organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-Carb­­oxy-2-(piperidin-1-ium-1-yl)propano­ate

aDepartment of Physics, Alagappa University, Karaikkudi 630 003, India, bDepartment of Physics, Presidency College, Chennai 600 005, India, and cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: sudhaharphdphysics@gmail.com, chakkaravarthi_2005@yahoo.com

Edited by J. Simpson, University of Otago, New Zealand (Received 2 May 2016; accepted 4 May 2016; online 20 May 2016)

In the zwitterionic title compound, C9H15NO4, the piperidinium N atom is protonated and the OH group of one of the carboxyl­ate groups is deprotonated. The piperidinium ring adopts a chair conformation. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds generate an R33(15) ring motif and link the molecules into infinite chains propagating along [010]. The structure is further consolidated by weak C—H⋯O inter­actions to form a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Piperidine and its derivatives find extensive applications in some areas of biochemistry and material chemistry. They also exhibit good bioactivity (Cardellicchio et al. 2010[Cardellicchio, C., Capozzi, M. A. M. & Naso, F. (2010). Tetrahedron Asymmetry, 21, 507-517.]; Huang et al. 2008[Huang, P. J. J., Youssef, D., Cameron, T. S. & Jha, A. (2008). Arkivoc, pp. 165-177.]). We report here the synthesis and the crystal structure of the title compound (Fig. 1[link]). The N atom of the the piperidinium ring is protonated while the OH substituent of one of the carboxyl­ate groups is deprotonated. The geometric parameters are comparable to those reported for similar structures (Aravindhan et al., 2009[Aravindhan, S., Ponnuswamy, S., Jamesh, M., Ramesh, P. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, o1974.]; Sankar et al., 2014[Sankar, A., Ambalatharasu, S., Peramaiyan, G., Chakkaravarthi, G. & Kanagadurai, R. (2014). Acta Cryst. E70, o450.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling and 30% probability displacement ellipsoids.

The piperidine ring (N1/C1–C5) adopts a chair conformation with puckering parameters of Q = 0.579 (3) Å; θ = 1.0 (3)° and φ = 134 (15)°. An intramolecular N—H⋯O hydrogen bond occurs (Table 1[link]). In the crystal, N—H⋯O and O—H⋯O hydrogen bonds generate R33(15) ring motifs (Fig. 2[link]) and link the molecules into infinite chains along [010]. The structure is further consolidated by weak C—H⋯O inter­actions (Table 1[link] and Fig. 3[link]) to form a three-dimensional network.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.89 (1) 2.42 (2) 2.736 (2) 101 (2)
N1—H1⋯O1i 0.89 (1) 1.93 (1) 2.759 (2) 154 (2)
O4—H4⋯O2ii 0.83 (1) 1.73 (1) 2.557 (2) 173 (3)
C1—H1A⋯O1iii 0.97 2.60 3.528 (3) 160
C1—H1B⋯O3iv 0.97 2.44 3.381 (3) 163
C5—H5A⋯O4iv 0.97 2.51 3.439 (3) 161
C8—H8A⋯O2ii 0.97 2.45 3.142 (3) 128
C8—H8A⋯O1i 0.97 2.55 3.368 (2) 143
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y-1, z; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
A partial packing diagram showing the ring motif.
[Figure 3]
Figure 3
Crystal packing of the title compound viewed along the b axis. Hydrogen bonds (see Table 1[link]) are shown as dashed lines and C-bound H atoms have been omitted for clarity.

Synthesis and crystallization

The title compound was synthesized from piperidine (0.85 g) and maleic acid (1.16 g) in a methanol:water mixed solvent system. Colourless block-like crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation from methanol:water (1:1) mixed solvent.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C9H15NO4
Mr 201.22
Crystal system, space group Monoclinic, P21/c
Temperature (K) 295
a, b, c (Å) 9.8364 (8), 5.9731 (5), 17.0805 (15)
β (°) 98.152 (5)
V3) 993.40 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.24 × 0.22 × 0.18
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.975, 0.981
No. of measured, independent and observed [I > 2σ(I)] reflections 8624, 2431, 1446
Rint 0.054
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.172, 1.04
No. of reflections 2431
No. of parameters 134
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.28, −0.19
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Synthesis and crystallization top

The title compound was synthesized from piperidine (0.85 g) and maleic acid (1.16 g) in a methonol:water mixed solvent system. Colourless block-like crystals suitable for single crystal X-ray diffraction were grown by slow evaporation.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1

Experimental top

The title compound was synthesized from piperidine (0.85 g) and maleic acid (1.16 g) in a methanol:water mixed solvent system. Colourless block-like crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Piperidine and its derivatives find extensive applications in some areas of biochemistry and material chemistry. They also exhibit good bioactivity (Cardellicchio et al. 2010; Huang et al. 2008). We report here the synthesis and the crystal structure of the title compound (Fig. 1). The N atom of the the piperidinium ring is protonated while the OH substituent of one of the carboxylate groups is deprotonated. The geometric parameters are comparable to those reported for similar structures (Aravindhan et al., 2009; Sankar et al., 2014).

The piperidine ring (N1/C1–C5) adopts a chair conformation with puckering parameters of Q = 0.579 (3) Å; θ = 1.0 (3)° and φ = 134 (15)°. In the crystal, C—H1B···O3 and C5—H5A···O4 contacts generate R22(8) ring motifs (Fig. 2). O—H···O and N—H···O hydrogen bonds form infinite chains along [010] and these chains are further consolidated by weak C—H···O interactions (Table 1 and Fig. 2) to form a three-dimensional network.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A partial packing diagram showing the ring motif.
[Figure 3] Fig. 3. Crystal packing of the title compound viewed along the b axis. Hydrogen bonds (see Table 1) are shown as dashed lines and C-bound H atoms have been omitted for clarity.
3-Carboxy-2-(piperidin-1-ium-1-yl)propanoate top
Crystal data top
C9H15NO4F(000) = 432
Mr = 201.22Dx = 1.345 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5733 reflections
a = 9.8364 (8) Åθ = 2.1–28.3°
b = 5.9731 (5) ŵ = 0.11 mm1
c = 17.0805 (15) ÅT = 295 K
β = 98.152 (5)°Block, colourless
V = 993.40 (15) Å30.24 × 0.22 × 0.18 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2431 independent reflections
Radiation source: fine-focus sealed tube1446 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ω and φ scansθmax = 28.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 913
Tmin = 0.975, Tmax = 0.981k = 77
8624 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.090P)2 + 0.0823P]
where P = (Fo2 + 2Fc2)/3
2431 reflections(Δ/σ)max < 0.001
134 parametersΔρmax = 0.28 e Å3
2 restraintsΔρmin = 0.19 e Å3
Crystal data top
C9H15NO4V = 993.40 (15) Å3
Mr = 201.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.8364 (8) ŵ = 0.11 mm1
b = 5.9731 (5) ÅT = 295 K
c = 17.0805 (15) Å0.24 × 0.22 × 0.18 mm
β = 98.152 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2431 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1446 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.981Rint = 0.054
8624 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0572 restraints
wR(F2) = 0.172H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.28 e Å3
2431 reflectionsΔρmin = 0.19 e Å3
134 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2180 (2)0.4085 (3)0.85245 (13)0.0411 (5)
H1A0.14390.50940.83240.049*
H1B0.30420.48660.85130.049*
C20.2051 (3)0.3451 (4)0.93646 (14)0.0516 (6)
H2A0.11640.27570.93810.062*
H2B0.21030.47880.96900.062*
C30.3179 (3)0.1844 (4)0.96931 (15)0.0592 (7)
H3A0.40660.25700.97140.071*
H3B0.30600.14071.02260.071*
C40.3125 (3)0.0200 (4)0.91702 (15)0.0539 (6)
H4A0.22670.09850.91870.065*
H4B0.38700.12030.93690.065*
C50.3241 (2)0.0422 (4)0.83234 (14)0.0421 (5)
H5A0.41330.10890.82990.051*
H5B0.31670.09180.79990.051*
C60.0979 (2)0.4225 (3)0.68531 (12)0.0369 (5)
C70.22115 (18)0.2712 (3)0.71628 (12)0.0344 (5)
H70.30690.35260.71380.041*
C80.21416 (19)0.0678 (3)0.66188 (13)0.0380 (5)
H8A0.15880.04640.68250.046*
H8B0.16760.11100.61020.046*
C90.3517 (2)0.0332 (4)0.65187 (14)0.0450 (6)
N10.21295 (15)0.2051 (3)0.80041 (10)0.0338 (4)
O10.01285 (13)0.3786 (2)0.70850 (9)0.0445 (4)
H10.1320 (13)0.137 (3)0.7984 (13)0.039 (6)*
O20.11830 (16)0.5682 (3)0.63616 (10)0.0505 (4)
O30.45737 (16)0.0721 (3)0.66196 (12)0.0654 (6)
O40.34903 (16)0.2428 (3)0.62772 (12)0.0605 (5)
H40.2710 (17)0.298 (5)0.6272 (19)0.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0414 (11)0.0339 (12)0.0483 (13)0.0003 (9)0.0073 (9)0.0037 (10)
C20.0614 (14)0.0503 (14)0.0444 (13)0.0025 (11)0.0113 (11)0.0060 (11)
C30.0712 (16)0.0597 (17)0.0442 (14)0.0016 (13)0.0002 (12)0.0022 (12)
C40.0599 (14)0.0508 (15)0.0493 (14)0.0055 (12)0.0018 (11)0.0083 (12)
C50.0354 (10)0.0402 (13)0.0501 (13)0.0051 (9)0.0041 (9)0.0031 (10)
C60.0394 (10)0.0315 (12)0.0404 (12)0.0015 (8)0.0080 (9)0.0046 (9)
C70.0291 (9)0.0343 (11)0.0417 (11)0.0007 (8)0.0117 (8)0.0031 (9)
C80.0362 (10)0.0388 (12)0.0406 (11)0.0061 (8)0.0112 (8)0.0004 (9)
C90.0431 (11)0.0461 (14)0.0500 (13)0.0084 (10)0.0211 (10)0.0042 (11)
N10.0291 (8)0.0333 (10)0.0399 (9)0.0015 (7)0.0082 (7)0.0005 (7)
O10.0331 (7)0.0460 (10)0.0559 (10)0.0063 (6)0.0112 (7)0.0024 (7)
O20.0545 (9)0.0429 (10)0.0549 (10)0.0052 (7)0.0105 (7)0.0122 (8)
O30.0414 (9)0.0641 (12)0.0967 (15)0.0007 (8)0.0303 (9)0.0062 (10)
O40.0533 (10)0.0460 (11)0.0875 (13)0.0113 (8)0.0282 (9)0.0067 (9)
Geometric parameters (Å, º) top
C1—N11.503 (3)C5—H5B0.9700
C1—C21.507 (3)C6—O11.239 (2)
C1—H1A0.9700C6—O21.245 (2)
C1—H1B0.9700C6—C71.544 (3)
C2—C31.513 (3)C7—N11.503 (2)
C2—H2A0.9700C7—C81.525 (3)
C2—H2B0.9700C7—H70.9800
C3—C41.509 (3)C8—C91.513 (3)
C3—H3A0.9700C8—H8A0.9700
C3—H3B0.9700C8—H8B0.9700
C4—C51.513 (3)C9—O31.206 (3)
C4—H4A0.9700C9—O41.317 (3)
C4—H4B0.9700N1—H10.891 (9)
C5—N11.507 (3)O4—H40.834 (10)
C5—H5A0.9700
N1—C1—C2111.08 (18)C4—C5—H5B109.5
N1—C1—H1A109.4H5A—C5—H5B108.1
C2—C1—H1A109.4O1—C6—O2126.62 (19)
N1—C1—H1B109.4O1—C6—C7116.74 (18)
C2—C1—H1B109.4O2—C6—C7116.51 (16)
H1A—C1—H1B108.0N1—C7—C8111.65 (16)
C1—C2—C3110.87 (19)N1—C7—C6109.60 (14)
C1—C2—H2A109.5C8—C7—C6106.99 (17)
C3—C2—H2A109.5N1—C7—H7109.5
C1—C2—H2B109.5C8—C7—H7109.5
C3—C2—H2B109.5C6—C7—H7109.5
H2A—C2—H2B108.1C9—C8—C7115.00 (18)
C4—C3—C2109.4 (2)C9—C8—H8A108.5
C4—C3—H3A109.8C7—C8—H8A108.5
C2—C3—H3A109.8C9—C8—H8B108.5
C4—C3—H3B109.8C7—C8—H8B108.5
C2—C3—H3B109.8H8A—C8—H8B107.5
H3A—C3—H3B108.3O3—C9—O4121.26 (19)
C3—C4—C5111.5 (2)O3—C9—C8122.8 (2)
C3—C4—H4A109.3O4—C9—C8115.82 (19)
C5—C4—H4A109.3C1—N1—C7110.55 (15)
C3—C4—H4B109.3C1—N1—C5110.28 (16)
C5—C4—H4B109.3C7—N1—C5112.41 (14)
H4A—C4—H4B108.0C1—N1—H1110.3 (14)
N1—C5—C4110.80 (17)C7—N1—H1104.6 (14)
N1—C5—H5A109.5C5—N1—H1108.6 (14)
C4—C5—H5A109.5C9—O4—H4111 (2)
N1—C5—H5B109.5
N1—C1—C2—C358.1 (2)C7—C8—C9—O324.1 (3)
C1—C2—C3—C457.2 (3)C7—C8—C9—O4158.87 (19)
C2—C3—C4—C556.8 (3)C2—C1—N1—C7178.09 (16)
C3—C4—C5—N156.9 (3)C2—C1—N1—C557.0 (2)
O1—C6—C7—N136.0 (2)C8—C7—N1—C1179.20 (14)
O2—C6—C7—N1147.90 (18)C6—C7—N1—C160.8 (2)
O1—C6—C7—C885.2 (2)C8—C7—N1—C557.1 (2)
O2—C6—C7—C890.9 (2)C6—C7—N1—C5175.46 (16)
N1—C7—C8—C991.2 (2)C4—C5—N1—C156.1 (2)
C6—C7—C8—C9148.93 (18)C4—C5—N1—C7179.93 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.89 (1)2.42 (2)2.736 (2)101 (2)
C1—H1A···O10.972.563.107 (3)116
C7—H7···O30.982.482.879 (2)104
N1—H1···O1i0.89 (1)1.93 (1)2.759 (2)154 (2)
O4—H4···O2ii0.83 (1)1.73 (1)2.557 (2)173 (3)
C1—H1A···O1iii0.972.603.528 (3)160
C1—H1B···O3iv0.972.443.381 (3)163
C5—H5A···O4iv0.972.513.439 (3)161
C8—H8A···O2ii0.972.453.142 (3)128
C8—H8A···O1i0.972.553.368 (2)143
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y1, z; (iii) x, y+1/2, z+3/2; (iv) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.891 (9)2.42 (2)2.736 (2)101.2 (15)
C1—H1A···O10.972.563.107 (3)116
C7—H7···O30.982.482.879 (2)104
N1—H1···O1i0.891 (9)1.931 (12)2.759 (2)154.0 (19)
O4—H4···O2ii0.834 (10)1.728 (11)2.557 (2)173 (3)
C1—H1A···O1iii0.972.603.528 (3)160
C1—H1B···O3iv0.972.443.381 (3)163
C5—H5A···O4iv0.972.513.439 (3)161
C8—H8A···O2ii0.972.453.142 (3)128
C8—H8A···O1i0.972.553.368 (2)143
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y1, z; (iii) x, y+1/2, z+3/2; (iv) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC9H15NO4
Mr201.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)9.8364 (8), 5.9731 (5), 17.0805 (15)
β (°) 98.152 (5)
V3)993.40 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.24 × 0.22 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.975, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
8624, 2431, 1446
Rint0.054
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.172, 1.04
No. of reflections2431
No. of parameters134
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.19

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras, for the data collection.

References

First citationAravindhan, S., Ponnuswamy, S., Jamesh, M., Ramesh, P. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, o1974.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCardellicchio, C., Capozzi, M. A. M. & Naso, F. (2010). Tetrahedron Asymmetry, 21, 507–517.  Web of Science CrossRef CAS Google Scholar
First citationHuang, P. J. J., Youssef, D., Cameron, T. S. & Jha, A. (2008). Arkivoc, pp. 165–177.  CrossRef Google Scholar
First citationSankar, A., Ambalatharasu, S., Peramaiyan, G., Chakkaravarthi, G. & Kanagadurai, R. (2014). Acta Cryst. E70, o450.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds