organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Chloro-N′-cyclo­hexyl­­idene-3-methyl-1H-indole-2-carbohydrazide

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, 34116 Beyazit, Istanbul, Turkey, and cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 17 June 2013; accepted 18 June 2013; online 22 June 2013)

In the title compound, C16H18ClN3O, the cyclo­hexane ring adopts a distorted chair conformation. In the crystal, pairs of mol­ecules are linked by N—H⋯O hydrogen bonds into inversion dimers, forming R22(10) ring motifs. These dimers are connected through C—H⋯N hydrogen bonds into chains along the a axis, forming layers parallel to (101).

Related literature

For the design, synthesis and characterization of some bioactive indole derivatives, see: Akkurt et al. (2009[Akkurt, M., Karaca, S., Cihan, G., Çapan, G. & Büyükgüngör, O. (2009). Acta Cryst. E65, o1009-o1010.], 2010[Akkurt, M., Çelik, Í., Cihan, G., Çapan, G. & Büyükgüngör, O. (2010). Acta Cryst. E66, o830.]); Cihan-Üstündağ & Çapan (2012[Cihan-Üstündağ, G. & Çapan, G. (2012). Mol. Divers. 16, 525-539.]); Güzel et al. (2006[Güzel, O., Terzioğlu, N., Çapan, G. & Salman, A. (2006). Arkivoc, xii, 98-110.]); Kaynak et al. (2005[Kaynak, F. B., Öztürk, D., Özbey, S. & Çapan, G. (2005). J. Mol. Struct. 740, 213-221.]). For puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H18ClN3O

  • Mr = 303.78

  • Triclinic, [P \overline 1]

  • a = 5.2727 (5) Å

  • b = 9.7977 (9) Å

  • c = 15.2380 (15) Å

  • α = 102.229 (7)°

  • β = 95.732 (8)°

  • γ = 92.332 (7)°

  • V = 763.94 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.76 × 0.36 × 0.02 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.831, Tmax = 0.995

  • 7177 measured reflections

  • 2929 independent reflections

  • 1684 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.129

  • S = 1.01

  • 2929 reflections

  • 195 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.03 2.826 (3) 153
C12—H12B⋯N3ii 0.97 2.59 3.476 (4) 152
Symmetry codes: (i) -x, -y, -z+1; (ii) x+1, y, z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Cyclohexylidenehydrazides are of interest, both as potential intermediates for the synthesis of novel heterocyclic systems and as pharmacologically active agents. We have recently reported on the synthesis, antitituberculosis and anticancer properties of cyclohexylidenehydrazides and spirothiazolidinones with an indole core (Cihan-Üstündağ & Çapan, 2012). As a continuation of our program directed towards the design, synthesis and characterization of bioactive indole derivatives (Akkurt et al., 2009, 2010; Güzel et al., 2006; Kaynak et al., 2005), we report here the synthesis, spectral and analytical data and crystal structure of the title compound.

In the title compound (I), (Fig. 1), the nine-membered 1H-indole ring (N1/C1–C8) is essentially planar with maximum deviations of 0.019 (3) Å for C3, 0.017 (3) Å for C7 and -0.017 (3) Å for C1]. The cyclohexane ring (C11–C16) of (I) adopts a distorted chair conformation [the puckering parameters (Cremer & Pople, 1975) are QT = 0.508 (4) Å, θ = 10.2 (5)° and φ = 193 (2) °]. The C7–C8–C10–N2, C7–C8–C10–O1, N1–C8–C10–O1, N1–C8–C10–N2, C8–C10–N2–N3 and C10–N2–N3–C11 torsion angles are -19.5 (5), 158.3 (3), -14.4 (4), 167.7 (3), -179.6 (2) and -172.8 (3)°, respectively.

In the crystal, pairs of N—H···O hydrogen bonds link molecules into inversion dimers, with the R22(10) ring motifs (Table 1, Fig. 2; Bernstein et al., 1995). These dimers connect to each other through C—H···N hydrogen bonds as chains along the a axis, forming layers parallel to the (101) plane. In the crystal structure, π-π and C—H···π interactions were not observed.

Related literature top

For the design, synthesis and characterization of some bioactive indole derivatives, see: Akkurt et al. (2009, 2010); Cihan-Üstündağ & Çapan (2012); Güzel et al. (2006); Kaynak et al. (2005). For puckering analysis, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of 5-chloro-3-methyl-1H-indole-2-carbohydrazide (0.005 mol) and cyclohexanone (0.006 mol) in 15 ml of absolute ethanol was heated under reflux for 3 h. The crude product obtained on cooling was filtered and purified by recrystallization from ethanol. [Yield: 91.4%, m.p.: 505–507 K].

Refinement top

H atoms bonded to C atoms were positioned geometrically with C—H = 0.93, 0.96 and 0.97 Å, and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). The H atom (H1) of the one of the two amide groups was positioned geometrically with N—H = 0.86 Å, and refined using a riding model with Uiso(H) = 1.2Ueq(N). The H atom (H2A) of the other amide group was found in a difference Fourier map, restrained with N—H = 0.82 (3) Å and refined with Uiso = 1.2Ueq(N).

Structure description top

Cyclohexylidenehydrazides are of interest, both as potential intermediates for the synthesis of novel heterocyclic systems and as pharmacologically active agents. We have recently reported on the synthesis, antitituberculosis and anticancer properties of cyclohexylidenehydrazides and spirothiazolidinones with an indole core (Cihan-Üstündağ & Çapan, 2012). As a continuation of our program directed towards the design, synthesis and characterization of bioactive indole derivatives (Akkurt et al., 2009, 2010; Güzel et al., 2006; Kaynak et al., 2005), we report here the synthesis, spectral and analytical data and crystal structure of the title compound.

In the title compound (I), (Fig. 1), the nine-membered 1H-indole ring (N1/C1–C8) is essentially planar with maximum deviations of 0.019 (3) Å for C3, 0.017 (3) Å for C7 and -0.017 (3) Å for C1]. The cyclohexane ring (C11–C16) of (I) adopts a distorted chair conformation [the puckering parameters (Cremer & Pople, 1975) are QT = 0.508 (4) Å, θ = 10.2 (5)° and φ = 193 (2) °]. The C7–C8–C10–N2, C7–C8–C10–O1, N1–C8–C10–O1, N1–C8–C10–N2, C8–C10–N2–N3 and C10–N2–N3–C11 torsion angles are -19.5 (5), 158.3 (3), -14.4 (4), 167.7 (3), -179.6 (2) and -172.8 (3)°, respectively.

In the crystal, pairs of N—H···O hydrogen bonds link molecules into inversion dimers, with the R22(10) ring motifs (Table 1, Fig. 2; Bernstein et al., 1995). These dimers connect to each other through C—H···N hydrogen bonds as chains along the a axis, forming layers parallel to the (101) plane. In the crystal structure, π-π and C—H···π interactions were not observed.

For the design, synthesis and characterization of some bioactive indole derivatives, see: Akkurt et al. (2009, 2010); Cihan-Üstündağ & Çapan (2012); Güzel et al. (2006); Kaynak et al. (2005). For puckering analysis, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The title molecule shown the atom labelling scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. View of the packing of the title compound with the N—H···O dimers, down the b axis. H atoms not participating in hydrogen bonding have been omitted for clarity and hydrogen bonds are drawn as dashed lines.
5-Chloro-N'-cyclohexylidene-3-methyl-1H-indole-2-carbohydrazide top
Crystal data top
C16H18ClN3OZ = 2
Mr = 303.78F(000) = 320
Triclinic, P1Dx = 1.321 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.2727 (5) ÅCell parameters from 9705 reflections
b = 9.7977 (9) Åθ = 2.1–28.0°
c = 15.2380 (15) ŵ = 0.25 mm1
α = 102.229 (7)°T = 296 K
β = 95.732 (8)°Plate, colourless
γ = 92.332 (7)°0.76 × 0.36 × 0.02 mm
V = 763.94 (13) Å3
Data collection top
Stoe IPDS 2
diffractometer
2929 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1684 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.065
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.1°
ω scansh = 66
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1212
Tmin = 0.831, Tmax = 0.995l = 1818
7177 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0554P)2]
where P = (Fo2 + 2Fc2)/3
2929 reflections(Δ/σ)max < 0.001
195 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C16H18ClN3Oγ = 92.332 (7)°
Mr = 303.78V = 763.94 (13) Å3
Triclinic, P1Z = 2
a = 5.2727 (5) ÅMo Kα radiation
b = 9.7977 (9) ŵ = 0.25 mm1
c = 15.2380 (15) ÅT = 296 K
α = 102.229 (7)°0.76 × 0.36 × 0.02 mm
β = 95.732 (8)°
Data collection top
Stoe IPDS 2
diffractometer
2929 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1684 reflections with I > 2σ(I)
Tmin = 0.831, Tmax = 0.995Rint = 0.065
7177 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.15 e Å3
2929 reflectionsΔρmin = 0.16 e Å3
195 parameters
Special details top

Experimental. UV (EtOH) λmax(nm)(ε) = 210.2 (11298); 230.6 (15341); 303.4 (14665). IR(KBr)ν = 3278 (N—H); 1639 (C=O);1624, 1537, 1514, 1471 (C=N, C=C) cm-1. 1H-NMR (500 MHz) (DMSO-d6 / TMS) d =1.56–1.72 (6H, m, CH2-cyc.*), 2.32 (2H, t, J=6.8 Hz, CH2-cyc.) 2.42–2.48 (5H, m, CH2-cyc. and 3-CH3-ind.*), 7.20 (1H, dd, J=8.7, 1.9 Hz, H6-ind.), 7.41 (1H, d, J=8.7 Hz, H7-ind.), 7.66 (1H, d, J=1.9 Hz, H4-ind.), 10.30 (1H, s, CONH), 11.50 (1H, s, NH-ind.) p.p.m.. MS (ESI–) m/z (%) = 302 ([M—H]-, 100). Analysis calculated for C16H18ClN3O: C 63.26, H 5.97, N 13.83%. Found: C 63.12, H 5.97, N 13.86%.(*cyc. = cyclohexylidene, ind. = indole).

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.5891 (2)0.46594 (11)0.20802 (7)0.1086 (4)
O10.1519 (4)0.0786 (2)0.61618 (12)0.0717 (7)
N10.2262 (4)0.1409 (2)0.45351 (13)0.0589 (8)
N20.5585 (5)0.1489 (3)0.67430 (15)0.0597 (8)
N30.5305 (4)0.1037 (2)0.75354 (15)0.0628 (8)
C10.2826 (5)0.2059 (3)0.38687 (17)0.0538 (8)
C20.1513 (6)0.1988 (3)0.30110 (18)0.0654 (10)
C30.2502 (6)0.2795 (3)0.24870 (19)0.0705 (11)
C40.4744 (6)0.3636 (3)0.27889 (19)0.0691 (11)
C50.6043 (5)0.3719 (3)0.3623 (2)0.0648 (10)
C60.5060 (4)0.2920 (3)0.41855 (17)0.0508 (8)
C70.5838 (4)0.2775 (3)0.50912 (16)0.0512 (8)
C80.4070 (5)0.1827 (3)0.52722 (16)0.0511 (8)
C90.8061 (5)0.3606 (3)0.5689 (2)0.0686 (10)
C100.3624 (5)0.1311 (3)0.60883 (17)0.0543 (9)
C110.7122 (5)0.1360 (3)0.81721 (18)0.0597 (9)
C120.9530 (6)0.2231 (4)0.8204 (2)0.0866 (13)
C131.0168 (7)0.3247 (4)0.9086 (2)0.0993 (16)
C141.0052 (7)0.2603 (4)0.9900 (2)0.0876 (13)
C150.7463 (6)0.1875 (4)0.9862 (2)0.0837 (13)
C160.6818 (6)0.0800 (4)0.9003 (2)0.0820 (11)
H10.097300.082600.450200.0710*
H20.003000.141400.280900.0790*
H2A0.701 (5)0.174 (3)0.6650 (17)0.054 (8)*
H30.166700.278400.191800.0850*
H50.753500.429000.381100.0780*
H9A0.850400.441400.545900.1030*
H9B0.949700.303600.569800.1030*
H9C0.760100.390100.629100.1030*
H12A0.935700.274100.772300.1040*
H12B1.092400.162200.809900.1040*
H13A0.899100.398700.912200.1190*
H13B1.187400.366900.910500.1190*
H14A1.135900.193600.991000.1050*
H14B1.037400.332701.044800.1050*
H15A0.743500.142701.037100.1010*
H15B0.618100.256200.991100.1010*
H16A0.506600.043700.897500.0980*
H16B0.791100.002900.900900.0980*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1362 (8)0.1232 (8)0.0844 (7)0.0039 (6)0.0217 (6)0.0607 (6)
O10.0767 (12)0.0851 (14)0.0498 (11)0.0264 (11)0.0034 (9)0.0179 (10)
N10.0662 (13)0.0625 (14)0.0445 (12)0.0171 (11)0.0010 (10)0.0109 (10)
N20.0590 (13)0.0774 (16)0.0448 (13)0.0043 (12)0.0028 (11)0.0210 (11)
N30.0722 (14)0.0709 (15)0.0491 (13)0.0018 (12)0.0054 (12)0.0236 (12)
C10.0654 (15)0.0521 (15)0.0427 (14)0.0010 (13)0.0064 (12)0.0080 (12)
C20.0775 (17)0.0694 (18)0.0455 (15)0.0025 (15)0.0039 (14)0.0102 (13)
C30.090 (2)0.077 (2)0.0444 (15)0.0084 (17)0.0005 (15)0.0155 (14)
C40.0879 (19)0.0721 (19)0.0551 (18)0.0077 (16)0.0153 (16)0.0274 (15)
C50.0675 (16)0.0657 (17)0.0633 (18)0.0028 (14)0.0096 (14)0.0193 (14)
C60.0536 (13)0.0520 (15)0.0471 (14)0.0049 (12)0.0050 (11)0.0116 (12)
C70.0511 (13)0.0536 (15)0.0463 (14)0.0012 (12)0.0006 (11)0.0079 (12)
C80.0570 (14)0.0540 (15)0.0407 (14)0.0021 (13)0.0014 (11)0.0086 (12)
C90.0648 (16)0.078 (2)0.0613 (17)0.0071 (15)0.0059 (14)0.0197 (15)
C100.0659 (16)0.0502 (15)0.0431 (14)0.0023 (13)0.0016 (13)0.0054 (12)
C110.0635 (15)0.0719 (18)0.0463 (15)0.0060 (14)0.0073 (13)0.0177 (13)
C120.0652 (17)0.143 (3)0.0556 (18)0.0114 (19)0.0048 (14)0.0348 (19)
C130.112 (3)0.122 (3)0.065 (2)0.040 (2)0.0189 (19)0.045 (2)
C140.099 (2)0.112 (3)0.0530 (18)0.013 (2)0.0066 (17)0.0313 (18)
C150.092 (2)0.116 (3)0.0491 (17)0.000 (2)0.0086 (16)0.0325 (18)
C160.097 (2)0.092 (2)0.0633 (19)0.0084 (19)0.0014 (17)0.0386 (18)
Geometric parameters (Å, º) top
Cl1—C41.754 (3)C12—C131.492 (5)
O1—C101.230 (3)C13—C141.511 (5)
N1—C11.358 (3)C14—C151.504 (5)
N1—C81.378 (3)C15—C161.495 (5)
N2—N31.390 (3)C2—H20.9300
N2—C101.342 (4)C3—H30.9300
N3—C111.272 (3)C5—H50.9300
N1—H10.8600C9—H9A0.9600
N2—H2A0.82 (3)C9—H9B0.9600
C1—C21.403 (4)C9—H9C0.9600
C1—C61.402 (4)C12—H12A0.9700
C2—C31.361 (4)C12—H12B0.9700
C3—C41.393 (4)C13—H13A0.9700
C4—C51.367 (4)C13—H13B0.9700
C5—C61.399 (4)C14—H14A0.9700
C6—C71.438 (4)C14—H14B0.9700
C7—C91.504 (4)C15—H15A0.9700
C7—C81.377 (4)C15—H15B0.9700
C8—C101.474 (4)C16—H16A0.9700
C11—C161.503 (4)C16—H16B0.9700
C11—C121.492 (4)
C1—N1—C8109.6 (2)C3—C2—H2121.00
N3—N2—C10120.0 (2)C2—C3—H3119.00
N2—N3—C11117.5 (2)C4—C3—H3120.00
C8—N1—H1125.00C4—C5—H5121.00
C1—N1—H1125.00C6—C5—H5121.00
N3—N2—H2A118.7 (18)C7—C9—H9A109.00
C10—N2—H2A120.5 (18)C7—C9—H9B109.00
N1—C1—C6107.7 (2)C7—C9—H9C109.00
C2—C1—C6122.3 (3)H9A—C9—H9B109.00
N1—C1—C2130.0 (3)H9A—C9—H9C109.00
C1—C2—C3117.2 (3)H9B—C9—H9C110.00
C2—C3—C4121.1 (3)C11—C12—H12A109.00
Cl1—C4—C3118.5 (2)C11—C12—H12B109.00
Cl1—C4—C5119.0 (2)C13—C12—H12A109.00
C3—C4—C5122.5 (3)C13—C12—H12B109.00
C4—C5—C6118.0 (3)H12A—C12—H12B108.00
C1—C6—C5119.0 (2)C12—C13—H13A109.00
C5—C6—C7133.4 (2)C12—C13—H13B109.00
C1—C6—C7107.6 (2)C14—C13—H13A109.00
C6—C7—C8105.7 (2)C14—C13—H13B109.00
C6—C7—C9123.9 (2)H13A—C13—H13B108.00
C8—C7—C9130.3 (2)C13—C14—H14A110.00
C7—C8—C10133.6 (2)C13—C14—H14B110.00
N1—C8—C7109.5 (2)C15—C14—H14A110.00
N1—C8—C10116.6 (2)C15—C14—H14B110.00
O1—C10—C8120.5 (2)H14A—C14—H14B108.00
N2—C10—C8116.7 (2)C14—C15—H15A109.00
O1—C10—N2122.8 (3)C14—C15—H15B109.00
N3—C11—C12128.4 (3)C16—C15—H15A109.00
N3—C11—C16116.3 (3)C16—C15—H15B109.00
C12—C11—C16115.3 (2)H15A—C15—H15B108.00
C11—C12—C13112.6 (3)C11—C16—H16A109.00
C12—C13—C14113.9 (3)C11—C16—H16B109.00
C13—C14—C15109.9 (3)C15—C16—H16A109.00
C14—C15—C16111.7 (3)C15—C16—H16B109.00
C11—C16—C15113.3 (3)H16A—C16—H16B108.00
C1—C2—H2121.00
C1—N1—C8—C10174.9 (2)C4—C5—C6—C7177.9 (3)
C8—N1—C1—C2178.3 (3)C5—C6—C7—C93.2 (5)
C8—N1—C1—C60.0 (3)C5—C6—C7—C8179.7 (3)
C1—N1—C8—C70.5 (3)C1—C6—C7—C80.8 (3)
N3—N2—C10—C8179.6 (2)C1—C6—C7—C9175.7 (2)
N3—N2—C10—O11.8 (4)C6—C7—C8—C10173.9 (3)
C10—N2—N3—C11172.8 (3)C9—C7—C8—C102.3 (5)
N2—N3—C11—C16177.2 (3)C9—C7—C8—N1175.4 (3)
N2—N3—C11—C122.9 (4)C6—C7—C8—N10.8 (3)
N1—C1—C6—C70.5 (3)N1—C8—C10—N2167.7 (3)
C6—C1—C2—C30.2 (4)C7—C8—C10—O1158.3 (3)
N1—C1—C6—C5179.6 (2)C7—C8—C10—N219.5 (5)
C2—C1—C6—C7178.0 (3)N1—C8—C10—O114.4 (4)
C2—C1—C6—C51.1 (4)N3—C11—C12—C13136.1 (3)
N1—C1—C2—C3178.2 (3)C16—C11—C12—C1343.7 (4)
C1—C2—C3—C41.0 (4)N3—C11—C16—C15134.0 (3)
C2—C3—C4—Cl1179.5 (2)C12—C11—C16—C1545.9 (4)
C2—C3—C4—C51.1 (5)C11—C12—C13—C1449.1 (4)
C3—C4—C5—C60.1 (4)C12—C13—C14—C1555.6 (4)
Cl1—C4—C5—C6178.5 (2)C13—C14—C15—C1656.2 (4)
C4—C5—C6—C11.0 (4)C14—C15—C16—C1152.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.032.826 (3)153
C12—H12A···N20.972.472.842 (4)102
C12—H12B···N3ii0.972.593.476 (4)152
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H18ClN3O
Mr303.78
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.2727 (5), 9.7977 (9), 15.2380 (15)
α, β, γ (°)102.229 (7), 95.732 (8), 92.332 (7)
V3)763.94 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.76 × 0.36 × 0.02
Data collection
DiffractometerStoe IPDS 2
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.831, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
7177, 2929, 1684
Rint0.065
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.129, 1.01
No. of reflections2929
No. of parameters195
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.16

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.032.826 (3)153
C12—H12B···N3ii0.972.593.476 (4)152
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund). This work was supported in part by the Scientific Research Projects Coordination Unit of Istanbul University (project No. 20867).

References

First citationAkkurt, M., Çelik, Í., Cihan, G., Çapan, G. & Büyükgüngör, O. (2010). Acta Cryst. E66, o830.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Karaca, S., Cihan, G., Çapan, G. & Büyükgüngör, O. (2009). Acta Cryst. E65, o1009–o1010.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCihan-Üstündağ, G. & Çapan, G. (2012). Mol. Divers. 16, 525–539.  Web of Science PubMed Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGüzel, O., Terzioğlu, N., Çapan, G. & Salman, A. (2006). Arkivoc, xii, 98–110.  Google Scholar
First citationKaynak, F. B., Öztürk, D., Özbey, S. & Çapan, G. (2005). J. Mol. Struct. 740, 213–221.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds