C5119.4 (2)C19—C16—H16108.3
C9—C4—C3119.5 (2)N3—C17—C16109.0 (3)
C5—C4—C3121.2 (2)N3—C17—H17A109.9
N1—C5—C6119.0 (3)C16—C17—H17A109.9
N1—C5—C4124.1 (2)N3—C17—H17B109.9
C6—C5—C4116.9 (3)C16—C17—H17B109.9
F1—C6—C7117.9 (2)H17A—C17—H17B108.3
F1—C6—C5116.6 (3)C15—C18—H18A109.5
C7—C6—C5125.3 (3)C15—C18—H18B109.5
C6—C7—N3121.4 (3)H18A—C18—H18B109.5
C6—C7—C8116.3 (3)C15—C18—H18C109.5
N3—C7—C8122.3 (3)H18A—C18—H18C109.5
F2A—C8—C9125.0 (3)H18B—C18—H18C109.5
F2A—C8—C7109.7 (3)C16—C19—H19A109.5
C9—C8—C7123.0 (3)C16—C19—H19B109.5
F2A—C8—F2B27.5 (2)H19A—C19—H19B109.5
C9—C8—F2B117.7 (3)C16—C19—H19C109.5
C7—C8—F2B118.2 (3)H19A—C19—H19C109.5
C8—C9—N2122.5 (3)H19B—C19—H19C109.5
C8—C9—C4119.0 (3)C5—N1—H1A120.0
N2—C9—C4118.6 (2)C5—N1—H1B120.0
N2—C10—C2125.1 (3)H1A—N1—H1B120.0
N2—C10—H10117.5C10—N2—C9119.7 (3)
C2—C10—H10117.5C10—N2—C11A120.2 (4)
N2—C11A—C13A113.0 (7)C9—N2—C11A113.3 (4)
N2—C11A—C12113.2 (6)C10—N2—C11B116.3 (3)
C13A—C11A—C1269.7 (6)C9—N2—C11B123.6 (3)
N2—C11A—H11A117.4C11A—N2—C11B34.0 (3)
C13A—C11A—H11A117.4C7—N3—C14122.8 (3)
C12—C11A—H11A117.4C7—N3—C17122.1 (3)
C13A—C11A—H13D104.0C14—N3—C17113.0 (2)
C12—C11B—C13B62.2 (3)C15—N4—C16113.2 (2)
C12—C11B—N2120.4 (4)C15—N4—H4A108.9
C13B—C11B—N2114.0 (4)C16—N4—H4A108.9
C12—C11B—H11B116.3C15—N4—H4B108.9
C13B—C11B—H11B116.3C16—N4—H4B108.9
N2—C11B—H11B116.3H4A—N4—H4B107.8
C11B—C12—C13B61.3 (3)C1—O2—Cu1130.16 (19)
C13B—C12—H12A108.8C3—O3—Cu1128.39 (18)
C11A—C12—H12A101.2F2B—F2A—C887.6 (6)
C11B—C12—H12B109.5F2A—F2B—C864.9 (5)
H12A—C12—H12B116.3C22ii—C20—C21118.3 (3)
C11A—C13A—C1257.0 (5)C22ii—C20—C23121.1 (3)
C11A—C13A—H13A140.9C21—C20—C23120.6 (3)
C12—C13A—H13A118.8C22—C21—C20121.1 (3)
C12—C13A—H13B118.2C22—C21—H21119.5
H13A—C13A—H13B115.8C20—C21—H21119.5
C11B—C13B—C1256.5 (3)C21—C22—C20ii120.7 (3)
C12—C13B—H13B115.4C21—C22—H22119.7
C11B—C13B—H13C112.6C20ii—C22—H22119.7
C12—C13B—H13C118.2O4—C23—O5126.4 (3)
C12—C13B—H13D117.6O4—C23—C20118.0 (3)
H13C—C13B—H13D115.0O5—C23—C20115.6 (3)
N3—C14—C15110.5 (3)H1W—O6—H2W96.7
N3—C14—H14A109.5
O1—C1—C2—C102.0 (5)C13A—C12—C13B—C11B43.5 (5)
O2—C1—C2—C10178.2 (3)N3—C14—C15—N454.3 (3)
O1—C1—C2—C3171.9 (3)N3—C14—C15—C18176.5 (3)
O2—C1—C2—C37.9 (5)N4—C16—C17—N356.5 (3)
C10—C2—C3—O3179.4 (3)C19—C16—C17—N3178.7 (3)
C1—C2—C3—O35.7 (5)C2—C10—N2—C90.2 (6)
C10—C2—C3—C40.8 (4)C2—C10—N2—C11A149.3 (5)
C1—C2—C3—C4174.5 (3)C2—C10—N2—C11B172.1 (4)
O3—C3—C4—C9177.4 (3)C8—C9—N2—C10178.4 (3)
C2—C3—C4—C92.5 (4)C4—C9—N2—C103.2 (5)
O3—C3—C4—C52.4 (4)C8—C9—N2—C11A30.4 (6)
C2—C3—C4—C5177.8 (3)C4—C9—N2—C11A148.0 (4)
C9—C4—C5—N1177.9 (3)C8—C9—N2—C11B6.7 (5)
C3—C4—C5—N12.4 (4)C4—C9—N2—C11B174.9 (3)
C9—C4—C5—C63.9 (4)C13A—C11A—N2—C10118.7 (6)
C3—C4—C5—C6175.8 (3)C12—C11A—N2—C1041.9 (8)
N1—C5—C6—F13.8 (4)C13A—C11A—N2—C990.3 (7)
C4—C5—C6—F1174.5 (2)C12—C11A—N2—C9167.2 (4)
N1—C5—C6—C7179.2 (3)C13A—C11A—N2—C11B25.7 (6)
C4—C5—C6—C70.9 (4)C12—C11A—N2—C11B51.2 (6)
F1—C6—C7—N30.3 (4)C12—C11B—N2—C1036.8 (6)
C5—C6—C7—N3175.0 (3)C13B—C11B—N2—C10107.5 (4)
F1—C6—C7—C8178.7 (3)C12—C11B—N2—C9151.2 (4)
C5—C6—C7—C83.4 (5)C13B—C11B—N2—C980.5 (5)
C6—C7—C8—F2A158.9 (4)C12—C11B—N2—C11A69.0 (7)
N3—C7—C8—F2A22.7 (5)C13B—C11B—N2—C11A1.7 (6)
C6—C7—C8—C94.7 (5)C6—C7—N3—C1458.0 (4)
N3—C7—C8—C9173.6 (3)C8—C7—N3—C14123.7 (4)
C6—C7—C8—F2B172.4 (4)C6—C7—N3—C17139.8 (3)
N3—C7—C8—F2B6.0 (5)C8—C7—N3—C1738.5 (4)
F2A—C8—C9—N219.1 (7)C15—C14—N3—C7136.4 (3)
C7—C8—C9—N2179.8 (3)C15—C14—N3—C1760.0 (4)
F2B—C8—C9—N212.1 (5)C16—C17—N3—C7135.5 (3)
F2A—C8—C9—C4159.2 (5)C16—C17—N3—C1460.8 (3)
C7—C8—C9—C41.8 (5)C14—C15—N4—C1653.9 (3)
F2B—C8—C9—C4169.5 (3)C18—C15—N4—C16178.3 (2)
C5—C4—C9—C82.7 (4)C17—C16—N4—C1555.5 (3)
C3—C4—C9—C8177.1 (3)C19—C16—N4—C15179.9 (2)
C5—C4—C9—N2175.8 (3)O1—C1—O2—Cu1177.8 (3)
C3—C4—C9—N24.5 (4)C2—C1—O2—Cu12.0 (5)
C3—C2—C10—N22.2 (5)O3i—Cu1—O2—C1176.4 (3)
C1—C2—C10—N2176.5 (3)O3—Cu1—O2—C13.6 (3)
N2—C11B—C12—C13B102.9 (5)C2—C3—O3—Cu12.4 (4)
C13B—C11B—C12—C11A41.2 (6)C4—C3—O3—Cu1177.49 (18)
N2—C11B—C12—C11A61.7 (7)O2—Cu1—O3—C36.0 (2)
C13B—C11B—C12—C13A58.5 (7)O2i—Cu1—O3—C3174.0 (2)
N2—C11B—C12—C13A161.5 (9)C9—C8—F2A—F2B83.2 (6)
N2—C11A—C12—C11B58.9 (6)C7—C8—F2A—F2B113.6 (5)
C13A—C11A—C12—C11B48.2 (6)C9—C8—F2B—F2A113.3 (6)
N2—C11A—C12—C13B174.2 (10)C7—C8—F2B—F2A78.4 (6)
C13A—C11A—C12—C13B67.1 (7)C22ii—C20—C21—C220.3 (5)
N2—C11A—C12—C13A107.1 (8)C23—C20—C21—C22177.2 (3)
N2—C11A—C13A—C12107.4 (7)C20—C21—C22—C20ii0.3 (5)
C11B—C12—C13A—C11A44.0 (6)C22ii—C20—C23—O41.2 (4)
C13B—C12—C13A—C11A51.5 (5)C21—C20—C23—O4178.8 (3)
N2—C11B—C13B—C12113.1 (4)C22ii—C20—C23—O5178.5 (3)
C11A—C12—C13B—C11B35.6 (6)C21—C20—C23—O51.0 (4)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···F10.862.332.657 (3)103
N1—H1A···O6iii0.862.192.995 (4)155
N1—H1B···O30.861.982.604 (3)129
N4—H4A···O5iv0.901.802.658 (3)160
N4—H4B···O4v0.901.902.777 (3)166
O6—H1W···O1i0.841.952.716 (3)151
O6—H2W···O1vi0.842.463.048 (4)128
C12—H12A···O6vii0.972.553.494 (5)166
C13B—H13D···O1iv0.972.523.113 (6)119
C13B—H13D···O2iv0.972.413.258 (6)146
Symmetry codes: (i) x+1, y, z+1; (iii) x+1, y+1/2, z+1/2; (iv) x, y+1, z; (v) x, y+3/2, z+1/2; (vi) x, y+1/2, z1/2; (vii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge financial support from the program for talent introduction in Guangdong Higher Education Institutions (grant No. 201191) and the scientific research start-up funds for talent introduction in Guangdong University of Petrochemical Technology (grant No. 208058).

References

First citationAn, Z., Gao, J. & Harrison, W. T. A. (2010). J. Coord. Chem. 63, 3871–3879.  CrossRef CAS Google Scholar
First citationAn, Z., Gao, J. & Harrison, W. T. A. (2012). Crystals, 2, 1366–1373.  CrossRef CAS Google Scholar
First citationAn, Z., Liu, L.-R. & Liu, Y.-Q. (2008). Acta Cryst. E64, m176.  CrossRef IUCr Journals Google Scholar
First citationAndersson, M. I. & MacGowan, A. P. (2003). J. Antimicrob. Chemother. 51 Suppl. S1, 1–11.  CrossRef Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEfthimiadou, E. K., Sanakis, Y., Raptopoulou, C. P., Karaliota, K., Katsaros, N. & Psomas, G. (2006). Bioorg. Med. Chem. Lett. 16, 3864–3867.  CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGorkum, R. van, Buda, F., Kooijman, H., Spek, A. L., Bouwman, E. & Reedijk, J. (2005). Eur. J. Inorg. Chem. pp. 2255–2261.  Web of Science CSD CrossRef Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationKarpishin, T. B., Stack, T. D. P. & Raymond, K. N. (1993). J. Am. Chem. Soc. 115, 182–192.  CSD CrossRef CAS Web of Science Google Scholar
First citationLi, T., Yang, L., Wang, Y. C. & Lian, Q. (2011). Acta Cryst. E67, o3366–o3367.  CrossRef IUCr Journals Google Scholar
First citationLlinàs, A., Burley, J. C., Prior, T. J., Glen, R. C. & Goodman, J. M. (2008). Cryst. Growth Des. 8, 114–118.  Google Scholar
First citationMa, C., Chen, C., Liu, Q., Liao, D., Li, L. & Sun, L. (2003). New J. Chem. 27, 890–894.  Web of Science CSD CrossRef CAS Google Scholar
First citationMiyamoto, T., Matsumoto, J.-I., Chiba, K., Egawa, H., Shibamori, K., Minamida, A., Nishimura, Y., Okada, H., Kataoka, M., Fujita, M., Hirose, T. & Nakano, J. (1990). J. Med. Chem. 33, 1645–1656.  CrossRef CAS PubMed Google Scholar
First citationQadri, S. M. H., Ueno, Y., Burns, J. J., Almodovar, E. & Rabea, N. (1992). Chemotherapy, 38, 99–106.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShingnapurkar, D., Butcher, R., Afrasiabi, Z., Sinn, E., Ahmed, F., Sarkar, F. & Padhye, S. (2007). Inorg. Chem. Commun. 10, 459–462.  Web of Science CSD CrossRef CAS Google Scholar
First citationSivalakshmidevi, A., Vyas, K. & Om Reddy, G. (2000). Acta Cryst. C56, e115–e116.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSkyrianou, K. C., Raptopoulou, C. P., Psycharis, V., Kessissoglou, D. P. & Psomas, G. (2009). Polyhedron, 28, 3265–3271.  CrossRef CAS Google Scholar
First citationTarushi, A., Polatoglou, E., Kljun, J., Turel, I., Psomas, G. & Kessissoglou, D. P. (2011). Dalton Trans. 40, 9461–9473.  CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, D.-R., Wang, E.-B., An, H.-Y., Su, Z.-M., Li, Y.-G., Gao, L., Sun, C.-Y. & Xu, L. (2005). Chem. Eur. J. 11, 6673–6686.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYu, L.-C., Tang, Z.-L., Yi, P.-G. & Liu, S.-L. (2009). J. Coord. Chem. 62, 894–902.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds