research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­[trans-(ethane-1,2-di­amine-κ2N,N′)bis­­(thio­cyanato-κN)chromium(III)] tetra­chlorido­zincate from synchrotron data

aPohang Accelerator Laboratory, POSTECH, Pohang 790-784, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 760-749, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr

Edited by J. Simpson, University of Otago, New Zealand (Received 12 December 2014; accepted 16 December 2014; online 1 January 2015)

The structure of the title compound, [Cr(NCS)2(C2H8N2)2]2[ZnCl4], has been determined from synchrotron data. In the asymmetric unit, there are four independent halves of the CrIII complex cations, each of which lies on an inversion centre, and one tetra­chlorido­zincate anion in a general position. The CrIII atoms are coordinated by the four N atoms of two ethane-1,2-di­amine (en) ligands in the equatorial plane and two N-bound NCS anions in a trans arrangement, displaying a slightly distorted octa­hedral geometry with crystallographic inversion symmetry. The Cr—N(en) and Cr—N(NCS) bond lengths range from 2.0653 (10) to 2.0837 (10) Å and from 1.9811 (10) to 1.9890 (10) Å, respectively. The five-membered metalla-rings are in stable gauche conformations. The [ZnCl4]2− anion has a distorted tetra­hedral geometry. The crystal structure is stabilized by inter­molecular hydrogen bonds involving the en NH2 or CH2 groups as donors and chloride ligands of the anion and S atoms of NCS ligands as acceptors.

1. Chemical context

The study of geometrical isomers in octa­hedral transition metal complexes with bidentate amines has been an area of intense activity and has provided much basic structural information and insights into their spectroscopic properties. Ethane-1,2-di­amine (en) can act as a bidentate ligand to a central metal ion through its two nitro­gen atoms, forming a five-membered ring. The [Cr(en)2L2]+ (where L is a monodentate ligand) cation can form either trans or cis geometric isomers. Infrared, electronic absorption and emission spectral properties are useful in determining the geometric isomers of chromium(III) complexes with mixed ligands (Choi, 2000a[Choi, J.-H. (2000a). Chem. Phys. 256, 29-35.],b[Choi, J.-H. (2000b). Spectrochim. Acta Part A, 58, 1599-1606.]; Choi et al., 2002[Choi, J.-H., Hong, Y. P. & Park, Y. C. (2002). Spectrochim. Acta Part A, 56, 1653-1660.], 2004a[Choi, J.-H., Oh, I.-G., Linder, R. & Schönherr, T. (2004a). Chem. Phys. 297, 7-12.],b[Choi, J.-H., Oh, I. G., Suzuki, T. & Kaizaki, S. (2004b). J. Mol. Struct. 694, 39-44.]; Choi & Moon, 2014[Choi, J.-H. & Moon, D. (2014). J. Mol. Struct. 1059, 325-331.]). However, it should be noted that the geometric assignments based on spectroscopic studies are much less conclusive. In addition, NCS is an ambidentate ligand because it can coordinate to a transition metal through the nitro­gen (M—NCS), or the sulfur (M—SCN), or both (M–-NCS—M). In general, hard metals such as chromium, nickel and cobalt tend to form metal–NCS bonds, whereas the soft metals such as mercury, rhodium, iridium, palladium and platinum tend to bind through the S atom. The oxidation state of the metal, the nature of other ligands and steric factors also influence the mode of coordin­ation.

Here, we report on the synthesis and structure of [Cr(en)2(NCS)2]2[ZnCl4] in order to determine the bonding mode of the thio­cyanate group and the geometric features of the two en ligands, the two NCS groups and the [ZnCl4]2− anion.

[Scheme 1]

2. Structural commentary

Structural analysis shows that there are four crystallographically independent CrIII complex cations in which the four nitro­gen atoms of the two en ligands occupy the equatorial sites and the two thio­cyanate anions coordinate to the CrIII atom through their N atoms in a trans configuration. Fig. 1[link] shows an ellipsoid plot of two independent complex cations and one anion in trans-[Cr(en)2(NCS)2]2[ZnCl4], with the atom-numbering scheme.

[Figure 1]
Figure 1
A perspective view (60% probability ellipsoids) of two independent chromium(III) complex cations and the unique tetra­chlorido­zincate anion in trans-[Cr(en)2(NCS)2]2[ZnCl4]. The symmetry code for A′ atoms is −x + 2, −y, −z + 1 and for B′ atoms, the symmetry code is −x + 1, −y + 1, −z + 1.

The asymmetric unit contains four halves of the [Cr(en)2(NCS)2]+ complex cations and one [ZnCl4]2− anion. The four CrIII atoms are located on crystallographic centers of symmetry, so these complex cations have mol­ecular Ci symmetry. The spatial configuration of the bidentate en ring is a stable gauche form, which has been observed in other compounds (Brencic & Leban, 1981[Brencic, J. V. & Leban, I. (1981). Z. Anorg. Allg. Chem. 480, 213-219.]; Choi et al., 2010[Choi, J.-H., Clegg, W., Harrington, R. W. & Lee, S. H. (2010). J. Chem. Crystallogr. 40, 567-571.]). The carbon atoms in the en ring are arranged symmetrically above and below the plane defined by the chromium and the en nitro­gen atoms. The two Cr–en rings are in δ and λ conformations as the CrIII atom occupies a special position with inversion symmetry. The Cr—N bond lengths for the en ligand range from 2.0653 (10) to 2.0837 (10) Å, in good agreement with those observed in trans-[Cr(en)2F2]ClO4 (Brencic & Leban, 1981[Brencic, J. V. & Leban, I. (1981). Z. Anorg. Allg. Chem. 480, 213-219.]), trans-[Cr(en)2Br2]ClO4 (Choi et al., 2010[Choi, J.-H., Clegg, W., Harrington, R. W. & Lee, S. H. (2010). J. Chem. Crystallogr. 40, 567-571.]), trans-[Cr(Me2tn)2Cl2]2ZnCl4 (Me2tn = 2,2-di­methyl­propane-1,3-di­amine) (Choi et al., 2011[Choi, J.-H., Joshi, T. & Spiccia, L. (2011). Z. Anorg. Allg. Chem. 637, 1194-1198.]) and trans-[Cr(2,2,3-tet)F2]ClO4 (2,2,3-tet = 1,4,7,11-tetra­aza­undeca­ne) (Choi & Moon, 2014[Choi, J.-H. & Moon, D. (2014). J. Mol. Struct. 1059, 325-331.]). The Cr—N(CS) distances lie in the range 1.9811 (10) to 1.9890 (10) Å and are similar to the average values of 1.9826 (15) and 1.996 (15) Å found in trans-[Cr(Me2tn)2(NCS)2]NCS (Choi & Lee, 2009[Choi, J.-H. & Lee, S. H. (2009). J. Mol. Struct. 932, 84-89.]) and cis-[Cr(cyclam)(NCS)2]NCS (cyclam = 1,4,8,11-tetra­aza­cyclo­tetra­deca­ne) (Moon et al., 2013[Moon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376-m377.]), respectively. The N-coord­in­ating ­thio­cyanato groups are almost linear with N—C—S angles ranging from 177.11 (8) to 179.15 (9)°. The [ZnCl4]2− counter-anion has a distorted tetra­hedral geometry due to the influence of hydrogen bonding on the Zn—Cl bond lengths and the Cl—Zn—Cl angles. Zn—Cl bond lengths range from 2.2518 (8) to 2.2923 (8) Å and the Cl—Zn—Cl angles are in the range 106.71 (2)–112.49 (2)°.

3. Supra­molecular features

In the asymmetric unit, a series of N—H⋯Cl and C—H⋯Cl hydrogen bonds link each anion to the four neighbouring cations, while N—H⋯S and C—H⋯S contacts inter­connect the complex cations (Fig. 2[link], Table 1[link]). An extensive array of additional, similar contacts generate a three-dimensional network of mol­ecules stacked along the a-axis direction.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A1⋯Cl3Ei 0.91 2.48 3.3700 (13) 165
N2A—H2A1⋯Cl1Eii 0.91 2.50 3.3483 (13) 155
N2A—H2A2⋯Cl3E 0.91 2.90 3.5797 (12) 133
C1A—H1A3⋯S1Aiii 0.99 2.91 3.5983 (15) 127
C2A—H2A3⋯Cl3E 0.99 2.91 3.5533 (15) 123
C2A—H2A4⋯S1Biv 0.99 2.94 3.6270 (15) 128
N1B—H1B1⋯Cl1E 0.91 2.45 3.2813 (13) 152
N1B—H1B2⋯S1Aiii 0.91 2.81 3.5401 (13) 138
N2B—H2B1⋯Cl4Eiv 0.91 2.49 3.3532 (13) 159
N2B—H2B2⋯Cl1Ev 0.91 2.77 3.4934 (12) 138
C1B—H1B3⋯S1Aiii 0.99 2.98 3.5910 (14) 121
C1B—H1B3⋯S1Bv 0.99 2.87 3.6440 (14) 136
C2B—H2B3⋯Cl1Ev 0.99 2.93 3.5309 (14) 120
N1C—H1C1⋯Cl4E 0.91 2.40 3.3058 (12) 171
N1C—H1C2⋯S1B 0.91 2.73 3.4473 (14) 137
N2C—H2C1⋯S1Ciii 0.91 2.50 3.2836 (12) 144
N2C—H2C2⋯S1Bvi 0.91 2.75 3.4063 (11) 130
N2C—H2C2⋯S1Diii 0.91 2.88 3.5893 (13) 135
C1C—H1C4⋯Cl1E 0.99 2.86 3.7421 (13) 149
N1D—H1D1⋯S1C 0.91 2.61 3.4937 (13) 164
N1D—H1D2⋯Cl2E 0.91 2.49 3.3919 (12) 172
N2D—H2D1⋯S1Cvii 0.91 2.78 3.6225 (12) 155
N2D—H2D2⋯S1Dviii 0.91 2.67 3.3564 (12) 133
C1D—H1D3⋯Cl3E 0.99 2.88 3.7357 (14) 145
C1D—H1D4⋯Cl2Eii 0.99 2.98 3.7397 (12) 135
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1, y, z; (iii) x-1, y, z; (iv) -x+1, -y+1, -z+1; (v) -x, -y+1, -z+1; (vi) -x, -y+1, -z; (vii) -x+1, -y, -z; (viii) -x+2, -y, -z.
[Figure 2]
Figure 2
The mol­ecular packing for trans-[Cr(en)2(NCS)2]2[ZnCl4], viewed along the a axis. Hydrogen bonding is denoted by dashed liness, N—H⋯S (purple), C—H⋯S (grey), N—H⋯Cl (red), and C—H⋯Cl (blue).

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, May 2014 with one update; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) indicates a total of 13 hits for CrIII complexes with a [Cr(en)2L2]+ unit. The crystal structures of trans-[Cr(en)2Cl2]Cl·HCl·2H2O (Ooi et al., 1960[Ooi, S., Komiyama, Y. & Kuroya, H. (1960). Bull. Chem. Soc. Jpn, 33, 354-357.]), trans-[Cr(en)2F2]X (X = ClO4, Cl, Br) (Brencic & Leban, 1981[Brencic, J. V. & Leban, I. (1981). Z. Anorg. Allg. Chem. 480, 213-219.]), cis-[Cr(en)2F2]ClO4 (Brencic et al., 1987[Brenčič, J. V., Leban, I. & Polanc, I. (1987). Acta Cryst. C43, 885-887.]), trans-[Cr(en)2Br2]ClO4 (Choi et al., 2010[Choi, J.-H., Clegg, W., Harrington, R. W. & Lee, S. H. (2010). J. Chem. Crystallogr. 40, 567-571.]) have been reported previously. However, no structures of salts of [Cr(en)2(NCS)2]+ with any anions were found.

5. Synthesis and crystallization

All chemicals were reagent-grade materials and were used without further purification. The starting material, trans-[Cr(en)2(NCS)2]ClO4 was prepared according to the literature (Sandrini et al., 1978[Sandrini, D., Gandolfi, M. T., Moggi, L. & Balzani, V. (1978). J. Am. Chem. Soc. 100, 1463-1468.]). The crude perchlorate salt (0.10 g) was dissolved in 5 mL of 0.1 M HCl at 333 K and added to 2 mL of 6 M HCl containing 0.3 g of solid ZnCl2. The resulting solution was filtered and allowed to stand at room temperature for two days to give red crystals of the tetra­chlorido­zincate salt suitable for X-ray structural analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms bound to carbon or nitro­gen were placed in calculated positions (C—H = 0.95, N—H = 0.91 Å), and were included in the refinement using the riding-model approximation with Uiso(H) set to 1.2Ueq(C, N).

Table 2
Experimental details

Crystal data
Chemical formula [Cr(NCS)2(C2H8N2)2]2[ZnCl4]
Mr 783.90
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 7.6870 (15), 13.853 (3), 14.560 (3)
α, β, γ (°) 92.74 (3), 92.76 (3), 90.21 (3)
V3) 1546.9 (5)
Z 2
Radiation type Synchrotron, λ = 0.62998 Å
μ (mm−1) 1.50
Crystal size (mm) 0.10 × 0.03 × 0.03
 
Data collection
Diffractometer ADSC Q210 CCD area detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])
Tmin, Tmax 0.865, 0.956
No. of measured, independent and observed [I > 2σ(I)] reflections 17036, 8546, 8434
Rint 0.014
(sin θ/λ)max−1) 0.696
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.049, 1.03
No. of reflections 8546
No. of parameters 322
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.48, −0.60
Computer programs: PAL ADSC Quantum-210 ADX (Arvai & Nielsen, 1983[Arvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.]), HKL3000sm (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXT2014 and SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 2007[Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: PAL ADSC Quantum-210 ADX (Arvai & Nielsen, 1983); cell refinement: HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Bis[trans-(ethane-1,2-diamine-κ2N,N')bis(thiocyanato-κN)chromium(III)] tetrachloridozincate top
Crystal data top
[Cr(NCS)2(C2H8N2)2]2[ZnCl4]Z = 2
Mr = 783.90F(000) = 796
Triclinic, P1Dx = 1.683 Mg m3
a = 7.6870 (15) ÅSynchrotron radiation, λ = 0.62998 Å
b = 13.853 (3) ÅCell parameters from 94806 reflections
c = 14.560 (3) Åθ = 0.4–33.6°
α = 92.74 (3)°µ = 1.50 mm1
β = 92.76 (3)°T = 100 K
γ = 90.21 (3)°Needle, red
V = 1546.9 (5) Å30.10 × 0.03 × 0.03 mm
Data collection top
ADSC Q210 CCD area-detector
diffractometer
8434 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.014
ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: empirical (using intensity measurements)
(HKL3000sm SCALEPACK; Otwinowski & Minor, 1997)
h = 1010
Tmin = 0.865, Tmax = 0.956k = 1919
17036 measured reflectionsl = 2020
8546 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018H-atom parameters constrained
wR(F2) = 0.049 w = 1/[σ2(Fo2) + (0.027P)2 + 0.6367P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
8546 reflectionsΔρmax = 0.48 e Å3
322 parametersΔρmin = 0.60 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr1A1.00000.00000.50000.00585 (4)
S1A1.34965 (3)0.21259 (2)0.69613 (2)0.01282 (5)
N1A0.83989 (11)0.00710 (6)0.61105 (6)0.01133 (14)
H1A10.78410.05050.61510.014*
H1A20.90520.01920.66420.014*
N2A0.86680 (11)0.12458 (6)0.46494 (6)0.01130 (14)
H2A10.94090.16760.44170.014*
H2A20.78030.10990.42160.014*
N3A1.17486 (11)0.08052 (6)0.57360 (6)0.01110 (14)
C1A0.70956 (13)0.08539 (8)0.59868 (7)0.01647 (18)
H1A30.67060.10940.65940.020*
H1A40.60660.06000.56160.020*
C2A0.79203 (13)0.16675 (7)0.55045 (7)0.01477 (18)
H2A30.70360.21590.53490.018*
H2A40.88490.19820.59090.018*
C3A1.24862 (12)0.13654 (6)0.62427 (6)0.00895 (15)
Cr2B0.50000.50000.50000.00494 (4)
S1B0.15226 (4)0.64435 (2)0.26918 (2)0.01492 (5)
N1B0.33365 (10)0.38801 (6)0.52696 (5)0.00894 (13)
H1B10.28190.36300.47350.011*
H1B20.39440.34020.55450.011*
N2B0.38490 (10)0.56908 (6)0.61174 (5)0.00906 (13)
H2B10.46790.59800.65050.011*
H2B20.31000.61520.59190.011*
N3B0.32168 (11)0.55205 (6)0.41316 (6)0.01046 (14)
C1B0.19944 (12)0.42703 (7)0.58878 (7)0.01159 (16)
H1B30.14210.37360.61880.014*
H1B40.10940.46220.55290.014*
C2B0.28916 (13)0.49470 (7)0.66051 (6)0.01178 (16)
H2B30.20220.52610.69990.014*
H2B40.37140.45840.70010.014*
C3B0.24999 (11)0.58858 (6)0.35161 (6)0.00807 (15)
Cr3C0.00000.50000.00000.00436 (4)
S1C0.47203 (3)0.29853 (2)0.07639 (2)0.01296 (5)
N1C0.00397 (10)0.44890 (5)0.13158 (5)0.00792 (13)
H1C10.11180.42630.14740.010*
H1C20.02250.49730.17290.010*
N2C0.12263 (11)0.36953 (6)0.03474 (5)0.00961 (14)
H2C10.23720.37950.04990.012*
H2C20.07290.34040.08420.012*
N3C0.22291 (11)0.43406 (6)0.02527 (6)0.01166 (14)
C1C0.12726 (13)0.36960 (7)0.13185 (6)0.01083 (16)
H1C30.24640.39650.13220.013*
H1C40.10760.33140.18710.013*
C2C0.10560 (14)0.30666 (7)0.04542 (6)0.01285 (17)
H2C30.01020.27560.04760.015*
H2C40.19610.25540.03990.015*
C3C0.32768 (12)0.37725 (7)0.04576 (6)0.00935 (15)
Cr4D0.50000.00000.00000.00523 (4)
S1D0.95604 (3)0.14416 (2)0.15730 (2)0.01195 (5)
N1D0.46882 (10)0.12154 (5)0.08662 (5)0.00860 (13)
H1D10.47610.17600.05450.010*
H1D20.36270.12000.11160.010*
N2D0.65239 (10)0.04648 (6)0.11111 (6)0.01038 (14)
H2D10.62230.10800.12320.012*
H2D20.76680.04580.09760.012*
N3D0.70324 (10)0.06281 (6)0.05272 (6)0.01025 (14)
C1D0.60962 (13)0.12127 (7)0.16052 (6)0.01106 (16)
H1D30.58100.16650.21230.013*
H1D40.72130.14200.13640.013*
C2D0.62447 (13)0.01935 (7)0.19298 (6)0.01289 (17)
H2D30.72350.01500.23860.015*
H2D40.51660.00090.22250.015*
C3D0.80965 (12)0.09622 (6)0.09656 (6)0.00862 (15)
Zn1E0.22955 (2)0.24635 (2)0.28844 (2)0.00695 (3)
Cl1E0.02321 (3)0.32263 (2)0.37380 (2)0.01053 (4)
Cl2E0.09386 (3)0.12821 (2)0.20032 (2)0.01134 (4)
Cl3E0.43186 (3)0.18443 (2)0.38989 (2)0.01078 (4)
Cl4E0.37370 (3)0.34934 (2)0.20252 (2)0.01048 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr1A0.00661 (9)0.00475 (8)0.00601 (8)0.00088 (6)0.00137 (6)0.00022 (6)
S1A0.01664 (11)0.00822 (9)0.01275 (10)0.00177 (8)0.00551 (8)0.00184 (7)
N1A0.0113 (3)0.0130 (4)0.0098 (3)0.0010 (3)0.0011 (3)0.0008 (3)
N2A0.0132 (4)0.0082 (3)0.0123 (3)0.0008 (3)0.0029 (3)0.0013 (3)
N3A0.0104 (3)0.0111 (3)0.0116 (3)0.0023 (3)0.0021 (3)0.0001 (3)
C1A0.0114 (4)0.0213 (5)0.0167 (4)0.0046 (4)0.0025 (3)0.0014 (4)
C2A0.0159 (4)0.0108 (4)0.0168 (4)0.0051 (3)0.0028 (3)0.0038 (3)
C3A0.0089 (4)0.0083 (4)0.0098 (4)0.0012 (3)0.0002 (3)0.0031 (3)
Cr2B0.00588 (8)0.00513 (8)0.00366 (8)0.00158 (6)0.00107 (6)0.00018 (6)
S1B0.02450 (12)0.01331 (10)0.00660 (9)0.00362 (9)0.00526 (8)0.00280 (8)
N1B0.0101 (3)0.0080 (3)0.0085 (3)0.0000 (3)0.0000 (3)0.0010 (3)
N2B0.0108 (3)0.0089 (3)0.0073 (3)0.0019 (3)0.0004 (3)0.0017 (2)
N3B0.0097 (3)0.0120 (3)0.0096 (3)0.0020 (3)0.0020 (3)0.0010 (3)
C1B0.0096 (4)0.0123 (4)0.0131 (4)0.0000 (3)0.0029 (3)0.0006 (3)
C2B0.0149 (4)0.0130 (4)0.0078 (4)0.0015 (3)0.0036 (3)0.0005 (3)
C3B0.0088 (4)0.0081 (3)0.0072 (3)0.0002 (3)0.0009 (3)0.0011 (3)
Cr3C0.00541 (8)0.00389 (8)0.00375 (8)0.00058 (6)0.00073 (6)0.00083 (6)
S1C0.01002 (10)0.01022 (10)0.01841 (11)0.00200 (7)0.00200 (8)0.00320 (8)
N1C0.0104 (3)0.0082 (3)0.0051 (3)0.0003 (3)0.0013 (2)0.0009 (2)
N2C0.0148 (4)0.0081 (3)0.0059 (3)0.0035 (3)0.0017 (3)0.0012 (2)
N3C0.0102 (3)0.0136 (4)0.0116 (3)0.0033 (3)0.0015 (3)0.0032 (3)
C1C0.0145 (4)0.0110 (4)0.0071 (4)0.0040 (3)0.0001 (3)0.0028 (3)
C2C0.0226 (5)0.0071 (4)0.0088 (4)0.0038 (3)0.0014 (3)0.0024 (3)
C3C0.0092 (4)0.0105 (4)0.0085 (4)0.0013 (3)0.0004 (3)0.0023 (3)
Cr4D0.00413 (8)0.00421 (8)0.00761 (8)0.00135 (6)0.00197 (6)0.00099 (6)
S1D0.01028 (10)0.00953 (10)0.01695 (11)0.00014 (7)0.00598 (8)0.00466 (8)
N1D0.0086 (3)0.0064 (3)0.0109 (3)0.0017 (2)0.0022 (3)0.0002 (3)
N2D0.0099 (3)0.0084 (3)0.0129 (3)0.0023 (3)0.0004 (3)0.0025 (3)
N3D0.0084 (3)0.0091 (3)0.0134 (3)0.0004 (3)0.0031 (3)0.0002 (3)
C1D0.0138 (4)0.0092 (4)0.0101 (4)0.0006 (3)0.0003 (3)0.0002 (3)
C2D0.0175 (4)0.0120 (4)0.0094 (4)0.0001 (3)0.0001 (3)0.0029 (3)
C3D0.0081 (4)0.0063 (3)0.0114 (4)0.0018 (3)0.0001 (3)0.0002 (3)
Zn1E0.00724 (5)0.00672 (5)0.00674 (5)0.00094 (3)0.00074 (3)0.00012 (3)
Cl1E0.00871 (9)0.01205 (9)0.01064 (9)0.00290 (7)0.00053 (7)0.00174 (7)
Cl2E0.01069 (9)0.00975 (9)0.01296 (9)0.00072 (7)0.00204 (7)0.00320 (7)
Cl3E0.00939 (9)0.01256 (9)0.01027 (9)0.00166 (7)0.00291 (7)0.00272 (7)
Cl4E0.01084 (9)0.01095 (9)0.00978 (9)0.00068 (7)0.00084 (7)0.00329 (7)
Geometric parameters (Å, º) top
Cr1A—N3Ai1.9838 (11)Cr3C—N2C2.0653 (10)
Cr1A—N3A1.9838 (11)Cr3C—N2Ciii2.0653 (10)
Cr1A—N1Ai2.0775 (10)Cr3C—N1Ciii2.0727 (9)
Cr1A—N1A2.0776 (10)Cr3C—N1C2.0727 (9)
Cr1A—N2A2.0818 (10)S1C—C3C1.6215 (11)
Cr1A—N2Ai2.0818 (10)N1C—C1C1.4891 (12)
S1A—C3A1.6181 (11)N1C—H1C10.9100
N1A—C1A1.4905 (14)N1C—H1C20.9100
N1A—H1A10.9100N2C—C2C1.4903 (12)
N1A—H1A20.9100N2C—H2C10.9100
N2A—C2A1.4912 (13)N2C—H2C20.9100
N2A—H2A10.9100N3C—C3C1.1672 (13)
N2A—H2A20.9100C1C—C2C1.5125 (14)
N3A—C3A1.1704 (13)C1C—H1C30.9900
C1A—C2A1.5094 (16)C1C—H1C40.9900
C1A—H1A30.9900C2C—H2C30.9900
C1A—H1A40.9900C2C—H2C40.9900
C2A—H2A30.9900Cr4D—N3Div1.9890 (10)
C2A—H2A40.9900Cr4D—N3D1.9890 (10)
Cr2B—N3B1.9811 (10)Cr4D—N1Div2.0765 (10)
Cr2B—N3Bii1.9811 (10)Cr4D—N1D2.0766 (10)
Cr2B—N1Bii2.0707 (10)Cr4D—N2D2.0799 (10)
Cr2B—N1B2.0708 (10)Cr4D—N2Div2.0799 (10)
Cr2B—N2B2.0837 (10)S1D—C3D1.6237 (11)
Cr2B—N2Bii2.0837 (10)N1D—C1D1.4891 (13)
S1B—C3B1.6148 (10)N1D—H1D10.9100
N1B—C1B1.4879 (13)N1D—H1D20.9100
N1B—H1B10.9100N2D—C2D1.4903 (13)
N1B—H1B20.9100N2D—H2D10.9100
N2B—C2B1.4907 (13)N2D—H2D20.9100
N2B—H2B10.9100N3D—C3D1.1690 (13)
N2B—H2B20.9100C1D—C2D1.5131 (13)
N3B—C3B1.1665 (13)C1D—H1D30.9900
C1B—C2B1.5092 (14)C1D—H1D40.9900
C1B—H1B30.9900C2D—H2D30.9900
C1B—H1B40.9900C2D—H2D40.9900
C2B—H2B30.9900Zn1E—Cl2E2.2518 (8)
C2B—H2B40.9900Zn1E—Cl4E2.2630 (7)
Cr3C—N3C1.9864 (10)Zn1E—Cl3E2.2903 (8)
Cr3C—N3Ciii1.9864 (10)Zn1E—Cl1E2.2923 (8)
N3Ai—Cr1A—N3A180.0N3C—Cr3C—N2Ciii92.81 (4)
N3Ai—Cr1A—N1Ai89.16 (4)N3Ciii—Cr3C—N2Ciii87.19 (4)
N3A—Cr1A—N1Ai90.84 (4)N2C—Cr3C—N2Ciii180.0
N3Ai—Cr1A—N1A90.84 (4)N3C—Cr3C—N1Ciii88.78 (4)
N3A—Cr1A—N1A89.16 (4)N3Ciii—Cr3C—N1Ciii91.22 (4)
N1Ai—Cr1A—N1A180.0N2C—Cr3C—N1Ciii96.91 (4)
N3Ai—Cr1A—N2A90.31 (4)N2Ciii—Cr3C—N1Ciii83.09 (4)
N3A—Cr1A—N2A89.69 (4)N3C—Cr3C—N1C91.22 (4)
N1Ai—Cr1A—N2A97.06 (4)N3Ciii—Cr3C—N1C88.78 (4)
N1A—Cr1A—N2A82.94 (4)N2C—Cr3C—N1C83.09 (4)
N3Ai—Cr1A—N2Ai89.69 (4)N2Ciii—Cr3C—N1C96.91 (4)
N3A—Cr1A—N2Ai90.31 (4)N1Ciii—Cr3C—N1C180.0
N1Ai—Cr1A—N2Ai82.94 (4)C1C—N1C—Cr3C107.84 (6)
N1A—Cr1A—N2Ai97.06 (4)C1C—N1C—H1C1110.1
N2A—Cr1A—N2Ai180.0Cr3C—N1C—H1C1110.1
C1A—N1A—Cr1A109.59 (6)C1C—N1C—H1C2110.1
C1A—N1A—H1A1109.8Cr3C—N1C—H1C2110.1
Cr1A—N1A—H1A1109.8H1C1—N1C—H1C2108.5
C1A—N1A—H1A2109.8C2C—N2C—Cr3C108.84 (6)
Cr1A—N1A—H1A2109.8C2C—N2C—H2C1109.9
H1A1—N1A—H1A2108.2Cr3C—N2C—H2C1109.9
C2A—N2A—Cr1A107.35 (6)C2C—N2C—H2C2109.9
C2A—N2A—H2A1110.2Cr3C—N2C—H2C2109.9
Cr1A—N2A—H2A1110.2H2C1—N2C—H2C2108.3
C2A—N2A—H2A2110.2C3C—N3C—Cr3C163.96 (8)
Cr1A—N2A—H2A2110.2N1C—C1C—C2C106.92 (8)
H2A1—N2A—H2A2108.5N1C—C1C—H1C3110.3
C3A—N3A—Cr1A166.35 (8)C2C—C1C—H1C3110.3
N1A—C1A—C2A109.01 (8)N1C—C1C—H1C4110.3
N1A—C1A—H1A3109.9C2C—C1C—H1C4110.3
C2A—C1A—H1A3109.9H1C3—C1C—H1C4108.6
N1A—C1A—H1A4109.9N2C—C2C—C1C107.87 (7)
C2A—C1A—H1A4109.9N2C—C2C—H2C3110.1
H1A3—C1A—H1A4108.3C1C—C2C—H2C3110.1
N2A—C2A—C1A107.69 (8)N2C—C2C—H2C4110.1
N2A—C2A—H2A3110.2C1C—C2C—H2C4110.1
C1A—C2A—H2A3110.2H2C3—C2C—H2C4108.4
N2A—C2A—H2A4110.2N3C—C3C—S1C178.85 (9)
C1A—C2A—H2A4110.2N3Div—Cr4D—N3D180.0
H2A3—C2A—H2A4108.5N3Div—Cr4D—N1Div89.74 (4)
N3A—C3A—S1A178.78 (9)N3D—Cr4D—N1Div90.26 (4)
N3B—Cr2B—N3Bii180.0N3Div—Cr4D—N1D90.26 (4)
N3B—Cr2B—N1Bii89.64 (4)N3D—Cr4D—N1D89.74 (4)
N3Bii—Cr2B—N1Bii90.36 (4)N1Div—Cr4D—N1D180.00 (3)
N3B—Cr2B—N1B90.36 (4)N3Div—Cr4D—N2D88.05 (4)
N3Bii—Cr2B—N1B89.64 (4)N3D—Cr4D—N2D91.95 (4)
N1Bii—Cr2B—N1B180.0N1Div—Cr4D—N2D96.97 (4)
N3B—Cr2B—N2B91.27 (4)N1D—Cr4D—N2D83.03 (4)
N3Bii—Cr2B—N2B88.73 (4)N3Div—Cr4D—N2Div91.95 (4)
N1Bii—Cr2B—N2B96.72 (4)N3D—Cr4D—N2Div88.05 (4)
N1B—Cr2B—N2B83.28 (4)N1Div—Cr4D—N2Div83.03 (4)
N3B—Cr2B—N2Bii88.73 (4)N1D—Cr4D—N2Div96.97 (4)
N3Bii—Cr2B—N2Bii91.27 (4)N2D—Cr4D—N2Div180.0
N1Bii—Cr2B—N2Bii83.28 (4)C1D—N1D—Cr4D107.80 (6)
N1B—Cr2B—N2Bii96.72 (4)C1D—N1D—H1D1110.1
N2B—Cr2B—N2Bii180.0Cr4D—N1D—H1D1110.1
C1B—N1B—Cr2B108.20 (6)C1D—N1D—H1D2110.1
C1B—N1B—H1B1110.1Cr4D—N1D—H1D2110.1
Cr2B—N1B—H1B1110.1H1D1—N1D—H1D2108.5
C1B—N1B—H1B2110.1C2D—N2D—Cr4D108.84 (6)
Cr2B—N1B—H1B2110.1C2D—N2D—H2D1109.9
H1B1—N1B—H1B2108.4Cr4D—N2D—H2D1109.9
C2B—N2B—Cr2B107.91 (6)C2D—N2D—H2D2109.9
C2B—N2B—H2B1110.1Cr4D—N2D—H2D2109.9
Cr2B—N2B—H2B1110.1H2D1—N2D—H2D2108.3
C2B—N2B—H2B2110.1C3D—N3D—Cr4D169.62 (8)
Cr2B—N2B—H2B2110.1N1D—C1D—C2D107.70 (8)
H2B1—N2B—H2B2108.4N1D—C1D—H1D3110.2
C3B—N3B—Cr2B164.42 (8)C2D—C1D—H1D3110.2
N1B—C1B—C2B107.95 (8)N1D—C1D—H1D4110.2
N1B—C1B—H1B3110.1C2D—C1D—H1D4110.2
C2B—C1B—H1B3110.1H1D3—C1D—H1D4108.5
N1B—C1B—H1B4110.1N2D—C2D—C1D107.87 (8)
C2B—C1B—H1B4110.1N2D—C2D—H2D3110.1
H1B3—C1B—H1B4108.4C1D—C2D—H2D3110.1
N2B—C2B—C1B107.96 (7)N2D—C2D—H2D4110.1
N2B—C2B—H2B3110.1C1D—C2D—H2D4110.1
C1B—C2B—H2B3110.1H2D3—C2D—H2D4108.4
N2B—C2B—H2B4110.1N3D—C3D—S1D179.15 (9)
C1B—C2B—H2B4110.1Cl2E—Zn1E—Cl4E111.63 (2)
H2B3—C2B—H2B4108.4Cl2E—Zn1E—Cl3E111.31 (2)
N3B—C3B—S1B177.11 (8)Cl4E—Zn1E—Cl3E106.71 (2)
N3C—Cr3C—N3Ciii180.0Cl2E—Zn1E—Cl1E107.46 (2)
N3C—Cr3C—N2C87.19 (4)Cl4E—Zn1E—Cl1E112.49 (2)
N3Ciii—Cr3C—N2C92.81 (4)Cl3E—Zn1E—Cl1E107.20 (2)
Cr1A—N1A—C1A—C2A33.94 (9)Cr3C—N1C—C1C—C2C44.29 (8)
Cr1A—N2A—C2A—C1A45.42 (9)Cr3C—N2C—C2C—C1C39.21 (9)
N1A—C1A—C2A—N2A52.98 (10)N1C—C1C—C2C—N2C55.56 (10)
Cr2B—N1B—C1B—C2B41.73 (8)Cr4D—N1D—C1D—C2D43.80 (8)
Cr2B—N2B—C2B—C1B40.80 (8)Cr4D—N2D—C2D—C1D38.66 (9)
N1B—C1B—C2B—N2B55.28 (10)N1D—C1D—C2D—N2D55.05 (10)
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A1···Cl3Ev0.912.483.3700 (13)165
N2A—H2A1···Cl1Evi0.912.503.3483 (13)155
N2A—H2A2···Cl3E0.912.903.5797 (12)133
C1A—H1A3···S1Avii0.992.913.5983 (15)127
C2A—H2A3···Cl3E0.992.913.5533 (15)123
C2A—H2A4···S1Bii0.992.943.6270 (15)128
N1B—H1B1···Cl1E0.912.453.2813 (13)152
N1B—H1B2···S1Avii0.912.813.5401 (13)138
N2B—H2B1···Cl4Eii0.912.493.3532 (13)159
N2B—H2B2···Cl1Eviii0.912.773.4934 (12)138
C1B—H1B3···S1Avii0.992.983.5910 (14)121
C1B—H1B3···S1Bviii0.992.873.6440 (14)136
C2B—H2B3···Cl1Eviii0.992.933.5309 (14)120
N1C—H1C1···Cl4E0.912.403.3058 (12)171
N1C—H1C2···S1B0.912.733.4473 (14)137
N2C—H2C1···S1Cvii0.912.503.2836 (12)144
N2C—H2C2···S1Biii0.912.753.4063 (11)130
N2C—H2C2···S1Dvii0.912.883.5893 (13)135
C1C—H1C4···Cl1E0.992.863.7421 (13)149
N1D—H1D1···S1C0.912.613.4937 (13)164
N1D—H1D2···Cl2E0.912.493.3919 (12)172
N2D—H2D1···S1Civ0.912.783.6225 (12)155
N2D—H2D2···S1Dix0.912.673.3564 (12)133
C1D—H1D3···Cl3E0.992.883.7357 (14)145
C1D—H1D4···Cl2Evi0.992.983.7397 (12)135
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x+1, y, z; (v) x+1, y, z+1; (vi) x+1, y, z; (vii) x1, y, z; (viii) x, y+1, z+1; (ix) x+2, y, z.
 

Acknowledgements

The X-ray crystallography experiment at PLS-II 2D-SMC beamline was supported in part by MISP and POSTECH.

References

First citationArvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.  Google Scholar
First citationBrandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrencic, J. V. & Leban, I. (1981). Z. Anorg. Allg. Chem. 480, 213–219.  CAS Google Scholar
First citationBrenčič, J. V., Leban, I. & Polanc, I. (1987). Acta Cryst. C43, 885–887.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationChoi, J.-H. (2000a). Chem. Phys. 256, 29–35.  CrossRef CAS Google Scholar
First citationChoi, J.-H. (2000b). Spectrochim. Acta Part A, 58, 1599–1606.  CrossRef Google Scholar
First citationChoi, J.-H., Hong, Y. P. & Park, Y. C. (2002). Spectrochim. Acta Part A, 56, 1653–1660.  Web of Science CrossRef Google Scholar
First citationChoi, J.-H., Clegg, W., Harrington, R. W. & Lee, S. H. (2010). J. Chem. Crystallogr. 40, 567–571.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H., Joshi, T. & Spiccia, L. (2011). Z. Anorg. Allg. Chem. 637, 1194–1198.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H. & Lee, S. H. (2009). J. Mol. Struct. 932, 84–89.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H. & Moon, D. (2014). J. Mol. Struct. 1059, 325–331.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H., Oh, I.-G., Linder, R. & Schönherr, T. (2004a). Chem. Phys. 297, 7–12.  Web of Science CrossRef CAS Google Scholar
First citationChoi, J.-H., Oh, I. G., Suzuki, T. & Kaizaki, S. (2004b). J. Mol. Struct. 694, 39–44.  CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376–m377.  CSD CrossRef IUCr Journals Google Scholar
First citationOoi, S., Komiyama, Y. & Kuroya, H. (1960). Bull. Chem. Soc. Jpn, 33, 354–357.  CrossRef Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSandrini, D., Gandolfi, M. T., Moggi, L. & Balzani, V. (1978). J. Am. Chem. Soc. 100, 1463–1468.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds