metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

μ-Sulfido-bis­{[1,1′-bis­(di­phenylphosphanyl)ferrocene-κ2P,P′]gold} methanol monosolvate

aDepartment of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
*Correspondence e-mail: kojimat15@chem.sci.osaka-u.ac.jp

Edited by J. Simpson, University of Otago, New Zealand (Received 26 December 2015; accepted 30 December 2015; online 12 January 2016)

The gold complex in title compound, [Au2Fe(C17H14P)2S]·CH3OH, (I)·CH3OH, is closely similar to the previously reported (I)·2CHCl3, reported in the literature [Canales et al. (1996[Canales, F., Gimeno, M. C., Laguna, A. & Jones, P. G. (1996). J. Am. Chem. Soc. 118, 4839-4845.]). J. Am. Chem. Soc. 118, 4839–4845]. Both crystallize in the monoclinic crystal systems but the space groups differ, P21/n for (I)·CH3OH compared to P2/n for (I)·2CHCl3. The two structures can be considered as polymorphs due to solvation differences. In (I)·CH3OH, all atoms of the methanol solvent mol­ecule are disordered over two sets of sites with an occupancy ratio of 0.822 (12):0.178 (12). The crystal structure features O—H⋯S, C—H⋯S hydrogen bonds and C—H⋯π inter­actions that stack the complex mol­ecules along the a-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The asymmetric unit in the title crystal structure contains one [Au2(dppf)(S)] complex mol­ecule, (I)·CH3OH, dppf = 1,1′-bis­(di­phenyl­phosphino)ferrocene) and a methanol solvate mol­ecule, all atoms of which are disordered over two sets of sites with a 0.822 (12):0.178 (12) occupancy ratio, Fig. 1[link]. Both AuI cations adopt a slightly distorted linear coordination geometry, each binding separate P atoms from the dppf ligand and bridged by the sulfido anion, leading to a close intra­molecular Au—Au contact of 2.8857 (3) Å, similar to that observed in the closely related (I)·2CHCl3 (Canales et al., 1996[Canales, F., Gimeno, M. C., Laguna, A. & Jones, P. G. (1996). J. Am. Chem. Soc. 118, 4839-4845.]). The Au—S and Au—P distances, Table 1[link], are also similar to those in the earlier report. The space groups of these two structures differ, P21/n for (I)·CH3OH and P2/n for (I)·2CHCl3. The two structures can be considered as polymorphs due to solvation differences which will significantly affect the crystal packing. Apart from the polymorph, only two examples of digoldsufide systems similarly bridged by bidentate di­phenyl­phosphino ligands, (μ2-2,5-bis­(di­phenyl­phosphinometh­yl)thio­phene)(μ2-sulfido)digold(I) (Chen et al., 1998[Chen, B.-L., Mok, K.-F. & Ng, S.-C. (1998). J. Chem. Soc. Dalton Trans. pp. 4035-4042.]) and {μ2-1,4-bis­[(di;phenyl­phosphino)meth­yl]benzene}(μ2-sulfido)­digold(I) chloro­form solvate (Hofreiter et al., 1995[Hofreiter, S., Paul, M. & Schmidbaur, H. (1995). Chem. Ber. 128, 901-905.]) are found in the Cambridge Structural Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]).

Table 1
Selected geometric parameters (Å, °)

Au1—P1 2.2524 (12) Au2—S1 2.2988 (12)
Au1—S1 2.3036 (12) Au1—Au2 2.8857 (3)
Au2—P2 2.2452 (12)    
       
S1—Au1—Au2 51.10 (3) P2—Au2—S1 172.59 (4)
S1—Au2—Au1 51.24 (3) P1—Au1—Au2 122.96 (3)
P1—Au1—S1 171.06 (4) P2—Au2—Au1 122.54 (3)
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as spheres of arbitrary radii.

In the crystal structure, an O—H⋯S hydrogen bond links the major disorder component of the methanol mol­ecule to the complex mol­ecule in the asymmetric unit, Table 2[link]. A C—H⋯S hydrogen bond and two edge-to-face C—H⋯π contacts link adjacent complex mol­ecules, stacking them along the a-axis direction, Fig. 2[link]. For the polymorphic structure, which lies about a twofold rotation axis, C—H⋯S and C—H⋯Cl hydrogen bonds, a weaker C—H⋯π contact and an inter­molecular Cl⋯Cl halogen bond stabilize the structure.

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C7–C11 and C12–C16 phenyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯S1 0.84 2.63 3.465 (6) 170
C3—H3⋯S1i 0.95 2.79 3.734 (5) 175
C27—H27⋯Cg(1)ii 0.95 2.83 3.659 (6) 146
C32—H32⋯Cg(2)iii 0.95 2.88 3.717 (6) 147
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Overall packing for the title compound viewed approximately along the b axis.

Synthesis and crystallization

To a solution of [1,1′-bis(diphenylphosphino)ferrocene]bis(D-penicillaminato)digold (15.0 mg, 15.8 mmol) in 3 ml of methanol was added 20 µL (0.02 mmol) of an aqueous sodium hydrogen sulfide solution (1 M). The solution was allowed to stand at room temperature for 1 h when small qu­anti­ties of yellow needle-like crystals of [Au2(C34H28FeP2)(S)]·CH3OH were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All atoms of the methanol solvate mol­ecules were disordered over two sets ofsites. Their occupancies were refined to sum to unity and converged at 0.822 (12) and 0.178 (12), respectively. Ten reflections below θmin = 3.227, with Fo <<< Fc were omitted as they were likely to have been obscured by the beamstop.

Table 3
Experimental details

Crystal data
Chemical formula [Au2Fe(C17H14P)2S]·CH4O
Mr 1012.39
Crystal system, space group Monoclinic, P21/n
Temperature (K) 200
a, b, c (Å) 13.7434 (13), 12.6277 (13), 18.7630 (18)
β (°) 98.352 (7)
V3) 3221.7 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 9.72
Crystal size (mm) 0.30 × 0.10 × 0.01
 
Data collection
Diffractometer Rigaku VariMax RAPID diffractometer
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.572, 0.995
No. of measured, independent and observed [I > 2σ(I)] reflections 26469, 6105, 5445
Rint 0.045
(sin θ/λ)max−1) 0.610
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.052, 1.13
No. of reflections 6105
No. of parameters 392
No. of restraints 8
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.03, −0.55
Computer programs: PROCESS-AUTO (Rigaku, 2000[Rigaku (2000). PROCESS-AUTO. Rigaku Corporation, Tolyo, Japan.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Putz & Brandenburg, 2011[Putz & Brandenburg (2011). DIAMOND. Crystal Impact, Bonn, Germany.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Synthesis and crystallization top

To a solution of (1,1'-bis­(di­phenyl­phosphino)ferrocene)digold) (15.0 mg, 15.8 mmol) in 3 ml of methanol was added 20 µL (0.02 mmol) of an aqueous sodium hydrogen sulfide solution (1 M). The solution was allowed to stand at room temperature for 1 h when small qu­anti­ties of yellow needle-like crystals of [Au2(C34H28FeP2)(S)]·CH3OH were obtained.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. A l l atoms of the methanol solvate molecules were disordered over two sites. Their occupancies were refined to sum to unity and converged at 0.822 (12) and 0.178 (12) respectively. Ten reflections below theta min = 3.227, with Fo <<< Fc were omitted as they were likely to have been obscured by the beamstop.

Experimental top

To a solution of {1,1'-bis[diphenylphosphino)ferrocene]digold} (15.0 mg, 15.8 mmol) in 3 ml of methanol was added 20 µL (0.02 mmol) of an aqueous sodium hydrogen sulfide solution (1 M). The solution was allowed to stand at room temperature for 1 h when small quantities of yellow needle-like crystals of [Au2(C34H28FeP2)(S)]·CH3OH were obtained.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 3. A l l atoms of the methanol solvate molecules were disordered over two sets ofsites. Their occupancies were refined to sum to unity and converged at 0.822 (12) and 0.178 (12) respectively. Ten reflections below θmin = 3.227, with Fo <<< Fc were omitted as they were likely to have been obscured by the beamstop.

Structure description top

The asymmetric unit in the title crystal structure contains one [Au2(dppf)(S)] complex molecule, (I)·CH3OH, dppf = 1,1'-bis(diphenylphosphino)ferrocene) and a methanol solvate molecule, all atoms of which are disordered over two sets of sites with a 0.822 (12):0.178 (12) occupancy ratio, Fig. 1. Both AuI cations adopt a slightly distorted linear coordination geometry, each binding separate P atoms from the dppf ligand and bridged by the sulfido anion, leading to a close intramolecular Au—Au contact of 2.8857 (3) Å, similar to that observed in the closely related (I)·2CHCl3 (Canales et al., 1996). The Au—S and Au—P distances, Table 1, are also similar to those in the earlier report. Although the space groups of these two structures differ, P21/n for (I)·CH3OH and P2/n for (I)·2CHCl3. The two structures can be considered as pseudopolymorphs due to solvation differences which will significantly affect the crystal packing. Apart from the psudopolymorph, only two examples of digoldsufide systems similarly bridged by bidentate diphenylphosphino ligands, (µ2-2,5-bis(diphenylphosphinomethyl)thiophene)(µ2-sulfido)digold(I) (Chen et al., 1998) and {µ2-1,4-bis[(diphenylphosphino)methyl]benzene}(µ2-sulfido)digold(I) chloroform solvate (Hofreiter et al., 1995) are found in the Cambridge Structural Database, (Groom & Allen, 2014).

In the crystal structure, an O—H···S hydrogen bond links the major disorder component of the methanol molecule to the complex molecule in the asymmetric unit, Table 2. A C—H···S hydrogen bond and two edge-to-face C—H···π contacts link adjacent complex molecules, stacking them along the a-axis direction, Fig. 2. For the psudopolymorphic structure, which lies about a twofold rotation axis, C—H···S and C—H···Cl hydrogen bonds, a weaker C—H···π contact and an intermolecular Cl···Cl halogen bond stabilize the structure.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2000); cell refinement: PROCESS-AUTO (Rigaku, 2000); data reduction: PROCESS-AUTO (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Putz & Brandenburg, 2011); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as spheres of arbitrary radii.
[Figure 2] Fig. 2. Overall packing for the title compound viewed along the a axis.
µ-Sulfido-bis{[1,1'-bis(diphenylphosphanyl)ferrocene-κP,P']gold} methanol monosolvate top
Crystal data top
[Au2Fe(C17H14P)2S]·CH4OF(000) = 1920
Mr = 1012.39Dx = 2.087 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
a = 13.7434 (13) ÅCell parameters from 8771 reflections
b = 12.6277 (13) Åθ = 3.0–27.5°
c = 18.7630 (18) ŵ = 9.72 mm1
β = 98.352 (7)°T = 200 K
V = 3221.7 (5) Å3Needle, yellow
Z = 40.30 × 0.10 × 0.01 mm
Data collection top
Rigaku VariMax RAPID
diffractometer
5445 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
ω scansθmax = 25.7°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1616
Tmin = 0.572, Tmax = 0.995k = 1515
26469 measured reflectionsl = 2222
6105 independent reflections
Refinement top
Refinement on F28 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0208P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.001
6105 reflectionsΔρmax = 1.03 e Å3
392 parametersΔρmin = 0.55 e Å3
Crystal data top
[Au2Fe(C17H14P)2S]·CH4OV = 3221.7 (5) Å3
Mr = 1012.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.7434 (13) ŵ = 9.72 mm1
b = 12.6277 (13) ÅT = 200 K
c = 18.7630 (18) Å0.30 × 0.10 × 0.01 mm
β = 98.352 (7)°
Data collection top
Rigaku VariMax RAPID
diffractometer
6105 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5445 reflections with I > 2σ(I)
Tmin = 0.572, Tmax = 0.995Rint = 0.045
26469 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0318 restraints
wR(F2) = 0.052H-atom parameters constrained
S = 1.13Δρmax = 1.03 e Å3
6105 reflectionsΔρmin = 0.55 e Å3
392 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Au10.39803 (2)0.23503 (2)0.09507 (2)0.02544 (6)
Au20.23078 (2)0.20488 (2)0.16975 (2)0.02555 (6)
Fe10.47576 (5)0.32726 (5)0.31861 (3)0.02381 (15)
P10.54820 (9)0.27998 (9)0.15170 (6)0.0231 (3)
P20.23049 (9)0.25682 (9)0.28416 (6)0.0235 (3)
S10.24432 (9)0.17001 (10)0.05135 (6)0.0315 (3)
C10.5572 (3)0.2623 (3)0.2479 (2)0.0226 (10)
C20.6197 (3)0.3142 (4)0.3044 (2)0.0274 (10)
H20.66350.37080.29890.033*
C30.6049 (4)0.2665 (4)0.3704 (3)0.0308 (11)
H30.63670.28590.41700.037*
C40.5348 (3)0.1852 (4)0.3546 (3)0.0320 (11)
H40.51120.14040.38900.038*
C50.5054 (3)0.1814 (3)0.2799 (2)0.0260 (10)
H50.45920.13340.25500.031*
C60.5925 (3)0.4134 (3)0.1388 (2)0.0265 (10)
C70.5275 (4)0.4882 (4)0.1072 (3)0.0432 (14)
H70.46000.47090.09440.052*
C80.5609 (5)0.5893 (4)0.0940 (4)0.0604 (18)
H80.51590.64040.07130.073*
C90.6571 (5)0.6162 (4)0.1131 (3)0.0498 (15)
H90.67890.68570.10430.060*
C100.7220 (4)0.5426 (4)0.1448 (3)0.0403 (13)
H100.78910.56130.15860.048*
C110.6908 (3)0.4405 (4)0.1572 (2)0.0321 (11)
H110.73680.38920.17830.038*
C120.6439 (3)0.1923 (3)0.1277 (2)0.0246 (10)
C130.7252 (3)0.1646 (4)0.1775 (3)0.0316 (11)
H130.73220.19260.22490.038*
C140.7960 (4)0.0964 (4)0.1582 (3)0.0402 (13)
H140.85200.07880.19210.048*
C150.7848 (4)0.0543 (4)0.0900 (3)0.0408 (13)
H150.83330.00750.07670.049*
C160.7043 (4)0.0793 (4)0.0407 (3)0.0423 (14)
H160.69680.04920.00610.051*
C170.6335 (4)0.1488 (3)0.0594 (2)0.0311 (11)
H170.57790.16640.02510.037*
C180.3279 (3)0.3494 (3)0.3119 (2)0.0254 (10)
C190.3748 (3)0.3704 (4)0.3834 (3)0.0334 (12)
H190.36230.33490.42570.040*
C200.4427 (3)0.4529 (4)0.3803 (3)0.0439 (15)
H200.48430.48260.42010.053*
C210.4383 (4)0.4837 (4)0.3079 (3)0.0419 (14)
H210.47630.53840.29070.050*
C220.3681 (3)0.4201 (3)0.2646 (3)0.0320 (12)
H220.35110.42390.21380.038*
C230.2466 (3)0.1536 (3)0.3525 (2)0.0254 (10)
C240.2985 (3)0.0625 (4)0.3396 (3)0.0324 (11)
H240.32340.05480.29520.039*
C250.3141 (4)0.0162 (4)0.3903 (3)0.0410 (13)
H250.34940.07810.38090.049*
C260.2785 (4)0.0056 (4)0.4547 (3)0.0459 (14)
H260.28970.06020.48980.055*
C270.2269 (4)0.0834 (4)0.4687 (3)0.0483 (15)
H270.20200.09040.51310.058*
C280.2115 (4)0.1625 (4)0.4175 (3)0.0363 (12)
H280.17610.22420.42720.044*
C290.1186 (3)0.3250 (3)0.2995 (2)0.0241 (10)
C300.1185 (4)0.4138 (4)0.3427 (3)0.0321 (11)
H300.17910.44460.36340.038*
C310.0309 (4)0.4580 (4)0.3558 (3)0.0408 (13)
H310.03180.51820.38630.049*
C320.0563 (4)0.4163 (4)0.3254 (3)0.0508 (16)
H320.11620.44740.33450.061*
C330.0578 (4)0.3285 (4)0.2812 (4)0.065 (2)
H330.11890.29900.26020.077*
C340.0291 (4)0.2838 (4)0.2676 (3)0.0499 (16)
H340.02780.22450.23640.060*
O10.0057 (4)0.1917 (5)0.0573 (5)0.095 (3)0.822 (12)
H1A0.05540.19500.05740.143*0.822 (12)
C350.0431 (17)0.2927 (15)0.0602 (13)0.113 (7)0.822 (12)
H35A0.02840.33350.01870.170*0.822 (12)
H35B0.01310.32730.10480.170*0.822 (12)
H35C0.11450.28890.05930.170*0.822 (12)
O20.025 (2)0.292 (2)0.0241 (16)0.074 (11)*0.178 (12)
H2B0.05190.35130.03090.111*0.178 (12)
C360.042 (4)0.284 (4)0.063 (3)0.024 (11)*0.178 (12)
H36A0.03880.34420.09620.037*0.178 (12)
H36B0.03330.21790.09080.037*0.178 (12)
H36C0.10650.28300.03260.037*0.178 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.02336 (10)0.03084 (10)0.02091 (10)0.00051 (8)0.00083 (7)0.00180 (7)
Au20.02393 (10)0.02795 (10)0.02366 (10)0.00089 (8)0.00025 (7)0.00423 (7)
Fe10.0194 (3)0.0265 (3)0.0249 (4)0.0004 (3)0.0013 (3)0.0051 (3)
P10.0212 (6)0.0264 (6)0.0210 (6)0.0000 (5)0.0008 (5)0.0009 (5)
P20.0200 (6)0.0252 (6)0.0250 (6)0.0006 (5)0.0024 (5)0.0031 (5)
S10.0268 (7)0.0415 (7)0.0235 (6)0.0007 (6)0.0051 (5)0.0083 (5)
C10.019 (2)0.027 (2)0.023 (2)0.002 (2)0.0030 (19)0.0018 (19)
C20.017 (2)0.037 (3)0.027 (3)0.001 (2)0.002 (2)0.004 (2)
C30.025 (3)0.044 (3)0.021 (3)0.007 (2)0.002 (2)0.005 (2)
C40.034 (3)0.037 (3)0.025 (3)0.009 (2)0.005 (2)0.003 (2)
C50.026 (3)0.026 (2)0.025 (3)0.002 (2)0.004 (2)0.0005 (19)
C60.031 (3)0.028 (2)0.022 (3)0.000 (2)0.007 (2)0.0012 (19)
C70.040 (3)0.037 (3)0.052 (4)0.004 (3)0.004 (3)0.008 (3)
C80.062 (5)0.033 (3)0.085 (5)0.002 (3)0.006 (4)0.015 (3)
C90.066 (4)0.026 (3)0.059 (4)0.014 (3)0.014 (3)0.005 (3)
C100.041 (3)0.045 (3)0.035 (3)0.017 (3)0.008 (3)0.008 (2)
C110.027 (3)0.039 (3)0.030 (3)0.003 (2)0.005 (2)0.001 (2)
C120.022 (2)0.026 (2)0.029 (3)0.001 (2)0.011 (2)0.0021 (19)
C130.026 (3)0.035 (3)0.033 (3)0.001 (2)0.004 (2)0.003 (2)
C140.024 (3)0.041 (3)0.056 (4)0.005 (2)0.004 (3)0.001 (3)
C150.034 (3)0.039 (3)0.053 (4)0.008 (3)0.019 (3)0.004 (3)
C160.057 (4)0.039 (3)0.035 (3)0.007 (3)0.020 (3)0.001 (2)
C170.033 (3)0.036 (3)0.025 (3)0.003 (2)0.006 (2)0.000 (2)
C180.019 (2)0.029 (2)0.028 (3)0.004 (2)0.002 (2)0.011 (2)
C190.025 (3)0.045 (3)0.031 (3)0.003 (2)0.006 (2)0.017 (2)
C200.020 (3)0.046 (3)0.065 (4)0.001 (2)0.001 (3)0.035 (3)
C210.024 (3)0.023 (2)0.078 (5)0.001 (2)0.006 (3)0.005 (3)
C220.017 (3)0.027 (2)0.052 (3)0.004 (2)0.006 (2)0.005 (2)
C230.023 (2)0.027 (2)0.027 (3)0.004 (2)0.004 (2)0.0046 (19)
C240.029 (3)0.032 (3)0.035 (3)0.002 (2)0.005 (2)0.003 (2)
C250.043 (3)0.026 (3)0.052 (4)0.002 (2)0.000 (3)0.001 (2)
C260.048 (4)0.039 (3)0.046 (4)0.004 (3)0.006 (3)0.013 (3)
C270.054 (4)0.058 (3)0.034 (3)0.001 (3)0.011 (3)0.008 (3)
C280.039 (3)0.038 (3)0.033 (3)0.007 (2)0.011 (2)0.002 (2)
C290.019 (2)0.026 (2)0.026 (3)0.001 (2)0.0004 (19)0.0022 (19)
C300.025 (3)0.034 (3)0.037 (3)0.001 (2)0.003 (2)0.006 (2)
C310.034 (3)0.032 (3)0.057 (4)0.004 (2)0.011 (3)0.012 (2)
C320.027 (3)0.040 (3)0.087 (5)0.008 (3)0.013 (3)0.004 (3)
C330.023 (3)0.047 (3)0.117 (6)0.002 (3)0.012 (3)0.024 (4)
C340.029 (3)0.037 (3)0.079 (5)0.001 (3)0.008 (3)0.023 (3)
O10.038 (4)0.083 (5)0.159 (8)0.005 (3)0.009 (4)0.015 (4)
C350.090 (10)0.089 (9)0.155 (16)0.001 (7)0.001 (9)0.010 (8)
Geometric parameters (Å, º) top
Au1—P12.2524 (12)C15—C161.372 (7)
Au1—S12.3036 (12)C15—H150.9500
Au2—P22.2452 (12)C16—C171.392 (6)
Au2—S12.2988 (12)C16—H160.9500
Au1—Au22.8857 (3)C17—H170.9500
Fe1—C12.029 (4)C18—C191.425 (6)
Fe1—C182.037 (4)C18—C221.426 (6)
Fe1—C222.038 (5)C19—C201.406 (7)
Fe1—C22.041 (4)C19—H190.9500
Fe1—C42.042 (5)C20—C211.405 (7)
Fe1—C52.043 (4)C20—H200.9500
Fe1—C212.044 (5)C21—C221.416 (7)
Fe1—C32.046 (5)C21—H210.9500
Fe1—C192.047 (4)C22—H220.9500
Fe1—C202.053 (5)C23—C281.379 (6)
P1—C11.805 (4)C23—C241.393 (6)
P1—C61.819 (4)C24—C251.371 (7)
P1—C121.825 (4)C24—H240.9500
P2—C181.797 (4)C25—C261.374 (7)
P2—C231.820 (5)C25—H250.9500
P2—C291.822 (4)C26—C271.375 (7)
C1—C21.423 (6)C26—H260.9500
C1—C51.427 (6)C27—C281.381 (7)
C2—C31.418 (6)C27—H270.9500
C2—H20.9500C28—H280.9500
C3—C41.410 (7)C29—C301.383 (6)
C3—H30.9500C29—C341.388 (7)
C4—C51.401 (6)C30—C311.381 (6)
C4—H40.9500C30—H300.9500
C5—H50.9500C31—C321.356 (7)
C6—C71.373 (6)C31—H310.9500
C6—C111.389 (6)C32—C331.383 (7)
C7—C81.392 (7)C32—H320.9500
C7—H70.9500C33—C341.378 (7)
C8—C91.362 (8)C33—H330.9500
C8—H80.9500C34—H340.9500
C9—C101.364 (7)O1—C351.378 (18)
C9—H90.9500O1—H1A0.8400
C10—C111.389 (6)C35—H35A0.9800
C10—H100.9500C35—H35B0.9800
C11—H110.9500C35—H35C0.9800
C12—C171.383 (6)O2—C361.26 (6)
C12—C131.393 (6)O2—H2B0.8400
C13—C141.386 (6)C36—H36A0.9800
C13—H130.9500C36—H36B0.9800
C14—C151.375 (7)C36—H36C0.9800
C14—H140.9500
S1—Au1—Au251.10 (3)C10—C9—H9120.2
S1—Au2—Au151.24 (3)C9—C10—C11120.5 (5)
P1—Au1—S1171.06 (4)C9—C10—H10119.8
P2—Au2—S1172.59 (4)C11—C10—H10119.8
P1—Au1—Au2122.96 (3)C10—C11—C6120.0 (5)
P2—Au2—Au1122.54 (3)C10—C11—H11120.0
C1—Fe1—C18130.97 (18)C6—C11—H11120.0
C1—Fe1—C22109.71 (19)C17—C12—C13119.1 (4)
C18—Fe1—C2240.97 (17)C17—C12—P1119.2 (4)
C1—Fe1—C240.94 (17)C13—C12—P1121.6 (3)
C18—Fe1—C2168.62 (18)C14—C13—C12120.5 (5)
C22—Fe1—C2128.96 (18)C14—C13—H13119.8
C1—Fe1—C468.34 (17)C12—C13—H13119.8
C18—Fe1—C4119.05 (18)C15—C14—C13119.7 (5)
C22—Fe1—C4153.41 (19)C15—C14—H14120.2
C2—Fe1—C468.08 (18)C13—C14—H14120.2
C1—Fe1—C541.03 (16)C16—C15—C14120.6 (5)
C18—Fe1—C5110.54 (18)C16—C15—H15119.7
C22—Fe1—C5120.68 (19)C14—C15—H15119.7
C2—Fe1—C568.50 (18)C15—C16—C17120.1 (5)
C4—Fe1—C540.12 (18)C15—C16—H16119.9
C1—Fe1—C21118.8 (2)C17—C16—H16119.9
C18—Fe1—C2168.06 (18)C12—C17—C16120.0 (5)
C22—Fe1—C2140.60 (19)C12—C17—H17120.0
C2—Fe1—C21107.47 (19)C16—C17—H17120.0
C4—Fe1—C21164.5 (2)C19—C18—C22107.8 (4)
C5—Fe1—C21153.8 (2)C19—C18—P2127.6 (4)
C1—Fe1—C368.64 (18)C22—C18—P2124.5 (4)
C18—Fe1—C3150.45 (19)C19—C18—Fe169.9 (2)
C22—Fe1—C3165.73 (18)C22—C18—Fe169.5 (2)
C2—Fe1—C340.62 (18)P2—C18—Fe1128.5 (2)
C4—Fe1—C340.36 (19)C20—C19—C18108.1 (5)
C5—Fe1—C368.06 (19)C20—C19—Fe170.2 (3)
C21—Fe1—C3126.7 (2)C18—C19—Fe169.2 (2)
C1—Fe1—C19169.06 (18)C20—C19—H19125.9
C18—Fe1—C1940.85 (18)C18—C19—H19125.9
C22—Fe1—C1968.7 (2)Fe1—C19—H19126.3
C2—Fe1—C19148.51 (19)C21—C20—C19108.0 (5)
C4—Fe1—C19108.0 (2)C21—C20—Fe169.6 (3)
C5—Fe1—C19129.69 (19)C19—C20—Fe169.7 (3)
C21—Fe1—C1967.6 (2)C21—C20—H20126.0
C3—Fe1—C19115.7 (2)C19—C20—H20126.0
C1—Fe1—C20150.34 (19)Fe1—C20—H20126.3
C18—Fe1—C2068.17 (18)C20—C21—C22109.1 (4)
C22—Fe1—C2068.4 (2)C20—C21—Fe170.3 (3)
C2—Fe1—C20115.72 (19)C22—C21—Fe169.5 (2)
C4—Fe1—C20127.0 (2)C20—C21—H21125.4
C5—Fe1—C20165.7 (2)C22—C21—H21125.4
C21—Fe1—C2040.1 (2)Fe1—C21—H21126.4
C3—Fe1—C20105.7 (2)C21—C22—C18106.9 (5)
C19—Fe1—C2040.10 (18)C21—C22—Fe169.9 (3)
C1—P1—C6105.8 (2)C18—C22—Fe169.5 (3)
C1—P1—C12103.0 (2)C21—C22—H22126.5
C6—P1—C12105.18 (19)C18—C22—H22126.5
C1—P1—Au1111.46 (15)Fe1—C22—H22125.6
C6—P1—Au1118.15 (16)C28—C23—C24118.4 (4)
C12—P1—Au1112.01 (16)C28—C23—P2122.8 (3)
C18—P2—C23104.6 (2)C24—C23—P2118.8 (3)
C18—P2—C29104.90 (19)C25—C24—C23120.7 (4)
C23—P2—C29104.3 (2)C25—C24—H24119.7
C18—P2—Au2111.26 (15)C23—C24—H24119.7
C23—P2—Au2116.60 (14)C24—C25—C26120.0 (5)
C29—P2—Au2114.08 (15)C24—C25—H25120.0
Au2—S1—Au177.66 (4)C26—C25—H25120.0
C2—C1—C5107.5 (4)C25—C26—C27120.4 (5)
C2—C1—P1129.4 (3)C25—C26—H26119.8
C5—C1—P1122.9 (3)C27—C26—H26119.8
C2—C1—Fe170.0 (2)C26—C27—C28119.3 (5)
C5—C1—Fe170.0 (2)C26—C27—H27120.3
P1—C1—Fe1129.7 (2)C28—C27—H27120.3
C3—C2—C1107.9 (4)C23—C28—C27121.2 (5)
C3—C2—Fe169.9 (3)C23—C28—H28119.4
C1—C2—Fe169.1 (2)C27—C28—H28119.4
C3—C2—H2126.0C30—C29—C34118.7 (4)
C1—C2—H2126.0C30—C29—P2123.2 (4)
Fe1—C2—H2126.5C34—C29—P2118.0 (4)
C4—C3—C2107.8 (4)C31—C30—C29120.5 (5)
C4—C3—Fe169.7 (3)C31—C30—H30119.8
C2—C3—Fe169.5 (3)C29—C30—H30119.8
C4—C3—H3126.1C32—C31—C30120.5 (5)
C2—C3—H3126.1C32—C31—H31119.7
Fe1—C3—H3126.3C30—C31—H31119.7
C5—C4—C3108.9 (4)C31—C32—C33119.9 (5)
C5—C4—Fe169.9 (3)C31—C32—H32120.1
C3—C4—Fe169.9 (3)C33—C32—H32120.1
C5—C4—H4125.5C34—C33—C32120.1 (5)
C3—C4—H4125.5C34—C33—H33119.9
Fe1—C4—H4126.2C32—C33—H33119.9
C4—C5—C1107.9 (4)C33—C34—C29120.3 (5)
C4—C5—Fe169.9 (3)C33—C34—H34119.9
C1—C5—Fe169.0 (2)C29—C34—H34119.9
C4—C5—H5126.0C35—O1—H1A109.5
C1—C5—H5126.0O1—C35—H35A109.5
Fe1—C5—H5126.6O1—C35—H35B109.5
C7—C6—C11119.1 (4)H35A—C35—H35B109.5
C7—C6—P1119.0 (4)O1—C35—H35C109.5
C11—C6—P1121.8 (4)H35A—C35—H35C109.5
C6—C7—C8119.9 (5)H35B—C35—H35C109.5
C6—C7—H7120.1C36—O2—H2B109.5
C8—C7—H7120.1O2—C36—H36A109.5
C9—C8—C7120.9 (6)O2—C36—H36B109.5
C9—C8—H8119.5H36A—C36—H36B109.5
C7—C8—H8119.5O2—C36—H36C109.5
C8—C9—C10119.6 (5)H36A—C36—H36C109.5
C8—C9—H9120.2H36B—C36—H36C109.5
C6—P1—C1—C224.5 (5)C23—P2—C18—C1928.2 (4)
C12—P1—C1—C285.6 (4)C29—P2—C18—C1981.2 (4)
Au1—P1—C1—C2154.1 (4)Au2—P2—C18—C19154.9 (3)
C6—P1—C1—C5162.0 (4)C23—P2—C18—C22155.5 (3)
C12—P1—C1—C587.9 (4)C29—P2—C18—C2295.0 (4)
Au1—P1—C1—C532.4 (4)Au2—P2—C18—C2228.8 (4)
C6—P1—C1—Fe171.6 (3)C23—P2—C18—Fe165.2 (3)
C12—P1—C1—Fe1178.3 (3)C29—P2—C18—Fe1174.7 (3)
Au1—P1—C1—Fe158.1 (3)Au2—P2—C18—Fe161.5 (3)
C5—C1—C2—C30.9 (5)C22—C18—C19—C200.1 (5)
P1—C1—C2—C3175.2 (3)P2—C18—C19—C20176.6 (3)
Fe1—C1—C2—C359.3 (3)Fe1—C18—C19—C2059.6 (3)
C5—C1—C2—Fe160.2 (3)C22—C18—C19—Fe159.5 (3)
P1—C1—C2—Fe1125.5 (4)P2—C18—C19—Fe1123.8 (3)
C1—C2—C3—C40.6 (5)C18—C19—C20—C210.3 (5)
Fe1—C2—C3—C459.4 (3)Fe1—C19—C20—C2159.3 (3)
C1—C2—C3—Fe158.8 (3)C18—C19—C20—Fe159.0 (3)
C2—C3—C4—C50.0 (5)C19—C20—C21—C220.6 (5)
Fe1—C3—C4—C559.3 (3)Fe1—C20—C21—C2258.8 (3)
C2—C3—C4—Fe159.3 (3)C19—C20—C21—Fe159.4 (3)
C3—C4—C5—C10.5 (5)C20—C21—C22—C180.6 (5)
Fe1—C4—C5—C158.7 (3)Fe1—C21—C22—C1859.9 (3)
C3—C4—C5—Fe159.3 (3)C20—C21—C22—Fe159.3 (3)
C2—C1—C5—C40.9 (5)C19—C18—C22—C210.5 (5)
P1—C1—C5—C4175.6 (3)P2—C18—C22—C21176.4 (3)
Fe1—C1—C5—C459.3 (3)Fe1—C18—C22—C2160.2 (3)
C2—C1—C5—Fe160.2 (3)C19—C18—C22—Fe159.7 (3)
P1—C1—C5—Fe1125.1 (3)P2—C18—C22—Fe1123.4 (3)
C1—P1—C6—C7113.1 (4)C18—P2—C23—C2882.6 (4)
C12—P1—C6—C7138.3 (4)C29—P2—C23—C2827.3 (5)
Au1—P1—C6—C712.5 (4)Au2—P2—C23—C28154.0 (4)
C1—P1—C6—C1169.6 (4)C18—P2—C23—C2495.9 (4)
C12—P1—C6—C1138.9 (4)C29—P2—C23—C24154.2 (4)
Au1—P1—C6—C11164.8 (3)Au2—P2—C23—C2427.4 (4)
C11—C6—C7—C80.2 (8)C28—C23—C24—C250.0 (7)
P1—C6—C7—C8177.2 (4)P2—C23—C24—C25178.7 (4)
C6—C7—C8—C91.2 (9)C23—C24—C25—C260.1 (8)
C7—C8—C9—C100.8 (10)C24—C25—C26—C270.3 (9)
C8—C9—C10—C110.5 (9)C25—C26—C27—C280.4 (9)
C9—C10—C11—C61.5 (7)C24—C23—C28—C270.1 (8)
C7—C6—C11—C101.2 (7)P2—C23—C28—C27178.7 (4)
P1—C6—C11—C10178.4 (3)C26—C27—C28—C230.3 (9)
C1—P1—C12—C17152.1 (3)C18—P2—C29—C3016.6 (4)
C6—P1—C12—C1797.4 (4)C23—P2—C29—C3093.1 (4)
Au1—P1—C12—C1732.2 (4)Au2—P2—C29—C30138.6 (4)
C1—P1—C12—C1325.2 (4)C18—P2—C29—C34165.1 (4)
C6—P1—C12—C1385.4 (4)C23—P2—C29—C3485.2 (4)
Au1—P1—C12—C13145.1 (3)Au2—P2—C29—C3443.1 (4)
C17—C12—C13—C141.6 (7)C34—C29—C30—C312.3 (7)
P1—C12—C13—C14178.9 (4)P2—C29—C30—C31176.0 (4)
C12—C13—C14—C151.3 (7)C29—C30—C31—C321.3 (8)
C13—C14—C15—C160.1 (8)C30—C31—C32—C330.3 (9)
C14—C15—C16—C170.7 (8)C31—C32—C33—C340.4 (10)
C13—C12—C17—C160.8 (7)C32—C33—C34—C291.5 (10)
P1—C12—C17—C16178.1 (3)C30—C29—C34—C332.4 (8)
C15—C16—C17—C120.4 (7)P2—C29—C34—C33175.9 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C7–C11 and C12–C16 phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1A···S10.842.633.465 (6)170
C3—H3···S1i0.952.793.734 (5)175
C27—H27···Cg(1)ii0.952.833.659 (6)146
C32—H32···Cg(2)iii0.952.883.717 (6)147
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2.
Selected geometric parameters (Å, º) top
Au1—P12.2524 (12)Au2—S12.2988 (12)
Au1—S12.3036 (12)Au1—Au22.8857 (3)
Au2—P22.2452 (12)
S1—Au1—Au251.10 (3)P2—Au2—S1172.59 (4)
S1—Au2—Au151.24 (3)P1—Au1—Au2122.96 (3)
P1—Au1—S1171.06 (4)P2—Au2—Au1122.54 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C7–C11 and C12–C16 phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1A···S10.842.633.465 (6)170
C3—H3···S1i0.952.793.734 (5)175
C27—H27···Cg(1)ii0.952.833.659 (6)146
C32—H32···Cg(2)iii0.952.883.717 (6)147
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Au2Fe(C17H14P)2S]·CH4O
Mr1012.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)200
a, b, c (Å)13.7434 (13), 12.6277 (13), 18.7630 (18)
β (°) 98.352 (7)
V3)3221.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)9.72
Crystal size (mm)0.30 × 0.10 × 0.01
Data collection
DiffractometerRigaku VariMax RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.572, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
26469, 6105, 5445
Rint0.045
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.052, 1.13
No. of reflections6105
No. of parameters392
No. of restraints8
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.03, 0.55

Computer programs: PROCESS-AUTO (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), DIAMOND (Putz & Brandenburg, 2011), WinGX (Farrugia, 2012).

 

Acknowledgements

This work was supported by CREST, JST, and a Grant-in-Aid for Science Research No. 25600005 from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

First citationCanales, F., Gimeno, M. C., Laguna, A. & Jones, P. G. (1996). J. Am. Chem. Soc. 118, 4839–4845.  CSD CrossRef CAS Web of Science Google Scholar
First citationChen, B.-L., Mok, K.-F. & Ng, S.-C. (1998). J. Chem. Soc. Dalton Trans. pp. 4035–4042.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHofreiter, S., Paul, M. & Schmidbaur, H. (1995). Chem. Ber. 128, 901–905.  CrossRef CAS Web of Science Google Scholar
First citationPutz & Brandenburg (2011). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationRigaku (2000). PROCESS-AUTO. Rigaku Corporation, Tolyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds