metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(2,9-di­methyl-1,10-phenanthroline-κ2N,N′)(formato-κ2O,O′)(formato-κO)cobalt(II) monohydrate

aDepartment of Chemistry, Huzhou Teachers College, Huzhou Key Laboratory Base of Novel Functional Materials, Huzhou, Zhejiang 313000, People's Republic of China
*Correspondence e-mail: shengliangni@163.com

(Received 24 November 2010; accepted 30 November 2010; online 4 December 2010)

The asymmetric unit of the title compound, [Co(HCO2)2(C14H12N2)(H2O)]·H2O, contains a mononuclear complex mol­ecule hydrogen bonded to a lattice water mol­ecule. The CoII cation is in a distorted octa­hedral coordination environment defined by the two N atoms of the 2,9-dimethyl-1,10-phenanthroline ligand and four O atoms. Two of these are from a chelating formate anion, one from a monodentate formate and the last from an aqua ligand. In the crystal, mol­ecules are connected by O—H⋯O hydrogen bonds, forming double chains along [100] with the 2,9-dimethyl-1,10-phenanthroline ligands pointing outwards from each chain. These chains are further linked into layers parallel to (011) by inter-chain ππ stacking inter­actions with centroid–centroid distances of 3.61 (1) Å.

Related literature

For background to the formation and applications of supra­molecular metal complexes, see: Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]); Aakeroy & Seddon (1993[Aakeroy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 22, 397-407.]). For related structures, see: Cai et al. (2008[Cai, T. J., Jiang, W. J., Deng, Q., Peng, Z. S., Long, Y. F., Liu, H. & Liu, M. L. (2008). J. Coord. Chem. 61, 3245-3250.]); Chen et al. (2009[Chen, X.-D., Chen, H.-X., Li, Z.-S., Zhang, H.-H. & Sun, B.-W. (2009). Acta Cryst. E65, m997.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(HCO2)2(C14H12N2)(H2O)]·H2O

  • Mr = 393.25

  • Triclinic, [P \overline 1]

  • a = 7.4220 (15) Å

  • b = 10.441 (2) Å

  • c = 11.419 (2) Å

  • α = 82.92 (3)°

  • β = 81.62 (3)°

  • γ = 76.01 (3)°

  • V = 845.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.05 mm−1

  • T = 295 K

  • 0.16 × 0.10 × 0.08 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: ψ scan (XSCANS; Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.880, Tmax = 0.912

  • 4797 measured reflections

  • 3897 independent reflections

  • 3362 reflections with I > 2σ(I)

  • Rint = 0.017

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.098

  • S = 1.03

  • 3897 reflections

  • 227 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Selected bond lengths (Å)

Co—O4 2.0552 (16)
Co—O1 2.0710 (17)
Co—N1 2.1194 (18)
Co—N2 2.1430 (16)
Co—O3 2.1622 (18)
Co—O2 2.2024 (17)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯O5i 0.85 1.84 2.688 173
O1—H1C⋯O6ii 0.84 1.98 2.774 156
O6—H6B⋯O3 0.85 1.96 2.809 176
O6—H6C⋯O4iii 0.85 2.33 3.098 151
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y, -z+1; (iii) -x, -y, -z+1.

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the past decade, a variety of supramolecular architectures based on non–covalent intermolecular interactions such as hydrogen bonding, van der Walls forces and ππ interactions have been achieved by using transition metal centers and organic ligands due to their possible intriguing structural topologies and potential applications in optics, catalysis, ion exchange, gas storage, and the molecular–based magnetic materials (Aakeroy & Seddon, 1993). Carboxylate ligands have been actively utilized as construction units to obtain many supramolecular complexes (Moulton & Zaworotko, 2001) Herein, we are interested in self–assemblies of CoII ions and 2,9-dimethyl-1,10-phenanthroline with formic acid, leading to the successful preparation of the complex [Co(H2O)(C14H12N2)(HCO2)2].H2O.

The asymmetric unit of the title compound consists of one CoII ion, a H2O molecule, a 2,9-dimethyl-1,10-phenanthroline molecule, one O,O'–chelated formate anion and another coordinated formate anion, and one lattice H2O molecule (Fig. 1). Each CoII atom is coordinated two N atoms from one 2,9-dimethyl-1,10-phenanthroline, three O atoms from two formate anions and one aqua ligand to complete a distorted octahedral CoN2O4 chromophore. The Co–N/O distances of 2.055 (2)–2.143 (2) Å, Table 1, fall within the normal range (Cai et al., 2008, Chen et al., 2009), both the cisoid and transoid bond angles in the range 59.90 (8)–112.35 (7) Å and 167.31 (7)–176.05 (6) Å, respectively, indicating that the octahedral CoN2O4 geometry is a highly distorted one. For the two formate anions, the angle (O2–C15–O3, 122.6 (3)°) in the chelated formate is smaller than that in the anion that binds in a monodentate fashion (O4–C16–O5, 128.8 (2)°). The 2,9-dimethyl-1,10-phenanthroline ligand is almost coplanar with a mean square deviation 0.0163 Å. The O6 solvent water molecule is not coordinated to Co atom with the distance between the cobalt and water oxygen atoms of 4.800 (2) Å. However it is linked to the complex molecule in the asymmetric unit by an O6—H6B—O3 hydrogen bond.

The molecules are connected by (O1–H1B···O5#1, O1–H1C···O6#2 and O6–H6C···O4#3) hydrogen bonds, Table 1, to form one-dimensional double chains along [100] with 2,9-dimethyl-1,10-phenanthroline orientating outwards. The resulting chains are further linked into two-dimensional layers parallel to (011) by interchain ππ stacking interactions with centroid – centroid distances 3.61 (1) Å), Fig. 2.

Related literature top

For background to the formation and applications of supramolecular metal complexes, see: Moulton & Zaworotko (2001); Aakeroy & Seddon (1993). For related structures, see: Cai et al. (2008); Chen et al. (2009).

Experimental top

Dropwise addition of 2.0 ml of 1.0 M aqueous Na2CO3 to a stirred aqueous solution of CoCl2.6H2O (0.2380 g, 1.0 mmol) in 5.0 ml H2O produced a pink precipitate, Co(OH)2–2x (CO3)x.yH2O, which was centrifuged and washed with water until no Cl- anions were detected in the supernatant. The precipitate was added to a stirred aqueous methanolic solution of 2,9-dimethyl-1,10-phenanthroline in 30 ml CH3OH–H2O (1/1 v/v). 1.77 ml of 1.0 M aqueous formic acid was added dropwise and stirred continuously until the pink precipitate dissolved. The pink solution (pH = 4.06) was allowed to stand at room temperature. Slow evaporation over several days afforded pink block shaped crystals. Yield:45% based on the initial CoCl2.6H2O input.

Refinement top

All H-atoms bound to C were positioned geometrically and refined using a riding model with d(C-H) = 0.93Å, Uiso=1.2Ueq (C) for aromatic 0.93Å, Uiso = 1.2Ueq (C) for CH and 0.96Å, Uiso = 1.5Ueq (C) for CH3 atoms. H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model, with the O–H distances fixed as initially found and with Uiso(H) values set at 1.5 Ueq(O).

Structure description top

In the past decade, a variety of supramolecular architectures based on non–covalent intermolecular interactions such as hydrogen bonding, van der Walls forces and ππ interactions have been achieved by using transition metal centers and organic ligands due to their possible intriguing structural topologies and potential applications in optics, catalysis, ion exchange, gas storage, and the molecular–based magnetic materials (Aakeroy & Seddon, 1993). Carboxylate ligands have been actively utilized as construction units to obtain many supramolecular complexes (Moulton & Zaworotko, 2001) Herein, we are interested in self–assemblies of CoII ions and 2,9-dimethyl-1,10-phenanthroline with formic acid, leading to the successful preparation of the complex [Co(H2O)(C14H12N2)(HCO2)2].H2O.

The asymmetric unit of the title compound consists of one CoII ion, a H2O molecule, a 2,9-dimethyl-1,10-phenanthroline molecule, one O,O'–chelated formate anion and another coordinated formate anion, and one lattice H2O molecule (Fig. 1). Each CoII atom is coordinated two N atoms from one 2,9-dimethyl-1,10-phenanthroline, three O atoms from two formate anions and one aqua ligand to complete a distorted octahedral CoN2O4 chromophore. The Co–N/O distances of 2.055 (2)–2.143 (2) Å, Table 1, fall within the normal range (Cai et al., 2008, Chen et al., 2009), both the cisoid and transoid bond angles in the range 59.90 (8)–112.35 (7) Å and 167.31 (7)–176.05 (6) Å, respectively, indicating that the octahedral CoN2O4 geometry is a highly distorted one. For the two formate anions, the angle (O2–C15–O3, 122.6 (3)°) in the chelated formate is smaller than that in the anion that binds in a monodentate fashion (O4–C16–O5, 128.8 (2)°). The 2,9-dimethyl-1,10-phenanthroline ligand is almost coplanar with a mean square deviation 0.0163 Å. The O6 solvent water molecule is not coordinated to Co atom with the distance between the cobalt and water oxygen atoms of 4.800 (2) Å. However it is linked to the complex molecule in the asymmetric unit by an O6—H6B—O3 hydrogen bond.

The molecules are connected by (O1–H1B···O5#1, O1–H1C···O6#2 and O6–H6C···O4#3) hydrogen bonds, Table 1, to form one-dimensional double chains along [100] with 2,9-dimethyl-1,10-phenanthroline orientating outwards. The resulting chains are further linked into two-dimensional layers parallel to (011) by interchain ππ stacking interactions with centroid – centroid distances 3.61 (1) Å), Fig. 2.

For background to the formation and applications of supramolecular metal complexes, see: Moulton & Zaworotko (2001); Aakeroy & Seddon (1993). For related structures, see: Cai et al. (2008); Chen et al. (2009).

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound. The displacement ellipsoids are drawn at 45% probability level.
[Figure 2] Fig. 2. The two-dimensional layer structure of the title compound linked through hydrogen bonds and ππ stacking interactions.
Aqua(2,9-dimethyl-1,10-phenanthroline-κ2N,N')(formato- κ2O,O')(formato-κO)cobalt(II) monohydrate top
Crystal data top
[Co(HCO2)2(C14H12N2)(H2O)]·H2OZ = 2
Mr = 393.25F(000) = 406
Triclinic, P1Dx = 1.544 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4220 (15) ÅCell parameters from 25 reflections
b = 10.441 (2) Åθ = 5.0–12.5°
c = 11.419 (2) ŵ = 1.05 mm1
α = 82.92 (3)°T = 295 K
β = 81.62 (3)°Block, pink
γ = 76.01 (3)°0.16 × 0.10 × 0.08 mm
V = 845.9 (3) Å3
Data collection top
Bruker P4
diffractometer
3362 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 27.5°, θmin = 1.8°
θ/2θ scansh = 19
Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
k = 1313
Tmin = 0.880, Tmax = 0.912l = 1414
4797 measured reflections3 standard reflections every 97 reflections
3897 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0543P)2 + 0.2279P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3897 reflectionsΔρmax = 0.37 e Å3
227 parametersΔρmin = 0.34 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.002468
Crystal data top
[Co(HCO2)2(C14H12N2)(H2O)]·H2Oγ = 76.01 (3)°
Mr = 393.25V = 845.9 (3) Å3
Triclinic, P1Z = 2
a = 7.4220 (15) ÅMo Kα radiation
b = 10.441 (2) ŵ = 1.05 mm1
c = 11.419 (2) ÅT = 295 K
α = 82.92 (3)°0.16 × 0.10 × 0.08 mm
β = 81.62 (3)°
Data collection top
Bruker P4
diffractometer
3362 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
Rint = 0.017
Tmin = 0.880, Tmax = 0.9123 standard reflections every 97 reflections
4797 measured reflections intensity decay: none
3897 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0356 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.03Δρmax = 0.37 e Å3
3897 reflectionsΔρmin = 0.34 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.27534 (4)0.17941 (2)0.27175 (2)0.03146 (11)
N10.2555 (2)0.25976 (17)0.09313 (14)0.0331 (3)
N20.2662 (2)0.38360 (15)0.28646 (14)0.0305 (3)
O10.5639 (2)0.15052 (15)0.24594 (14)0.0452 (4)
H1B0.61150.20320.27670.068*
H1C0.62740.07380.26350.068*
O20.3174 (3)0.03795 (17)0.29174 (18)0.0637 (5)
O30.2798 (3)0.07298 (17)0.44656 (15)0.0551 (4)
O40.0089 (2)0.19581 (17)0.29267 (15)0.0474 (4)
O50.2919 (2)0.30672 (19)0.35861 (16)0.0539 (4)
O60.1515 (3)0.06203 (18)0.69063 (17)0.0593 (5)
H6B0.18490.06700.61580.089*
H6C0.07470.01170.70180.089*
C10.2454 (3)0.1974 (2)0.0004 (2)0.0452 (5)
C20.2397 (4)0.2645 (3)0.1146 (2)0.0577 (7)
H2A0.23350.21940.17870.069*
C30.2432 (4)0.3945 (3)0.1321 (2)0.0576 (7)
H3A0.24160.43810.20810.069*
C40.2491 (3)0.4633 (2)0.03500 (19)0.0448 (5)
C50.2526 (4)0.6003 (3)0.0464 (2)0.0587 (7)
H5A0.24800.64820.12060.070*
C60.2625 (4)0.6611 (2)0.0489 (3)0.0575 (7)
H6A0.26550.75030.03950.069*
C70.2686 (3)0.5909 (2)0.1641 (2)0.0436 (5)
C80.2817 (4)0.6496 (2)0.2655 (2)0.0543 (6)
H8A0.28700.73830.25970.065*
C90.2868 (4)0.5763 (2)0.3717 (2)0.0504 (6)
H9A0.29640.61500.43900.060*
C100.2776 (3)0.4427 (2)0.38166 (18)0.0367 (4)
C110.2631 (3)0.45609 (18)0.17911 (18)0.0320 (4)
C120.2558 (3)0.39041 (19)0.07673 (17)0.0330 (4)
C130.2345 (5)0.0557 (3)0.0209 (3)0.0657 (8)
H13A0.24200.02620.10340.099*
H13B0.33640.00310.02660.099*
H13C0.11810.04660.00040.099*
C140.2786 (4)0.3641 (3)0.5002 (2)0.0500 (6)
H14A0.27160.27520.49140.075*
H14B0.17290.40440.55310.075*
H14C0.39180.36220.53240.075*
C150.3054 (5)0.0333 (3)0.4003 (3)0.0628 (7)
H150.31580.11200.44940.075*
C160.1206 (3)0.2801 (2)0.3492 (2)0.0467 (5)
H160.06810.33060.39050.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.03515 (17)0.02810 (15)0.03361 (16)0.01129 (10)0.00462 (10)0.00368 (10)
N10.0329 (8)0.0380 (9)0.0320 (8)0.0120 (7)0.0051 (6)0.0082 (6)
N20.0298 (8)0.0298 (8)0.0343 (8)0.0098 (6)0.0029 (6)0.0078 (6)
O10.0391 (8)0.0407 (8)0.0572 (10)0.0071 (6)0.0124 (7)0.0062 (7)
O20.0943 (15)0.0355 (9)0.0658 (12)0.0211 (9)0.0134 (11)0.0051 (8)
O30.0761 (12)0.0468 (9)0.0447 (9)0.0196 (9)0.0124 (8)0.0042 (7)
O40.0358 (8)0.0539 (9)0.0561 (10)0.0159 (7)0.0003 (7)0.0135 (8)
O50.0345 (8)0.0684 (11)0.0627 (11)0.0125 (8)0.0044 (7)0.0209 (9)
O60.0680 (12)0.0556 (10)0.0575 (11)0.0154 (9)0.0121 (9)0.0099 (8)
C10.0466 (12)0.0566 (14)0.0382 (11)0.0176 (10)0.0055 (9)0.0143 (10)
C20.0650 (16)0.0796 (19)0.0350 (12)0.0207 (14)0.0096 (11)0.0173 (12)
C30.0606 (16)0.0793 (19)0.0319 (11)0.0174 (14)0.0071 (11)0.0033 (11)
C40.0424 (12)0.0518 (13)0.0381 (11)0.0114 (10)0.0052 (9)0.0064 (9)
C50.0621 (16)0.0559 (15)0.0535 (14)0.0178 (12)0.0079 (12)0.0222 (12)
C60.0622 (16)0.0355 (12)0.0705 (17)0.0141 (11)0.0053 (13)0.0146 (11)
C70.0420 (12)0.0304 (10)0.0580 (14)0.0110 (9)0.0009 (10)0.0030 (9)
C80.0588 (15)0.0331 (11)0.0744 (18)0.0166 (10)0.0014 (13)0.0161 (11)
C90.0512 (13)0.0456 (12)0.0609 (15)0.0175 (10)0.0029 (11)0.0282 (11)
C100.0333 (10)0.0413 (11)0.0392 (10)0.0118 (8)0.0012 (8)0.0153 (8)
C110.0279 (9)0.0286 (9)0.0398 (10)0.0072 (7)0.0037 (8)0.0028 (7)
C120.0291 (9)0.0367 (10)0.0332 (10)0.0089 (8)0.0042 (7)0.0003 (8)
C130.088 (2)0.0612 (17)0.0608 (16)0.0293 (15)0.0094 (15)0.0278 (13)
C140.0568 (14)0.0630 (15)0.0366 (11)0.0198 (12)0.0086 (10)0.0140 (10)
C150.086 (2)0.0389 (13)0.0647 (17)0.0232 (13)0.0157 (15)0.0143 (12)
C160.0392 (12)0.0604 (14)0.0470 (12)0.0200 (11)0.0036 (10)0.0151 (11)
Geometric parameters (Å, º) top
Co—O42.0552 (16)C3—H3A0.9300
Co—O12.0710 (17)C4—C121.404 (3)
Co—N12.1194 (18)C4—C51.426 (4)
Co—N22.1430 (16)C5—C61.345 (4)
Co—O32.1622 (18)C5—H5A0.9300
Co—O22.2024 (17)C6—C71.426 (4)
Co—C152.488 (3)C6—H6A0.9300
N1—C11.337 (3)C7—C81.401 (3)
N1—C121.354 (3)C7—C111.406 (3)
N2—C101.337 (2)C8—C91.353 (4)
N2—C111.359 (3)C8—H8A0.9300
O1—H1B0.8536C9—C101.403 (3)
O1—H1C0.8425C9—H9A0.9300
O2—C151.236 (3)C10—C141.494 (3)
O3—C151.249 (3)C11—C121.440 (3)
O4—C161.229 (3)C13—H13A0.9600
O5—C161.225 (3)C13—H13B0.9600
O6—H6B0.8529C13—H13C0.9600
O6—H6C0.8512C14—H14A0.9600
C1—C21.404 (4)C14—H14B0.9600
C1—C131.489 (4)C14—H14C0.9600
C2—C31.353 (4)C15—H150.9300
C2—H2A0.9300C16—H160.9300
C3—C41.405 (4)
O4—Co—O1176.05 (6)C6—C5—C4120.8 (2)
O4—Co—N188.20 (7)C6—C5—H5A119.6
O1—Co—N191.40 (7)C4—C5—H5A119.6
O4—Co—N296.90 (7)C5—C6—C7121.1 (2)
O1—Co—N286.88 (7)C5—C6—H6A119.5
N1—Co—N279.03 (7)C7—C6—H6A119.5
O4—Co—O387.65 (8)C8—C7—C11117.2 (2)
O1—Co—O392.21 (8)C8—C7—C6123.0 (2)
N1—Co—O3171.25 (6)C11—C7—C6119.8 (2)
N2—Co—O3109.13 (7)C9—C8—C7119.5 (2)
O4—Co—O289.29 (8)C9—C8—H8A120.3
O1—Co—O287.23 (8)C7—C8—H8A120.3
N1—Co—O2112.35 (7)C8—C9—C10120.8 (2)
N2—Co—O2167.32 (7)C8—C9—H9A119.6
O3—Co—O259.90 (8)C10—C9—H9A119.6
O4—Co—C1588.17 (9)N2—C10—C9121.1 (2)
O1—Co—C1589.74 (9)N2—C10—C14118.73 (18)
N1—Co—C15141.97 (9)C9—C10—C14120.1 (2)
N2—Co—C15138.97 (9)N2—C11—C7122.92 (19)
O3—Co—C1530.14 (9)N2—C11—C12117.94 (16)
O2—Co—C1529.76 (8)C7—C11—C12119.14 (19)
C1—N1—C12118.95 (18)N1—C12—C4122.82 (19)
C1—N1—Co128.10 (15)N1—C12—C11117.96 (17)
C12—N1—Co112.95 (13)C4—C12—C11119.22 (19)
C10—N2—C11118.44 (17)C1—C13—H13A109.5
C10—N2—Co129.34 (14)C1—C13—H13B109.5
C11—N2—Co111.99 (12)H13A—C13—H13B109.5
Co—O1—H1B117.2C1—C13—H13C109.5
Co—O1—H1C117.6H13A—C13—H13C109.5
H1B—O1—H1C105.8H13B—C13—H13C109.5
C15—O2—Co88.00 (15)C10—C14—H14A109.5
C15—O3—Co89.50 (16)C10—C14—H14B109.5
C16—O4—Co123.21 (15)H14A—C14—H14B109.5
H6B—O6—H6C104.7C10—C14—H14C109.5
N1—C1—C2121.0 (2)H14A—C14—H14C109.5
N1—C1—C13118.0 (2)H14B—C14—H14C109.5
C2—C1—C13121.0 (2)O2—C15—O3122.6 (2)
C3—C2—C1120.4 (2)O2—C15—Co62.23 (13)
C3—C2—H2A119.8O3—C15—Co60.36 (13)
C1—C2—H2A119.8O2—C15—H15118.7
C2—C3—C4119.8 (2)O3—C15—H15118.7
C2—C3—H3A120.1Co—C15—H15179.0
C4—C3—H3A120.1O5—C16—O4128.8 (2)
C12—C4—C3117.0 (2)O5—C16—H16115.6
C12—C4—C5120.0 (2)O4—C16—H16115.6
C3—C4—C5123.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O5i0.851.842.688173
O1—H1C···O6ii0.841.982.774156
O6—H6B···O30.851.962.809176
O6—H6C···O4iii0.852.333.098151
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Co(HCO2)2(C14H12N2)(H2O)]·H2O
Mr393.25
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.4220 (15), 10.441 (2), 11.419 (2)
α, β, γ (°)82.92 (3), 81.62 (3), 76.01 (3)
V3)845.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.05
Crystal size (mm)0.16 × 0.10 × 0.08
Data collection
DiffractometerBruker P4
Absorption correctionψ scan
(XSCANS; Siemens, 1996)
Tmin, Tmax0.880, 0.912
No. of measured, independent and
observed [I > 2σ(I)] reflections
4797, 3897, 3362
Rint0.017
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.098, 1.03
No. of reflections3897
No. of parameters227
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.34

Computer programs: XSCANS (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006).

Selected bond lengths (Å) top
Co—O42.0552 (16)Co—N22.1430 (16)
Co—O12.0710 (17)Co—O32.1622 (18)
Co—N12.1194 (18)Co—O22.2024 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O5i0.8541.8382.688173
O1—H1C···O6ii0.8431.9802.774156
O6—H6B···O30.8531.9572.809176
O6—H6C···O4iii0.8512.3253.098151
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x, y, z+1.
 

Acknowledgements

This project was supported by the Foundation of the Education Department of Zhejiang Province (ky23022) and the Huzhou Municipal Foundation of Science and Technology (2006YG21).

References

First citationAakeroy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 22, 397–407.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCai, T. J., Jiang, W. J., Deng, Q., Peng, Z. S., Long, Y. F., Liu, H. & Liu, M. L. (2008). J. Coord. Chem. 61, 3245–3250.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, X.-D., Chen, H.-X., Li, Z.-S., Zhang, H.-H. & Sun, B.-W. (2009). Acta Cryst. E65, m997.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds