metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages m335-m336

(Adipato-κ2O,O′)di­aqua­[bis­­(pyridin-2-yl-κN)amine]­cobalt(II) trihydrate

aDépartement de Technologie, Faculté de Technologie, Université 20 Août 1955 de Skikda, 21000 Skikda, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université Constantine I, 25000 Constantine, Algeria, cLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas, Sétif I, 19000 Sétif, Algeria, dScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane 4001, Australia, eClermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France, and fCNRS UMR 6296, ICCF, BP 80026, 63171 Aubière, France
*Correspondence e-mail: fat_setifi@yahoo.fr, g.smith@qut.edu.au

(Received 11 May 2013; accepted 12 May 2013; online 22 May 2013)

In the monomeric title complex, [Co(C6H8O4)(C10H9N3)(H2O)2]·3H2O, the distorted octa­hedral CoN2O4 coordination environment comprises two N-atom donors from the bidentate di­pyridyldi­amine ligand, two O-atom donors from one of the carboxyl­ate groups of the bidentate chelating adipate ligand and two water mol­ecules. In addition, there are three solvent water mol­ecules which are involved in both intra- and inter-unit O—H⋯O hydrogen-bonding inter­actions, which together with an amine–water N—H⋯O hydrogen bond produce a three-dimensional framework.

Related literature

For the background to metal-di­carboxyl­ate complexes, see: Rao et al. (2004[Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. Engl. 43, 1466-1496.]); Setifi et al. (2006[Setifi, F., Bouchama, A., Sala-Pala, J., Salaün, J.-Y. & Triki, S. (2006). Inorg. Chim. Acta, 359, 3269-3274.], 2007[Setifi, F., Benmansour, S., Triki, S., Gómez-García, C. J., Marchivie, M., Salaün, J.-Y. & Maamache, M. (2007). Inorg. Chim. Acta, 360, 3879-3886.]); Wen et al. (2010[Wen, G.-L., Wang, Y.-Y., Zhang, W.-H., Ren, C., Liu, R.-T. & Shi, Q.-Z. (2010). CrystEngComm, 12, 1238-1251.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C6H8O4)(C10H9N3)(H2O)2]·3H2O

  • Mr = 464.34

  • Triclinic, [P \overline 1]

  • a = 9.9587 (3) Å

  • b = 10.5458 (3) Å

  • c = 11.0885 (3) Å

  • α = 100.887 (1)°

  • β = 105.891 (1)°

  • γ = 107.889 (1)°

  • V = 1017.38 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 296 K

  • 0.26 × 0.21 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.800, Tmax = 0.855

  • 28998 measured reflections

  • 8197 independent reflections

  • 6984 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.097

  • S = 0.99

  • 8197 reflections

  • 306 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O1 2.0680 (10)
Co1—O2 2.3079 (9)
Co1—O5 2.0877 (12)
Co1—O6 2.1336 (9)
Co1—N1 2.0781 (9)
Co1—N2 2.0596 (10)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O9i 0.78 (2) 2.05 (2) 2.8228 (17) 172 (2)
O5—H51⋯O7ii 0.775 (19) 1.923 (19) 2.6933 (15) 172.7 (19)
O5—H52⋯O3iii 0.80 (2) 1.97 (2) 2.7706 (17) 173 (2)
O6—H61⋯O2iv 0.83 (2) 2.00 (2) 2.8278 (12) 178 (4)
O6—H62⋯O8 0.77 (2) 1.94 (2) 2.7056 (16) 170 (2)
O7—H71⋯O3v 0.74 (3) 2.56 (3) 3.2596 (18) 160 (3)
O7—H72⋯O1 0.89 (2) 1.86 (2) 2.7543 (16) 175 (2)
O8—H81⋯O4v 0.88 (3) 1.97 (3) 2.8221 (19) 163 (2)
O8—H82⋯O4vi 0.79 (3) 2.05 (3) 2.832 (2) 175 (3)
O9—H91⋯O3vii 0.77 (2) 2.12 (2) 2.8670 (17) 164 (2)
O9—H92⋯O3v 0.79 (3) 1.99 (3) 2.7452 (17) 160 (3)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y+1, -z; (iii) -x+3, -y+1, -z+1; (iv) -x+2, -y+1, -z+1; (v) -x+3, -y+2, -z+1; (vi) x-1, y, z; (vii) x-1, y, z-1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Dicarboxylates have been widely used as ligands in metal coordination chemistry because they possess interesting features, such as: (i) the presence of two carboxylato groups capable of bidentate and monodentate linking modes, (ii) the possibility of obtaining mono- or dianionic forms, (iii) the probability of triply coordinated oxygen atoms and (iv) the possibility of forming secondary building blocks (Rao et al., 2004). Their use as bridging ligands has generated metal-organic coordination polymers with diverse and interesting structural features (Setifi et al., 2006, 2007; Wen et al., 2010). Given the rich coordination chemistry and the flexibility of these anionic ligands, we are interested in using them in combination with other chelating co-ligands to explore their structural features and properties in the large field of molecular materials. This led us to the synthesis of the parent coordination compound, the title complex [Co(dpa)(adip)(H2O)2]. 3H2O, (where dpa is 2,2'-dipyridylamine and adip is the adipate dianion), and the structure is described herein.

In this monomeric complex, the distorted octahedral MN2O4 coordination sphere comprises two N-donors from the bidentate chelate dpa ligand, two carboxyl O-donors (O1, O2) from one of the carboxyl groups of the adipate ligand and two water molecules (O5, O6). In addition, there are three water molecules of solvation (O7–O9) (Fig. 1). The (N,N') interaction is essentially symmetric [Co—N, 2.0596 (10), 2.0781 (9) Å] (Table 1) but the (O,O') interaction is asymmetric [Co—O, 2.0680 (10), 2.3079 (9) Å], with a 'bite' angle of 59.68 (3)°. The second adipate carboxyl group is not involved in coordination.

In the crystal, both the coordinated water molecules and the solvent water molecules are involved in both intra- and inter-unit O—H···O hydrogen-bonding interactions. The amine N-atom of the dpa ligand is also hydrogen-bonded to a water molecule (O9) (Table 2), giving an overall three-dimensional framework structure (Fig. 2).

Related literature top

For the background tp metal-dicarboxylate complexes, see: Rao et al. (2004); Setifi et al. (2006, 2007); Wen et al. (2010).

Experimental top

All reagents were purchased from commercial sources and used as received. Under aerobic conditions, an ethanolic solution of 2,2'-dipyridylamine (0.017 g, 5 ml) was added, with stirring at room temperature to an ethanolic solution of CoCl2.6H2O (0.024 g, 5 ml), resulting in a pink suspension. Adipic acid was dissolved in water (0.015 g, 10 ml) and added quickly to the mixture. The final solution was filtered and the filtrate allowed to evaporate in air for two weeks, giving brown crystals of the title compound suitable for X-ray diffraction analysis.

Refinement top

All H-atoms potentially involved in hydrogen-bonding were located from a difference-Fourier and both positional and isotropic displacement parameters were refined. Other H-atoms were placed in calculated positions with C—H(aromatic) = 0.93 Å or CH(methylene) = 0.97 Å and with Uiso(H) = 1.2Ueq(C). Several reflections (8), considered to be affected by beam stop interference were omitted from the refinement.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound in the unit cell viewed down a, showing hydrogen bonds as dashed lines. Non-associative H-atoms are omitted.
(Adipato-κ2O,O')diaqua[bis(pyridin-2-yl-κN)amine]cobalt(II) trihydrate top
Crystal data top
[Co(C6H8O4)(C10H9N3)(H2O)2]·3H2OZ = 2
Mr = 464.34F(000) = 486
Triclinic, P1Dx = 1.516 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.9587 (3) ÅCell parameters from 9938 reflections
b = 10.5458 (3) Åθ = 2.5–33.9°
c = 11.0885 (3) ŵ = 0.90 mm1
α = 100.887 (1)°T = 296 K
β = 105.891 (1)°Prism, brown
γ = 107.889 (1)°0.26 × 0.21 × 0.18 mm
V = 1017.38 (5) Å3
Data collection top
Bruker APEXII CCD
diffractometer
8197 independent reflections
Radiation source: fine-focus sealed tube6984 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 33.9°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1515
Tmin = 0.800, Tmax = 0.855k = 1616
28998 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0677P)2 + 0.048P]
where P = (Fo2 + 2Fc2)/3
8197 reflections(Δ/σ)max = 0.001
306 parametersΔρmax = 0.37 e Å3
1 restraintΔρmin = 0.34 e Å3
Crystal data top
[Co(C6H8O4)(C10H9N3)(H2O)2]·3H2Oγ = 107.889 (1)°
Mr = 464.34V = 1017.38 (5) Å3
Triclinic, P1Z = 2
a = 9.9587 (3) ÅMo Kα radiation
b = 10.5458 (3) ŵ = 0.90 mm1
c = 11.0885 (3) ÅT = 296 K
α = 100.887 (1)°0.26 × 0.21 × 0.18 mm
β = 105.891 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
8197 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
6984 reflections with I > 2σ(I)
Tmin = 0.800, Tmax = 0.855Rint = 0.024
28998 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0301 restraint
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.37 e Å3
8197 reflectionsΔρmin = 0.34 e Å3
306 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.87882 (1)0.40987 (1)0.21923 (1)0.0256 (1)
O11.05309 (9)0.59199 (9)0.24329 (8)0.0346 (2)
O21.10712 (9)0.48396 (9)0.38874 (8)0.0334 (2)
O31.92943 (11)0.90473 (12)0.80972 (9)0.0509 (3)
O41.88720 (12)0.95610 (12)0.62266 (12)0.0579 (3)
O50.97049 (11)0.29574 (11)0.11448 (10)0.0401 (3)
O60.80952 (9)0.52897 (9)0.35009 (8)0.0318 (2)
N10.71591 (9)0.40327 (9)0.05172 (8)0.0259 (2)
N20.73045 (10)0.22973 (9)0.22883 (9)0.0289 (2)
N30.51381 (10)0.22666 (11)0.06928 (10)0.0338 (2)
C11.14696 (10)0.58243 (11)0.34175 (9)0.0274 (2)
C21.30419 (11)0.69271 (12)0.39566 (11)0.0329 (3)
C31.42382 (11)0.66497 (12)0.49212 (11)0.0347 (3)
C41.57881 (11)0.77823 (11)0.53102 (11)0.0315 (3)
C51.69945 (12)0.76076 (12)0.63591 (12)0.0365 (3)
C61.84988 (11)0.88359 (11)0.69272 (11)0.0305 (2)
C70.76159 (12)0.49385 (12)0.01408 (11)0.0332 (3)
C80.66587 (14)0.50906 (13)0.12028 (11)0.0374 (3)
C90.51360 (13)0.42605 (14)0.16405 (10)0.0367 (3)
C100.46425 (12)0.33147 (12)0.10088 (10)0.0329 (3)
C110.58275 (11)0.17043 (10)0.15844 (10)0.0274 (2)
C120.56943 (10)0.32248 (10)0.00812 (9)0.0255 (2)
C130.78977 (14)0.16797 (14)0.31479 (14)0.0401 (3)
C140.70567 (18)0.05002 (16)0.33525 (17)0.0495 (5)
C150.55197 (17)0.01009 (13)0.26316 (16)0.0469 (4)
C160.48925 (14)0.04862 (12)0.17371 (13)0.0387 (3)
O71.14682 (14)0.81433 (12)0.14879 (11)0.0492 (3)
O80.88888 (16)0.80611 (12)0.38293 (15)0.0613 (4)
O90.80392 (11)0.89324 (14)0.01315 (13)0.0604 (4)
H2A1.299900.779800.438300.0390*
H2B1.336200.706000.322300.0390*
H30.426 (2)0.1928 (19)0.0392 (18)0.050 (5)*
H3A1.425900.575500.452900.0420*
H3B1.398500.660100.570000.0420*
H4A1.606900.777600.453900.0380*
H4B1.573800.868300.562700.0380*
H5A1.715300.677900.599000.0440*
H5B1.663200.745500.706800.0440*
H70.863800.548900.014500.0400*
H80.702000.573400.162100.0450*
H90.445600.434500.235600.0440*
H100.362700.274100.129700.0400*
H130.893000.208000.362200.0480*
H140.750200.011200.395700.0590*
H150.491600.089900.275400.0560*
H160.386600.008500.124000.0460*
H510.932 (2)0.2581 (19)0.0397 (19)0.046 (5)*
H521.002 (2)0.242 (2)0.143 (2)0.065 (6)*
H610.836 (3)0.526 (3)0.427 (2)0.083 (7)*
H620.838 (2)0.607 (2)0.3537 (19)0.057 (5)*
H711.117 (3)0.868 (3)0.168 (3)0.107 (10)*
H721.122 (2)0.745 (2)0.184 (2)0.063 (6)*
H810.958 (3)0.868 (3)0.367 (2)0.075 (6)*
H820.884 (3)0.849 (3)0.447 (3)0.085 (8)*
H910.833 (2)0.880 (2)0.044 (2)0.067 (6)*
H920.870 (3)0.949 (3)0.077 (3)0.085 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0168 (1)0.0288 (1)0.0261 (1)0.0034 (1)0.0039 (1)0.0117 (1)
O10.0216 (3)0.0398 (4)0.0325 (4)0.0018 (3)0.0020 (3)0.0170 (3)
O20.0243 (3)0.0370 (4)0.0328 (3)0.0047 (3)0.0054 (3)0.0156 (3)
O30.0306 (4)0.0617 (6)0.0328 (4)0.0007 (4)0.0034 (3)0.0056 (4)
O40.0370 (5)0.0520 (6)0.0595 (6)0.0090 (4)0.0017 (4)0.0276 (5)
O50.0393 (5)0.0504 (5)0.0350 (4)0.0211 (4)0.0143 (4)0.0141 (4)
O60.0328 (4)0.0307 (4)0.0303 (4)0.0101 (3)0.0098 (3)0.0113 (3)
N10.0198 (3)0.0288 (4)0.0253 (3)0.0054 (3)0.0050 (3)0.0103 (3)
N20.0245 (4)0.0270 (4)0.0352 (4)0.0075 (3)0.0106 (3)0.0133 (3)
N30.0188 (4)0.0360 (4)0.0377 (4)0.0013 (3)0.0047 (3)0.0144 (4)
C10.0182 (4)0.0318 (4)0.0265 (4)0.0041 (3)0.0052 (3)0.0090 (3)
C20.0187 (4)0.0328 (5)0.0356 (5)0.0015 (3)0.0020 (3)0.0100 (4)
C30.0201 (4)0.0371 (5)0.0347 (5)0.0003 (4)0.0015 (4)0.0138 (4)
C40.0194 (4)0.0324 (5)0.0322 (4)0.0017 (3)0.0021 (3)0.0109 (4)
C50.0228 (4)0.0311 (5)0.0409 (5)0.0000 (4)0.0019 (4)0.0148 (4)
C60.0198 (4)0.0281 (4)0.0342 (4)0.0045 (3)0.0035 (3)0.0052 (4)
C70.0251 (4)0.0388 (5)0.0314 (4)0.0058 (4)0.0064 (4)0.0171 (4)
C80.0370 (5)0.0444 (6)0.0326 (5)0.0150 (5)0.0096 (4)0.0205 (4)
C90.0350 (5)0.0473 (6)0.0264 (4)0.0204 (5)0.0035 (4)0.0111 (4)
C100.0223 (4)0.0386 (5)0.0288 (4)0.0097 (4)0.0010 (3)0.0051 (4)
C110.0257 (4)0.0227 (4)0.0309 (4)0.0045 (3)0.0117 (3)0.0068 (3)
C120.0198 (4)0.0265 (4)0.0247 (4)0.0059 (3)0.0046 (3)0.0050 (3)
C130.0338 (5)0.0419 (6)0.0522 (7)0.0166 (5)0.0152 (5)0.0269 (5)
C140.0541 (8)0.0447 (7)0.0679 (9)0.0250 (6)0.0285 (7)0.0362 (7)
C150.0548 (8)0.0299 (5)0.0661 (9)0.0130 (5)0.0331 (7)0.0243 (6)
C160.0340 (5)0.0280 (5)0.0469 (6)0.0008 (4)0.0168 (5)0.0103 (4)
O70.0603 (7)0.0403 (5)0.0440 (5)0.0140 (5)0.0175 (5)0.0159 (4)
O80.0727 (8)0.0345 (5)0.0813 (9)0.0112 (5)0.0427 (7)0.0201 (5)
O90.0245 (4)0.0761 (8)0.0492 (6)0.0076 (5)0.0069 (4)0.0033 (5)
Geometric parameters (Å, º) top
Co1—O12.0680 (10)C2—C31.5111 (17)
Co1—O22.3079 (9)C3—C41.5177 (17)
Co1—O52.0877 (12)C4—C51.5106 (17)
Co1—O62.1336 (9)C5—C61.5172 (17)
Co1—N12.0781 (9)C7—C81.3681 (17)
Co1—N22.0596 (10)C8—C91.387 (2)
O1—C11.2715 (13)C9—C101.3705 (18)
O2—C11.2537 (14)C10—C121.4064 (15)
O3—C61.2569 (15)C11—C161.4070 (17)
O4—C61.2387 (17)C13—C141.368 (2)
O5—H510.775 (19)C14—C151.388 (3)
O5—H520.80 (2)C15—C161.374 (2)
O6—H620.77 (2)C2—H2A0.9700
O6—H610.83 (2)C2—H2B0.9700
O7—H710.74 (3)C3—H3A0.9700
O7—H720.89 (2)C3—H3B0.9700
O8—H810.88 (3)C4—H4B0.9700
O8—H820.79 (3)C4—H4A0.9700
O9—H920.79 (3)C5—H5A0.9700
O9—H910.77 (2)C5—H5B0.9700
N1—C121.3350 (14)C7—H70.9300
N1—C71.3527 (15)C8—H80.9300
N2—C111.3363 (15)C9—H90.9300
N2—C131.3580 (17)C10—H100.9300
N3—C121.3815 (15)C13—H130.9300
N3—C111.3785 (15)C14—H140.9300
N3—H30.78 (2)C15—H150.9300
C1—C21.5059 (16)C16—H160.9300
O1—Co1—O259.68 (3)C9—C10—C12119.02 (11)
O1—Co1—O589.56 (4)N3—C11—C16116.66 (11)
O1—Co1—O688.57 (4)N2—C11—N3121.87 (10)
O1—Co1—N1100.35 (4)N2—C11—C16121.46 (10)
O1—Co1—N2169.33 (4)N1—C12—N3121.29 (9)
O2—Co1—O584.94 (4)N3—C12—C10116.80 (10)
O2—Co1—O687.44 (3)N1—C12—C10121.92 (10)
O2—Co1—N1159.98 (4)N2—C13—C14123.44 (14)
O2—Co1—N2109.79 (4)C13—C14—C15118.04 (15)
O5—Co1—O6172.04 (4)C14—C15—C16119.82 (14)
O5—Co1—N194.09 (4)C11—C16—C15118.94 (13)
O5—Co1—N291.18 (4)C1—C2—H2B108.00
O6—Co1—N193.86 (4)H2A—C2—H2B107.00
O6—Co1—N289.24 (4)C3—C2—H2A108.00
N1—Co1—N290.21 (4)C3—C2—H2B108.00
Co1—O1—C195.33 (7)C1—C2—H2A108.00
Co1—O2—C184.88 (6)C4—C3—H3B109.00
Co1—O5—H51122.6 (16)H3A—C3—H3B108.00
Co1—O5—H52120.3 (15)C4—C3—H3A109.00
H51—O5—H52104 (2)C2—C3—H3A109.00
Co1—O6—H61116 (2)C2—C3—H3B109.00
Co1—O6—H62112.1 (15)C3—C4—H4A109.00
H61—O6—H62107 (3)C3—C4—H4B109.00
H71—O7—H72112 (3)C5—C4—H4A109.00
H81—O8—H82103 (3)C5—C4—H4B109.00
H91—O9—H92111 (3)H4A—C4—H4B108.00
C7—N1—C12117.69 (9)C6—C5—H5A109.00
Co1—N1—C12125.38 (7)H5A—C5—H5B108.00
Co1—N1—C7116.84 (8)C4—C5—H5B109.00
Co1—N2—C13116.29 (9)C6—C5—H5B109.00
C11—N2—C13118.28 (10)C4—C5—H5A109.00
Co1—N2—C11125.44 (7)N1—C7—H7118.00
C11—N3—C12132.59 (11)C8—C7—H7118.00
C12—N3—H3110.7 (14)C9—C8—H8121.00
C11—N3—H3116.2 (14)C7—C8—H8121.00
O1—C1—C2116.83 (10)C10—C9—H9120.00
O2—C1—C2123.13 (10)C8—C9—H9120.00
O1—C1—O2120.04 (10)C9—C10—H10120.00
C1—C2—C3116.75 (10)C12—C10—H10121.00
C2—C3—C4111.55 (10)N2—C13—H13118.00
C3—C4—C5113.16 (10)C14—C13—H13118.00
C4—C5—C6114.59 (10)C15—C14—H14121.00
O4—C6—C5119.03 (11)C13—C14—H14121.00
O3—C6—O4124.09 (12)C14—C15—H15120.00
O3—C6—C5116.88 (11)C16—C15—H15120.00
N1—C7—C8123.70 (12)C11—C16—H16120.00
C7—C8—C9118.30 (12)C15—C16—H16121.00
C8—C9—C10119.36 (11)
O2—Co1—O1—C11.54 (6)C12—N1—C7—C81.49 (17)
O5—Co1—O1—C182.85 (7)Co1—N1—C12—N34.11 (15)
O6—Co1—O1—C189.41 (7)Co1—N1—C12—C10175.23 (8)
N1—Co1—O1—C1176.92 (7)C7—N1—C12—N3179.59 (10)
O1—Co1—O2—C11.56 (6)C7—N1—C12—C101.07 (16)
O5—Co1—O2—C190.90 (7)Co1—N2—C11—N30.16 (15)
O6—Co1—O2—C191.40 (7)Co1—N2—C11—C16178.58 (9)
N1—Co1—O2—C12.85 (14)C13—N2—C11—N3179.90 (11)
N2—Co1—O2—C1179.67 (7)C13—N2—C11—C161.16 (17)
O1—Co1—N1—C711.20 (9)Co1—N2—C13—C14178.23 (13)
O1—Co1—N1—C12165.14 (9)C11—N2—C13—C141.5 (2)
O2—Co1—N1—C77.33 (16)C12—N3—C11—N217.69 (19)
O2—Co1—N1—C12169.01 (9)C12—N3—C11—C16163.51 (12)
O5—Co1—N1—C779.11 (9)C11—N3—C12—N115.42 (19)
O5—Co1—N1—C12104.56 (9)C11—N3—C12—C10165.21 (12)
O6—Co1—N1—C7100.44 (9)O1—C1—C2—C3167.09 (10)
O6—Co1—N1—C1275.89 (9)O2—C1—C2—C312.39 (16)
N2—Co1—N1—C7170.31 (9)C1—C2—C3—C4175.72 (9)
N2—Co1—N1—C1213.36 (9)C2—C3—C4—C5175.19 (10)
O2—Co1—N2—C11169.49 (9)C3—C4—C5—C6170.72 (10)
O2—Co1—N2—C1310.25 (10)C4—C5—C6—O3150.64 (12)
O5—Co1—N2—C11105.46 (10)C4—C5—C6—O429.52 (17)
O5—Co1—N2—C1374.80 (10)N1—C7—C8—C90.72 (19)
O6—Co1—N2—C1182.49 (9)C7—C8—C9—C100.50 (19)
O6—Co1—N2—C1397.25 (9)C8—C9—C10—C120.87 (18)
N1—Co1—N2—C1111.37 (9)C9—C10—C12—N10.08 (16)
N1—Co1—N2—C13168.89 (9)C9—C10—C12—N3179.29 (11)
Co1—O1—C1—O22.83 (11)N2—C11—C16—C150.00 (19)
Co1—O1—C1—C2176.67 (8)N3—C11—C16—C15178.80 (13)
Co1—O2—C1—O12.54 (10)N2—C13—C14—C150.7 (2)
Co1—O2—C1—C2176.93 (10)C13—C14—C15—C160.5 (2)
Co1—N1—C7—C8175.13 (10)C14—C15—C16—C110.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O9i0.78 (2)2.05 (2)2.8228 (17)172 (2)
O5—H51···O7ii0.775 (19)1.923 (19)2.6933 (15)172.7 (19)
O5—H52···O3iii0.80 (2)1.97 (2)2.7706 (17)173 (2)
O6—H61···O2iv0.83 (2)2.00 (2)2.8278 (12)178 (4)
O6—H62···O80.77 (2)1.94 (2)2.7056 (16)170 (2)
O7—H71···O3v0.74 (3)2.56 (3)3.2596 (18)160 (3)
O7—H72···O10.89 (2)1.86 (2)2.7543 (16)175 (2)
O8—H81···O4v0.88 (3)1.97 (3)2.8221 (19)163 (2)
O8—H82···O4vi0.79 (3)2.05 (3)2.832 (2)175 (3)
O9—H91···O3vii0.77 (2)2.12 (2)2.8670 (17)164 (2)
O9—H92···O3v0.79 (3)1.99 (3)2.7452 (17)160 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z; (iii) x+3, y+1, z+1; (iv) x+2, y+1, z+1; (v) x+3, y+2, z+1; (vi) x1, y, z; (vii) x1, y, z1.

Experimental details

Crystal data
Chemical formula[Co(C6H8O4)(C10H9N3)(H2O)2]·3H2O
Mr464.34
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.9587 (3), 10.5458 (3), 11.0885 (3)
α, β, γ (°)100.887 (1), 105.891 (1), 107.889 (1)
V3)1017.38 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.26 × 0.21 × 0.18
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.800, 0.855
No. of measured, independent and
observed [I > 2σ(I)] reflections
28998, 8197, 6984
Rint0.024
(sin θ/λ)max1)0.785
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.097, 0.99
No. of reflections8197
No. of parameters306
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.34

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Co1—O12.0680 (10)Co1—O62.1336 (9)
Co1—O22.3079 (9)Co1—N12.0781 (9)
Co1—O52.0877 (12)Co1—N22.0596 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O9i0.78 (2)2.05 (2)2.8228 (17)172 (2)
O5—H51···O7ii0.775 (19)1.923 (19)2.6933 (15)172.7 (19)
O5—H52···O3iii0.80 (2)1.97 (2)2.7706 (17)173 (2)
O6—H61···O2iv0.83 (2)2.00 (2)2.8278 (12)178 (4)
O6—H62···O80.77 (2)1.94 (2)2.7056 (16)170 (2)
O7—H71···O3v0.74 (3)2.56 (3)3.2596 (18)160 (3)
O7—H72···O10.89 (2)1.86 (2)2.7543 (16)175 (2)
O8—H81···O4v0.88 (3)1.97 (3)2.8221 (19)163 (2)
O8—H82···O4vi0.79 (3)2.05 (3)2.832 (2)175 (3)
O9—H91···O3vii0.77 (2)2.12 (2)2.8670 (17)164 (2)
O9—H92···O3v0.79 (3)1.99 (3)2.7452 (17)160 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z; (iii) x+3, y+1, z+1; (iv) x+2, y+1, z+1; (v) x+3, y+2, z+1; (vi) x1, y, z; (vii) x1, y, z1.
 

Acknowledgements

We are grateful for financial assistance from the DG–RSDT and ANDRU (Diretion Générale de la Recherche Scientifique et du Développement Technologique et l'Agence Nationale pour le Développement de la Recherche Universitaire, Algéria) through the PNR project.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. Engl. 43, 1466–1496.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSetifi, F., Benmansour, S., Triki, S., Gómez-García, C. J., Marchivie, M., Salaün, J.-Y. & Maamache, M. (2007). Inorg. Chim. Acta, 360, 3879–3886.  Web of Science CSD CrossRef CAS Google Scholar
First citationSetifi, F., Bouchama, A., Sala-Pala, J., Salaün, J.-Y. & Triki, S. (2006). Inorg. Chim. Acta, 359, 3269–3274.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWen, G.-L., Wang, Y.-Y., Zhang, W.-H., Ren, C., Liu, R.-T. & Shi, Q.-Z. (2010). CrystEngComm, 12, 1238–1251.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages m335-m336
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds