organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N-Benzyl-N-[2-(N-benzyl-N′,N′,N′′,N′′-tetra­methyl­guanidinium­yl)eth­yl]-N′,N′,N′′,N′′-tetra­methyl­guanidinium dibromide 1.5-hydrate

aFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany
*Correspondence e-mail: willi.kantlehner@hs-aalen.de

Edited by J. Simpson, University of Otago, New Zealand (Received 7 January 2016; accepted 8 January 2016; online 16 January 2016)

The asymmetric unit of the hydrated title compound, C26H42N62+·2Br·1.5H2O, comprises one cation, two bromide anions and one and a half water mol­ecules, as one water molecule is fully occupied and the other is only half occupied [0.500 (6)]. Both bromide ions are disordered over two sites with refined occupancies of 0.938 (3):0.062 (3) and 0.520 (9):0.480 (9). The C—N bond lengths in both central C3N units of the bis­guanidinium ion range between 1.336 (3) and 1.349 (3) Å, indicating a degree of double-bond character. The central C atoms are bonded to the three N atoms in a nearly ideal trigonal–planar geometry and the positive charges are delocalized in both CN3 planes. The crystal structure is stabilized by a three-dimensional network of O—H⋯O, O—H⋯Br and C—H⋯Br hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

By reaction of two equivalents of N,N,N′,N′-tetra­methyl­chloro­formamidinium chloride (Tiritiris & Kantlehner, 2008a[Tiritiris, I. & Kantlehner, W. (2008a). Z. Kristallogr. 223, 345-346.]) with 1,2-di­amino­ethane, a bis­guanidinium dichloride (Wittmann et al., 2000[Wittmann, H., Schorm, A. & Sundermeyer, J. (2000). Z. Anorg. Allg. Chem. 626, 1583-1590.]) has been obtained which, after treating with an aqueous sodium hydroxide solution, yields N,N,N′,N′-tetra­methyl-N′′-[2-(N′,N′,N′′,N′′-tetra­methyl­guanid­ino)eth­yl]guanidine (Tiritiris & Kantlehner, 2012[Tiritiris, I. & Kantlehner, W. (2012). Acta Cryst. E68, o2161.]). By alkyl­ation of the free nitro­gen atoms, various bis­guanidinium salts can be prepared. The hydrated title salt presented here is the first alkyl­ated bis­guanidinium derivative in our series to have been structurally characterized. The asymmetric unit of the structure contains one cation, two bromide anions and one and a half water mol­ecules (Fig. 1[link]). Prominent bond parameters in the bis­guanidinium cation are: C1—N1 = 1.336 (3), C1—N2 = 1.336 (3), C1—N3 = 1.349 (3) Å and C15—N4 = 1.349 (3), C15—N5 = 1.339 (3), C15—N6 = 1.339 (3) Å, indicating partial double-bond character for all. The N—C1—N and N—C15—N angles range from 119.4 (2)° to 120.4 (2)°, indicating that the carbon centres C1 and C15 adopt nearly ideal trigonal–planar environments. The positive charges of the dication are completely delocalized in both CN3 planes. The crystal structure analysis reveals that the C—N and C—C bond lengths in the dication are in very good agreement with the values obtained for the diprotonated salt 1,2-bis-[2N′-(1,1,3,3-tetra­methyl­guanidinium)]ethane dichloride tetra­hydrate (Wittmann et al., 2000[Wittmann, H., Schorm, A. & Sundermeyer, J. (2000). Z. Anorg. Allg. Chem. 626, 1583-1590.]). The crystal structure of the related N,N,N′,N′-tetra­methyl-N′′-[2-(N′,N′,N′′,N′′- tetra­methyl­guanidino)eth­yl]guanidine, has also been reported (Tiritiris & Kantlehner, 2012[Tiritiris, I. & Kantlehner, W. (2012). Acta Cryst. E68, o2161.]).

[Figure 1]
Figure 1
The structure of the title compound with displacement ellipsoids at the 50% probability level. All hydrogen atoms are omitted for the sake of clarity. Only the disordered bromine atoms with the major occupancy are shown.

The crystal structure is stabilized by a network of O—H⋯O, O—H⋯Br and C—H⋯Br hydrogen bonds, Table 1[link]. O—H⋯O hydrogen bonds between the water mol­ecules and O—H⋯Br hydrogen bonds between water mol­ecules and bromide ions are observed, Fig. 2[link]. In addition, C—H⋯Br hydrogen bonds form between the –N(CH3)2, –CH2 and aromatic –CH groups of the cation and the bromide ions, forming a three-dimensional network, Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H27⋯O2i 0.89 (1) 1.87 (2) 2.646 (2) 146 (1)
O1—H28⋯Br2Aii 0.89 (1) 2.31 (2) 3.160 (2) 159 (1)
O1—H28⋯Br2Bii 0.89 (1) 2.90 (2) 3.720 (2) 155 (1)
O2—H29⋯Br1A 0.89 (1) 2.34 (2) 3.230 (2) 170 (1)
O2—H29⋯Br1B 0.89 (1) 2.75 (2) 3.637 (2) 173 (1)
O2—H30⋯Br2Aiii 0.90 (1) 2.39 (2) 3.139 (2) 141 (1)
O2—H30⋯Br2Biii 0.90 (1) 2.52 (2) 3.346 (2) 153 (1)
C2—H2B⋯Br2Bii 0.98 2.83 3.694 (2) 148
C3—H3C⋯Br2Aii 0.98 2.87 3.634 (2) 136
C4—H4C⋯Br1B 0.98 2.85 3.632 (2) 137
C6—H6A⋯Br1B 0.99 2.64 3.611 (2) 169
C13—H13A⋯Br2Aii 0.99 2.76 3.697 (2) 159
C13—H13A⋯Br2Bii 0.99 2.84 3.804 (2) 165
C14—H14B⋯Br2B 0.99 2.81 3.692 (2) 149
C21—H21⋯Br1Biv 0.95 2.90 3.544 (2) 126
C23—H23A⋯Br2B 0.98 2.73 3.525 (2) 138
C25—H25A⋯Br1Biv 0.98 2.87 3.770 (2) 153
C26—H26C⋯Br2Bii 0.98 2.84 3.641 (2) 139
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x, y+1, z; (iii) x+1, y, z; (iv) x-1, y, z.
[Figure 2]
Figure 2
O—H⋯O and O—H⋯Br hydrogen bonds (black dashed lines) in the crystal structure of the title compound (view along ac).
[Figure 3]
Figure 3
Mol­ecular packing of the title compound. The O—H⋯O, O—H⋯Br and C—H⋯Br hydrogen bonds are depicted by black dashed lines (view in projection down the b axis).

Synthesis and crystallization

The title compound was obtained by reaction of N,N,N′,N′-tetra­methyl-N′′-[2-(N′,N′,N′′,N′′-tetra­methyl­guanidino)eth­yl]guanidine (Tiritiris & Kantlehner, 2012[Tiritiris, I. & Kantlehner, W. (2012). Acta Cryst. E68, o2161.]) with two equivalents of benzyl bromide in aceto­nitrile at room temperature in nearly qu­anti­tative yield. After evaporation of the solvent, the crude product was recrystallized from a saturated aceto­nitrile-water solution. After several days at 273 K, colorless single crystals suitable for X-ray analysis were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Atoms Br1 and Br2 are each disordered over two sites (Br1A and Br1B; Br2A and Br2B) with refined occupancy ratios of 0.938 (3):0.062 (3) and 0.520 (9):0.480 (9), respectively. The atoms Br1A and Br1B were restrained to have similar anisotropic displacement parameters. The position of O2 is only half occupied, the site occupancy factor was refined and converged to 0.500 (6). The occupancy factors of H29 and H30 were fixed to 0.5 and their Uiso(H) set at 0.050 Å2.

Table 2
Experimental details

Crystal data
Chemical formula C26H42N62+·2Br·1.5H2O
Mr 625.50
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 12.1957 (9), 7.9654 (5), 30.4821 (18)
β (°) 97.934 (4)
V3) 2932.8 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.80
Crystal size (mm) 0.35 × 0.26 × 0.10
 
Data collection
Diffractometer Bruker–Nonius KappaCCD diffractometer
Absorption correction Multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])
Tmin, Tmax 0.455, 0.705
No. of measured, independent and observed [I > 2σ(I)] reflections 11867, 7000, 5093
Rint 0.034
(sin θ/λ)max−1) 0.664
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.088, 1.02
No. of reflections 7000
No. of parameters 362
No. of restraints 5
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.59, −0.51
Computer programs: COLLECT (Hooft, 2004[Hooft, R. W. W. (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.]), DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, D-53002 Bonn, Germany.]).

Structural data


Synthesis and crystallization top

The title compound was obtained by reaction of N,N,N',N'-tetra­methyl- N''-[2-(N',N',N'',N''- tetra­methyl­guanidino)ethyl]­guanidine (Tiritiris & Kantlehner, 2012) with two equivalents of benzyl bromide in aceto­nitrile at room temperature in nearly qu­anti­tative yield. After evaporation of the solvent, the crude product was recrystallized from a saturated aceto­nitrile-water solution. After several days at 273 K, colorless single crystals suitable for X-ray analysis were obtained.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1 The O-bound H atoms of the water molecules were located in a difference Fourier map and their bond lengths were restrained to 0.90 (1) Å using the DFIX command. The atoms Br1 and Br2 are disordered over two sets of sites (Br1A and Br1B; Br2A and Br2B) with refined occupancies of 0.938 (3):0.062 (3) and 0.520 (9):0.480 (9) respectively. The atoms Br1A and Br1B were restrained to have similar anisotropic displacement parameters. The position of O2 is only half occupied, the site occupancy factor was refined and converged to 0.500 (6). The occupancy factors of H29 and H30 were fixed to 0.5 and their Uiso(H) set at to 0.050 Å2.

Experimental top

The title compound was obtained by reaction of N,N,N',N'-tetramethyl- N''-[2-(N',N',N'',N''- tetramethylguanidino)ethyl]guanidine (Tiritiris & Kantlehner, 2012) with two equivalents of benzyl bromide in acetonitrile at room temperature in nearly quantitative yield. After evaporation of the solvent, the crude product was recrystallized from a saturated acetonitrile-water solution. After several days at 273 K, colorless single crystals suitable for X-ray analysis were obtained.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. Atoms Br1 and Br2 are each disordered over two sites (Br1A and Br1B; Br2A and Br2B) with refined occupancy ratios of 0.938 (3):0.062 (3) and 0.520 (9):0.480 (9), respectively. The atoms Br1A and Br1B were restrained to have similar anisotropic displacement parameters. The position of O2 is only half occupied, the site occupancy factor was refined and converged to 0.500 (6). The occupancy factors of H29 and H30 were fixed to 0.5 and their Uiso(H) set at 0.050 Å2.

Structure description top

By reaction of two equivalents of N,N,N',N'-tetramethylchloroformamidinium chloride (Tiritiris & Kantlehner, 2008a) with 1,2-diaminoethane, a bisguanidinium dichloride (Wittmann et al., 2000) has been obtained which, after treating with an aqueous sodium hydroxide solution, yields N,N,N',N'-tetramethyl- N''-[2-(N',N',N'',N''- tetramethylguanidino)ethyl]guanidine (Tiritiris & Kantlehner, 2012). By alkylation of the free nitrogen atoms, various bisguanidinium salts can be prepared. The hydrated title salt presented here is the first alkylated bisguanidinium derivative in our series to have been structurally characterized. The asymmetric unit of the structure contains one cation, two bromide anions and two water molecules (Fig. 1). Br1 and Br2 are each disordered over two sites with refined occupancies of 0.938 (3):0.062 (3) and 0.520 (9):0.480 (9) respectively·The position of one water molecule (O1) is fully occupied while that of the second water solvate (O2) has a refined occupancy of [0.500 (6)], yielding a 1.5-hydrate salt. Prominent bond parameters in the bisguanidinium cation are: C1—N1 = 1.336 (3), C1—N2 = 1.336 (3), C1—N3 = 1.349 (3) Å and C15—N4 = 1.349 (3), C15—N5 = 1.339 (3), C15—N6 = 1.339 (3) Å, indicating partial double-bond character for all. The N—C1—N and N—C15—N angles range from 119.4 (2)° to 120.4 (2)°, indicating that the carbon centres C1 and C15 adopt nearly ideal trigonal–planar environments. The positive charges of the dication are completely delocalized in both CN3 planes. The crystal structure analysis reveals that the C—N and C—C bond lengths in the dication are in very good agreement with the values obtained for the diprotonated salt 1,2-bis-[2N'-(1,1,3,3-tetramethylguanidinium)]ethane dichloride tetrahydrate (Wittmann et al., 2000). The crystal structure of the related N,N,N',N'-tetramethyl-N''- [2-(N',N',N'',N''- tetramethylguanidino)ethyl]guanidine, has also been reported (Tiritiris & Kantlehner, 2012).

The crystal structure is stabilized by a network of O—H···O, O—H···Br and C—H···Br hydrogen bonds, Table 1. O—H···O hydrogen bonds between the water molecules and O—H···Br hydrogen bonds between water molecules and bromide ions are observed, Fig. 2. In addition, C—H···Br hydrogen bonds form between the –N(CH3)2, –CH2 and aromatic –CH groups of the cation and the bromide ions, forming a three-dimensional network, Fig. 3.

Computing details top

Data collection: COLLECT (Hooft, 2004); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids at the 50% probability level. All hydrogen atoms are omitted for the sake of clarity. Only the disordered bromine atoms with the major occupancy are shown.
[Figure 2] Fig. 2. O—H···O and O—H···Br hydrogen bonds (black dashed lines) in the crystal structure of the title compound (view along ac).
[Figure 3] Fig. 3. Molecular packing of the title compound. The O—H···O, O—H···Br and C—H···Br hydrogen bonds are depicted by black dashed lines (view along ac).
N-Benzyl-N-[2-(N-benzyl-N',N',N'',N''-tetramethylguanidiniumyl)ethyl]-N',N',N'',N''-tetramethylguanidinium dibromide 1.5-hydrate top
Crystal data top
C26H42N62+·2Br·1.5H2OF(000) = 1300
Mr = 625.50Dx = 1.417 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.1957 (9) ÅCell parameters from 5843 reflections
b = 7.9654 (5) Åθ = 0.4–28.3°
c = 30.4821 (18) ŵ = 2.80 mm1
β = 97.934 (4)°T = 100 K
V = 2932.8 (3) Å3Block, colorless
Z = 40.35 × 0.26 × 0.10 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
7000 independent reflections
Radiation source: fine-focus sealed tube5093 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ scans, and ω scansθmax = 28.1°, θmin = 1.7°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1616
Tmin = 0.455, Tmax = 0.705k = 109
11867 measured reflectionsl = 4040
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: mixed
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0334P)2 + 1.9458P]
where P = (Fo2 + 2Fc2)/3
7000 reflections(Δ/σ)max < 0.001
362 parametersΔρmax = 0.59 e Å3
5 restraintsΔρmin = 0.51 e Å3
Crystal data top
C26H42N62+·2Br·1.5H2OV = 2932.8 (3) Å3
Mr = 625.50Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.1957 (9) ŵ = 2.80 mm1
b = 7.9654 (5) ÅT = 100 K
c = 30.4821 (18) Å0.35 × 0.26 × 0.10 mm
β = 97.934 (4)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
7000 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
5093 reflections with I > 2σ(I)
Tmin = 0.455, Tmax = 0.705Rint = 0.034
11867 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0405 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.59 e Å3
7000 reflectionsΔρmin = 0.51 e Å3
362 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br1A0.61652 (3)0.32199 (15)0.09074 (2)0.02821 (18)0.938 (3)
Br1B0.6107 (5)0.3919 (18)0.0962 (2)0.02821 (18)0.062 (3)
Br2A0.08222 (13)0.1353 (4)0.08416 (14)0.0282 (5)0.520 (9)
Br2B0.08977 (8)0.1763 (3)0.10105 (14)0.0240 (5)0.480 (9)
C10.35370 (16)0.7762 (3)0.08670 (6)0.0131 (5)
N10.36249 (14)0.9429 (2)0.09049 (6)0.0146 (4)
N20.39307 (14)0.6969 (2)0.05355 (6)0.0152 (4)
N30.30713 (14)0.6861 (2)0.11675 (6)0.0131 (4)
C20.37669 (19)1.0285 (3)0.13337 (7)0.0187 (5)
H2A0.39280.94560.15710.028*
H2B0.30861.08900.13710.028*
H2C0.43821.10840.13460.028*
C30.3532 (2)1.0538 (3)0.05186 (7)0.0224 (5)
H3A0.33540.98710.02480.034*
H3B0.42361.11230.05120.034*
H3C0.29441.13630.05370.034*
C40.49080 (18)0.7544 (3)0.03505 (7)0.0234 (5)
H4A0.52150.85370.05130.035*
H4B0.47000.78300.00370.035*
H4C0.54650.66490.03770.035*
C50.34310 (18)0.5430 (3)0.03370 (7)0.0192 (5)
H5A0.39050.44700.04350.029*
H5B0.33540.55170.00130.029*
H5C0.26990.52710.04290.029*
C60.35329 (18)0.5204 (3)0.13192 (7)0.0156 (5)
H6A0.42440.50160.12050.019*
H6B0.30140.43020.12030.019*
C70.37139 (17)0.5150 (3)0.18194 (7)0.0139 (5)
C80.30142 (17)0.4218 (3)0.20481 (7)0.0148 (5)
H80.24530.35430.18880.018*
C90.31251 (18)0.4262 (3)0.25082 (7)0.0166 (5)
H90.26460.36130.26610.020*
C100.39372 (18)0.5255 (3)0.27427 (7)0.0178 (5)
H100.40000.53160.30560.021*
C110.46563 (19)0.6157 (3)0.25182 (8)0.0209 (5)
H110.52240.68180.26780.025*
C120.45473 (18)0.6095 (3)0.20599 (7)0.0186 (5)
H120.50490.67060.19080.022*
C130.20801 (17)0.7456 (3)0.13420 (7)0.0137 (4)
H13A0.19280.86350.12510.016*
H13B0.22040.74140.16700.016*
C140.10851 (17)0.6355 (3)0.11665 (7)0.0187 (5)
H14A0.09050.65120.08420.022*
H14B0.12780.51600.12230.022*
C150.08422 (18)0.7306 (3)0.11457 (7)0.0202 (5)
N40.01152 (14)0.6780 (2)0.13802 (5)0.0158 (4)
N50.11477 (16)0.6733 (3)0.07340 (6)0.0301 (5)
N60.15023 (15)0.8373 (3)0.13257 (6)0.0196 (4)
C160.02466 (18)0.6553 (3)0.18648 (7)0.0180 (5)
H16A0.04360.76560.20050.022*
H16B0.08860.57990.19500.022*
C170.07320 (17)0.5853 (3)0.20581 (7)0.0156 (5)
C180.08041 (18)0.6212 (3)0.24996 (7)0.0173 (5)
H180.02770.69430.26590.021*
C190.16346 (18)0.5518 (3)0.27109 (7)0.0195 (5)
H190.16630.57510.30150.023*
C200.24237 (19)0.4481 (3)0.24770 (7)0.0230 (5)
H200.30000.40160.26190.028*
C210.23666 (19)0.4129 (3)0.20374 (8)0.0253 (6)
H210.29100.34280.18760.030*
C220.15173 (19)0.4794 (3)0.18294 (7)0.0214 (5)
H220.14740.45230.15290.026*
C230.0885 (2)0.5048 (4)0.05929 (9)0.0488 (9)
H23A0.05230.44140.08480.073*
H23B0.03860.51230.03680.073*
H23C0.15680.44750.04680.073*
C240.1789 (2)0.7764 (5)0.03946 (8)0.0523 (10)
H24A0.25510.73470.03400.078*
H24B0.14560.77050.01200.078*
H24C0.17890.89310.04960.078*
C250.27108 (18)0.8224 (3)0.12385 (8)0.0260 (6)
H25A0.29100.71960.10690.039*
H25B0.30180.91990.10680.039*
H25C0.30120.81760.15200.039*
C260.10728 (19)0.9705 (3)0.16283 (8)0.0248 (6)
H26A0.11060.93500.19340.037*
H26B0.15201.07200.15640.037*
H26C0.03030.99430.15910.037*
O10.1101 (2)0.8214 (4)0.02327 (11)0.0675 (7)
H270.103 (4)0.843 (5)0.0055 (4)0.091 (17)*
H280.088 (3)0.916 (3)0.0345 (12)0.070 (14)*
O20.8250 (3)0.1418 (5)0.05550 (12)0.0313 (13)0.500 (6)
H290.773 (3)0.198 (7)0.0678 (15)0.050*0.5
H300.885 (2)0.150 (7)0.0762 (13)0.050*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br1A0.01796 (13)0.0464 (5)0.01941 (14)0.00219 (17)0.00051 (10)0.0025 (2)
Br1B0.01796 (13)0.0464 (5)0.01941 (14)0.00219 (17)0.00051 (10)0.0025 (2)
Br2A0.0256 (3)0.0281 (6)0.0315 (10)0.0112 (3)0.0065 (5)0.0102 (7)
Br2B0.0177 (3)0.0254 (6)0.0284 (10)0.0038 (3)0.0014 (4)0.0068 (7)
C10.0094 (10)0.0189 (12)0.0102 (10)0.0001 (9)0.0013 (8)0.0041 (9)
N10.0157 (9)0.0169 (10)0.0111 (8)0.0017 (8)0.0012 (7)0.0026 (8)
N20.0120 (9)0.0228 (11)0.0114 (8)0.0018 (8)0.0037 (7)0.0028 (8)
N30.0115 (9)0.0156 (10)0.0129 (8)0.0041 (8)0.0047 (7)0.0026 (8)
C20.0171 (11)0.0213 (13)0.0166 (11)0.0016 (10)0.0017 (9)0.0017 (10)
C30.0254 (13)0.0223 (13)0.0188 (12)0.0016 (11)0.0006 (10)0.0084 (10)
C40.0167 (11)0.0382 (15)0.0168 (11)0.0045 (11)0.0070 (9)0.0015 (11)
C50.0169 (11)0.0246 (13)0.0159 (11)0.0004 (10)0.0018 (9)0.0065 (10)
C60.0132 (10)0.0173 (12)0.0169 (11)0.0019 (9)0.0046 (9)0.0010 (9)
C70.0112 (10)0.0140 (11)0.0160 (10)0.0054 (9)0.0004 (8)0.0008 (9)
C80.0125 (10)0.0133 (12)0.0183 (11)0.0011 (9)0.0010 (9)0.0010 (9)
C90.0137 (11)0.0186 (12)0.0182 (11)0.0014 (9)0.0049 (9)0.0040 (9)
C100.0180 (11)0.0209 (13)0.0141 (10)0.0036 (10)0.0006 (9)0.0008 (10)
C110.0171 (11)0.0221 (13)0.0215 (11)0.0050 (10)0.0044 (9)0.0034 (10)
C120.0138 (11)0.0200 (12)0.0219 (12)0.0010 (10)0.0024 (9)0.0073 (10)
C130.0133 (10)0.0160 (11)0.0126 (10)0.0034 (9)0.0043 (8)0.0026 (9)
C140.0124 (10)0.0281 (14)0.0156 (11)0.0027 (10)0.0025 (9)0.0044 (10)
C150.0143 (11)0.0340 (14)0.0123 (10)0.0045 (11)0.0019 (9)0.0025 (10)
N40.0100 (8)0.0270 (11)0.0105 (8)0.0031 (8)0.0019 (7)0.0004 (8)
N50.0158 (10)0.0607 (16)0.0127 (9)0.0124 (10)0.0019 (8)0.0083 (10)
N60.0116 (9)0.0318 (12)0.0153 (9)0.0038 (9)0.0019 (7)0.0015 (9)
C160.0119 (10)0.0287 (14)0.0125 (10)0.0006 (10)0.0013 (8)0.0011 (10)
C170.0117 (10)0.0179 (12)0.0170 (11)0.0039 (9)0.0011 (8)0.0030 (9)
C180.0158 (11)0.0178 (12)0.0175 (11)0.0019 (10)0.0004 (9)0.0015 (10)
C190.0210 (12)0.0209 (13)0.0173 (11)0.0051 (10)0.0056 (9)0.0031 (10)
C200.0173 (12)0.0276 (14)0.0246 (12)0.0005 (11)0.0044 (10)0.0110 (11)
C210.0183 (12)0.0276 (14)0.0279 (13)0.0070 (11)0.0042 (10)0.0046 (11)
C220.0203 (12)0.0285 (14)0.0144 (11)0.0029 (11)0.0012 (9)0.0001 (10)
C230.0229 (14)0.087 (3)0.0344 (16)0.0087 (16)0.0034 (12)0.0379 (17)
C240.0231 (14)0.118 (3)0.0150 (12)0.0198 (18)0.0010 (11)0.0095 (16)
C250.0117 (11)0.0438 (17)0.0227 (12)0.0056 (11)0.0038 (9)0.0004 (12)
C260.0212 (12)0.0340 (15)0.0202 (12)0.0023 (11)0.0064 (10)0.0007 (11)
O10.0614 (17)0.0511 (18)0.090 (2)0.0120 (14)0.0107 (16)0.0147 (17)
O20.027 (2)0.029 (2)0.036 (2)0.0050 (17)0.0023 (16)0.0022 (17)
Geometric parameters (Å, º) top
Br1A—Br1B0.588 (14)C14—H14A0.9900
Br2A—Br2B0.6061 (8)C14—H14B0.9900
C1—N11.336 (3)C15—N41.349 (3)
C1—N21.336 (3)C15—N51.339 (3)
C1—N31.349 (3)C15—N61.339 (3)
N1—C21.463 (3)N4—C161.475 (3)
N1—C31.464 (3)N5—C231.459 (4)
N2—C41.461 (3)N5—C241.460 (3)
N2—C51.463 (3)N6—C261.455 (3)
N3—C131.465 (3)N6—C251.466 (3)
N3—C61.484 (3)C16—C171.509 (3)
C2—H2A0.9800C16—H16A0.9900
C2—H2B0.9800C16—H16B0.9900
C2—H2C0.9800C17—C221.389 (3)
C3—H3A0.9800C17—C181.390 (3)
C3—H3B0.9800C18—C191.388 (3)
C3—H3C0.9800C18—H180.9500
C4—H4A0.9800C19—C201.388 (3)
C4—H4B0.9800C19—H190.9500
C4—H4C0.9800C20—C211.380 (3)
C5—H5A0.9800C20—H200.9500
C5—H5B0.9800C21—C221.392 (3)
C5—H5C0.9800C21—H210.9500
C6—C71.511 (3)C22—H220.9500
C6—H6A0.9900C23—H23A0.9800
C6—H6B0.9900C23—H23B0.9800
C7—C81.389 (3)C23—H23C0.9800
C7—C121.389 (3)C24—H24A0.9800
C8—C91.391 (3)C24—H24B0.9800
C8—H80.9500C24—H24C0.9800
C9—C101.386 (3)C25—H25A0.9800
C9—H90.9500C25—H25B0.9800
C10—C111.385 (3)C25—H25C0.9800
C10—H100.9500C26—H26A0.9800
C11—C121.386 (3)C26—H26B0.9800
C11—H110.9500C26—H26C0.9800
C12—H120.9500O1—H270.89 (1)
C13—C141.532 (3)O1—H280.89 (1)
C13—H13A0.9900O2—H290.89 (1)
C13—H13B0.9900O2—H300.90 (1)
C14—N41.467 (3)
N2—C1—N1120.15 (19)N4—C14—H14A109.4
N2—C1—N3119.4 (2)C13—C14—H14A109.4
N1—C1—N3120.40 (19)N4—C14—H14B109.4
C1—N1—C2122.59 (18)C13—C14—H14B109.4
C1—N1—C3122.27 (18)H14A—C14—H14B108.0
C2—N1—C3115.08 (18)N5—C15—N6119.7 (2)
C1—N2—C4122.81 (19)N5—C15—N4120.0 (2)
C1—N2—C5122.44 (18)N6—C15—N4120.4 (2)
C4—N2—C5114.73 (18)C15—N4—C14121.91 (18)
C1—N3—C13121.39 (18)C15—N4—C16122.37 (18)
C1—N3—C6120.50 (17)C14—N4—C16115.70 (16)
C13—N3—C6118.08 (17)C15—N5—C23123.1 (2)
N1—C2—H2A109.5C15—N5—C24121.7 (2)
N1—C2—H2B109.5C23—N5—C24115.2 (2)
H2A—C2—H2B109.5C15—N6—C26122.57 (19)
N1—C2—H2C109.5C15—N6—C25121.4 (2)
H2A—C2—H2C109.5C26—N6—C25116.04 (19)
H2B—C2—H2C109.5N4—C16—C17117.00 (17)
N1—C3—H3A109.5N4—C16—H16A108.0
N1—C3—H3B109.5C17—C16—H16A108.0
H3A—C3—H3B109.5N4—C16—H16B108.0
N1—C3—H3C109.5C17—C16—H16B108.0
H3A—C3—H3C109.5H16A—C16—H16B107.3
H3B—C3—H3C109.5C22—C17—C18118.6 (2)
N2—C4—H4A109.5C22—C17—C16123.8 (2)
N2—C4—H4B109.5C18—C17—C16117.45 (19)
H4A—C4—H4B109.5C19—C18—C17121.0 (2)
N2—C4—H4C109.5C19—C18—H18119.5
H4A—C4—H4C109.5C17—C18—H18119.5
H4B—C4—H4C109.5C20—C19—C18119.8 (2)
N2—C5—H5A109.5C20—C19—H19120.1
N2—C5—H5B109.5C18—C19—H19120.1
H5A—C5—H5B109.5C21—C20—C19119.7 (2)
N2—C5—H5C109.5C21—C20—H20120.2
H5A—C5—H5C109.5C19—C20—H20120.2
H5B—C5—H5C109.5C20—C21—C22120.3 (2)
N3—C6—C7109.64 (17)C20—C21—H21119.8
N3—C6—H6A109.7C22—C21—H21119.8
C7—C6—H6A109.7C17—C22—C21120.5 (2)
N3—C6—H6B109.7C17—C22—H22119.8
C7—C6—H6B109.7C21—C22—H22119.8
H6A—C6—H6B108.2N5—C23—H23A109.5
C8—C7—C12118.7 (2)N5—C23—H23B109.5
C8—C7—C6120.48 (19)H23A—C23—H23B109.5
C12—C7—C6120.8 (2)N5—C23—H23C109.5
C7—C8—C9120.8 (2)H23A—C23—H23C109.5
C7—C8—H8119.6H23B—C23—H23C109.5
C9—C8—H8119.6N5—C24—H24A109.5
C10—C9—C8119.8 (2)N5—C24—H24B109.5
C10—C9—H9120.1H24A—C24—H24B109.5
C8—C9—H9120.1N5—C24—H24C109.5
C11—C10—C9119.8 (2)H24A—C24—H24C109.5
C11—C10—H10120.1H24B—C24—H24C109.5
C9—C10—H10120.1N6—C25—H25A109.5
C10—C11—C12120.0 (2)N6—C25—H25B109.5
C10—C11—H11120.0H25A—C25—H25B109.5
C12—C11—H11120.0N6—C25—H25C109.5
C11—C12—C7120.8 (2)H25A—C25—H25C109.5
C11—C12—H12119.6H25B—C25—H25C109.5
C7—C12—H12119.6N6—C26—H26A109.5
N3—C13—C14109.99 (18)N6—C26—H26B109.5
N3—C13—H13A109.7H26A—C26—H26B109.5
C14—C13—H13A109.7N6—C26—H26C109.5
N3—C13—H13B109.7H26A—C26—H26C109.5
C14—C13—H13B109.7H26B—C26—H26C109.5
H13A—C13—H13B108.2H27—O1—H28103 (4)
N4—C14—C13111.17 (18)H29—O2—H30102.8 (15)
N2—C1—N1—C2147.57 (19)N5—C15—N4—C1432.3 (3)
N3—C1—N1—C231.1 (3)N6—C15—N4—C14149.1 (2)
N2—C1—N1—C335.5 (3)N5—C15—N4—C16146.1 (2)
N3—C1—N1—C3145.9 (2)N6—C15—N4—C1632.5 (3)
N1—C1—N2—C432.9 (3)C13—C14—N4—C15120.6 (2)
N3—C1—N2—C4145.7 (2)C13—C14—N4—C1661.0 (3)
N1—C1—N2—C5148.7 (2)N6—C15—N5—C23146.0 (2)
N3—C1—N2—C532.6 (3)N4—C15—N5—C2332.6 (4)
N2—C1—N3—C13140.3 (2)N6—C15—N5—C2433.1 (4)
N1—C1—N3—C1341.0 (3)N4—C15—N5—C24148.3 (2)
N2—C1—N3—C637.6 (3)N5—C15—N6—C26145.8 (2)
N1—C1—N3—C6141.07 (19)N4—C15—N6—C2635.6 (3)
C1—N3—C6—C7129.2 (2)N5—C15—N6—C2536.3 (3)
C13—N3—C6—C752.8 (2)N4—C15—N6—C25142.3 (2)
N3—C6—C7—C8106.4 (2)C15—N4—C16—C1737.8 (3)
N3—C6—C7—C1270.5 (2)C14—N4—C16—C17140.7 (2)
C12—C7—C8—C91.7 (3)N4—C16—C17—C2228.2 (3)
C6—C7—C8—C9175.2 (2)N4—C16—C17—C18156.0 (2)
C7—C8—C9—C100.5 (3)C22—C17—C18—C190.7 (3)
C8—C9—C10—C112.0 (3)C16—C17—C18—C19175.4 (2)
C9—C10—C11—C121.4 (4)C17—C18—C19—C201.6 (3)
C10—C11—C12—C70.8 (4)C18—C19—C20—C211.0 (3)
C8—C7—C12—C112.3 (3)C19—C20—C21—C220.6 (4)
C6—C7—C12—C11174.6 (2)C18—C17—C22—C210.9 (3)
C1—N3—C13—C14110.1 (2)C16—C17—C22—C21176.7 (2)
C6—N3—C13—C1467.8 (2)C20—C21—C22—C171.5 (4)
N3—C13—C14—N4172.62 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H27···O2i0.89 (1)1.87 (2)2.646 (2)146 (1)
O1—H28···Br2Aii0.89 (1)2.31 (2)3.160 (2)159 (1)
O1—H28···Br2Bii0.89 (1)2.90 (2)3.720 (2)155 (1)
O2—H29···Br1A0.89 (1)2.34 (2)3.230 (2)170 (1)
O2—H29···Br1B0.89 (1)2.75 (2)3.637 (2)173 (1)
O2—H30···Br2Aiii0.90 (1)2.39 (2)3.139 (2)141 (1)
O2—H30···Br2Biii0.90 (1)2.52 (2)3.346 (2)153 (1)
C2—H2B···Br2Bii0.982.833.694 (2)148
C3—H3C···Br2Aii0.982.873.634 (2)136
C4—H4C···Br1B0.982.853.632 (2)137
C6—H6A···Br1B0.992.643.611 (2)169
C13—H13A···Br2Aii0.992.763.697 (2)159
C13—H13A···Br2Bii0.992.843.804 (2)165
C14—H14B···Br2B0.992.813.692 (2)149
C21—H21···Br1Biv0.952.903.544 (2)126
C23—H23A···Br2B0.982.733.525 (2)138
C25—H25A···Br1Biv0.982.873.770 (2)153
C26—H26C···Br2Bii0.982.843.641 (2)139
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x+1, y, z; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H27···O2i0.89 (1)1.87 (2)2.646 (2)146 (1)
O1—H28···Br2Aii0.89 (1)2.31 (2)3.160 (2)159 (1)
O1—H28···Br2Bii0.89 (1)2.90 (2)3.720 (2)155 (1)
O2—H29···Br1A0.89 (1)2.34 (2)3.230 (2)170 (1)
O2—H29···Br1B0.89 (1)2.75 (2)3.637 (2)173 (1)
O2—H30···Br2Aiii0.90 (1)2.39 (2)3.139 (2)141 (1)
O2—H30···Br2Biii0.90 (1)2.52 (2)3.346 (2)153 (1)
C2—H2B···Br2Bii0.982.833.694 (2)148
C3—H3C···Br2Aii0.982.873.634 (2)136
C4—H4C···Br1B0.982.853.632 (2)137
C6—H6A···Br1B0.992.643.611 (2)169
C13—H13A···Br2Aii0.992.763.697 (2)159
C13—H13A···Br2Bii0.992.843.804 (2)165
C14—H14B···Br2B0.992.813.692 (2)149
C21—H21···Br1Biv0.952.903.544 (2)126
C23—H23A···Br2B0.982.733.525 (2)138
C25—H25A···Br1Biv0.982.873.770 (2)153
C26—H26C···Br2Bii0.982.843.641 (2)139
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x+1, y, z; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formulaC26H42N62+·2Br·1.5H2O
Mr625.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.1957 (9), 7.9654 (5), 30.4821 (18)
β (°) 97.934 (4)
V3)2932.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.80
Crystal size (mm)0.35 × 0.26 × 0.10
Data collection
DiffractometerBruker–Nonius KappaCCD
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.455, 0.705
No. of measured, independent and
observed [I > 2σ(I)] reflections
11867, 7000, 5093
Rint0.034
(sin θ/λ)max1)0.664
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.088, 1.02
No. of reflections7000
No. of parameters362
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.59, 0.51

Computer programs: COLLECT (Hooft, 2004), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg & Putz, 2005).

 

Acknowledgements

The authors thank Dr F. Lissner (Institut für Anorganische Chemie, Universität Stuttgart) for measuring of the diffraction data.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, D-53002 Bonn, Germany.  Google Scholar
First citationHooft, R. W. W. (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTiritiris, I. & Kantlehner, W. (2008a). Z. Kristallogr. 223, 345–346.  CAS Google Scholar
First citationTiritiris, I. & Kantlehner, W. (2012). Acta Cryst. E68, o2161.  CSD CrossRef IUCr Journals Google Scholar
First citationWittmann, H., Schorm, A. & Sundermeyer, J. (2000). Z. Anorg. Allg. Chem. 626, 1583–1590.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds