organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o79-o80

6-(4-Bromo­phen­yl)-2-eth­­oxy-4-(4-eth­oxy­phen­yl)nicotino­nitrile

aCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cDepartment of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 12 November 2009; accepted 2 December 2009; online 9 December 2009)

The mol­ecule of the title nicotinonitrile derivative, C22H19BrN2O2, is non-planar, the central pyridine ring making dihedral angles of 7.34 (14) and 43.56 (15)° with the 4-bromo­phenyl and 4-ethoxy­phenyl rings, respectively. The eth­oxy group of the 4-ethoxy­phenyl is slightly twisted from the attached benzene ring [C—O—C—C = 174.2 (3)°], whereas the eth­oxy group attached to the pyridine ring is in a (+)syn-clinal conformation [C—O—C—C = 83.0 (3)°]. A weak intra­molecular C—H⋯N inter­action generates an S(5) ring motif. In the crystal structure, the mol­ecules are linked by weak inter­molecular C—H⋯N inter­actions into screw chains along the b axis. These chains stacked along the a axis. ππ inter­actions with centroid–centroid distances of 3.8724 (16) and 3.8727 (16) Å are also observed.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the synthesis and applications of nicotinonitrile derivatives, see: Borgna et al. (1993[Borgna, P., Pregnolato, M., Gamba, I. A. & Mellerio, G. (1993). J. Heterocycl. Chem. 30, 1079-1084.]); Fun et al. (2008[Fun, H.-K., Patil, P. S., Dharmaprakash, S. M. & Chantrapromma, S. (2008). Acta Cryst. E64, o1540-o1541.]); Goda et al. (2004[Goda, F. E., Abdel-Aziz, A. A.-M. & Attef, O. A. (2004). Bioorg. Med. Chem. 12, 1845-1852.]); Kamal et al. (2007[Kamal, A., Khan, M. N. A., Reddy, K. S. & Rohini, K. (2007). Bioorg. Med. Chem. 15, 1004-1013.]); Malinka et al. (1998[Malinka, W., Ryng, S., Sieklucka-Dziuba, M., Rajtar, G., Głowniak, A. & Kleinrok, Z. (1998). Farmaco. 53, 504-512.]). For related structures, see: Chantrapromma et al. (2009[Chantrapromma, S., Fun, H.-K., Suwunwong, T., Padaki, M. & Isloor, A. M. (2009). Acta Cryst. E65, o2914-o2915.]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C22H19BrN2O2

  • Mr = 423.29

  • Orthorhombic, P 21 21 21

  • a = 4.3414 (2) Å

  • b = 14.7392 (6) Å

  • c = 29.4409 (13) Å

  • V = 1883.89 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.20 mm−1

  • T = 100 K

  • 0.57 × 0.05 × 0.03 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.368, Tmax = 0.931

  • 18389 measured reflections

  • 5477 independent reflections

  • 4081 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.084

  • S = 0.99

  • 5477 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.54 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2269 Friedel pairs

  • Flack parameter: 0.008 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯N1 0.93 2.41 2.758 (4) 102
C5—H5A⋯N2i 0.93 2.58 3.446 (4) 156
C13—H13A⋯N2ii 0.93 2.53 3.206 (4) 130
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

A large number of substituted pyridines have been claimed to exhibit biological activities in a number of areas (Borgna et al., 1993; Goda et al., 2004; Kamal et al., 2007; Malinka et al., 1998). The pyridine ring is among the most common heterocyclic compounds found in the naturally occurring heterocycles and in various therapeutic agents. Our research is aimed at the synthesis and preliminary pharmacological screening (in vivo) of the nicotinonitrile derivatives. Therefore the title nicotinonitrile derivative, which is a substituted pyridine compound, was synthesized by cyclization of a chalcone derivative (Fun et al., 2008) and malononitrile in order to investigate its analgesic and anti-inflammatory activities. Our results of these pharmacological studies showed that the title compound is a promising candidate for analgesic and anti-inflammatory activities. The analgesic and anti-inflammatory profiles of the title compound together with some other related nicotinonitrile derivatives will be reported elsewhere.

The title compound (I), C22H19BrN2O2 is a non-planar molecule (Fig. 1). The central pyridine ring is nearly coplanar with the 4-bromophenyl ring with the dihedral angle of 7.34 (14)° whereas it is inclined to the 4-ethoxyphenyl unit with the dihedral angle of 43.56 (15)°. The ethoxy substituent of the 4-ethoxyphenyl is slightly twisted from the mean plane of the attached benzene ring with the torsion angle C15–O2–C20–C21 = 174.2 (3)° whereas the ethoxy group attached to the pyridine ring is in a (+)syn-clinal conformation with a C11–O1–C18–C19 torsion angle of 83.0 (3)°. The orientation of the cyano group can be indicated by the torsion angle C8–C9–C10–C22 = 177.0 (3)°. A weak intramolecular C1—H1A···N1 interaction generates an S(5) ring motif (Bernstein et al., 1995). The bond distances agree with the literature values (Allen et al., 1987) and are comparable with those for a related structure (Chantrapromma et al., 2009).

In the crystal structure (Fig. 2), the molecules are linked by weak intermolecular C—H···N interactions (Table 1) into screw chains along the b axis. These chains stacked along the a axis. The crystal is further stabilized by π···π interactions with the Cg1···Cg2 distances of 3.8724 (16) Å (symmetry code: -1 + x, y, z) and 3.8727 (16) Å (symmetry code: 1 + x, y, z); Cg1 and Cg2 are the centroids of C7–C11/N1 and C1–C6 rings, respectively.

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the synthesis and applications of nicotinonitrile derivatives, see: Borgna et al. (1993); Fun et al. (2008); Goda et al. (2004); Kamal et al. (2007); Malinka et al. (1998). For related structures, see: Chantrapromma et al. (2009). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986).

Experimental top

(E-1-(4-Bromophenyl)-3-(4-ethoxyphenyl)prop-2-en-1-one (0.50 g, 0.0015 mole) were added with continuous stirring to a freshly prepared sodium alkoxide (0.0014 mole of sodium in 100 ml of ethanol). Malononitrile (1.30 g, 0.02 mol) was then added with continuous stirring at room temperature until the precipitate separated out. The resulting solid was filtered (yield 65%). Colorless needle-shaped single crystals of the title compound suitable for x-ray structure determination were recrystalized from acetone/ethanol (1:1 v/v) by the slow evaporation of the solvent at room temperature over several days, Mp. 418–419 K.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å for aromatic, 0.97 for CH2 and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 1.07 Å from Br1 and the deepest hole is located at 0.96 Å from Br1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis, showing chains stacked down the a axis. Hydrogen bonds are shown as dashed lines.
6-(4-Bromophenyl)-2-ethoxy-4-(4-ethoxyphenyl)nicotinonitrile top
Crystal data top
C22H19BrN2O2Dx = 1.492 Mg m3
Mr = 423.29Melting point = 418–419 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5478 reflections
a = 4.3414 (2) Åθ = 1.4–30.0°
b = 14.7392 (6) ŵ = 2.20 mm1
c = 29.4409 (13) ÅT = 100 K
V = 1883.89 (14) Å3Needle, colourless
Z = 40.57 × 0.05 × 0.03 mm
F(000) = 864
Data collection top
Bruker APEXII CCD area detector
diffractometer
5477 independent reflections
Radiation source: sealed tube4081 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
ϕ and ω scansθmax = 30.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 66
Tmin = 0.368, Tmax = 0.931k = 2020
18389 measured reflectionsl = 4141
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0276P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
5477 reflectionsΔρmax = 0.58 e Å3
246 parametersΔρmin = 0.54 e Å3
0 restraintsAbsolute structure: Flack (1983), 2269 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.008 (9)
Crystal data top
C22H19BrN2O2V = 1883.89 (14) Å3
Mr = 423.29Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.3414 (2) ŵ = 2.20 mm1
b = 14.7392 (6) ÅT = 100 K
c = 29.4409 (13) Å0.57 × 0.05 × 0.03 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
5477 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4081 reflections with I > 2σ(I)
Tmin = 0.368, Tmax = 0.931Rint = 0.076
18389 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.084Δρmax = 0.58 e Å3
S = 0.99Δρmin = 0.54 e Å3
5477 reflectionsAbsolute structure: Flack (1983), 2269 Friedel pairs
246 parametersAbsolute structure parameter: 0.008 (9)
0 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.58148 (8)0.282863 (19)0.048491 (10)0.02362 (8)
O10.4205 (6)0.74788 (11)0.14589 (6)0.0216 (4)
O20.0548 (6)0.47728 (13)0.40035 (6)0.0252 (5)
N20.0125 (7)0.76955 (17)0.24500 (8)0.0298 (7)
N10.7019 (6)0.61534 (15)0.14495 (8)0.0196 (5)
C11.0999 (8)0.50365 (18)0.09800 (9)0.0197 (6)
H1A1.05510.56180.08770.024*
C21.2818 (8)0.44749 (19)0.07176 (10)0.0214 (7)
H2A1.36060.46790.04420.026*
C31.3459 (7)0.36055 (18)0.08677 (9)0.0191 (7)
C41.2361 (8)0.32993 (19)0.12783 (10)0.0220 (7)
H4A1.28210.27160.13770.026*
C51.0564 (8)0.38691 (17)0.15427 (9)0.0204 (6)
H5A0.98380.36650.18220.025*
C60.9818 (7)0.47489 (18)0.13976 (9)0.0185 (7)
C70.7817 (7)0.53544 (18)0.16580 (10)0.0178 (6)
C80.6704 (7)0.51430 (19)0.20904 (10)0.0195 (7)
H8A0.72620.45970.22260.023*
C90.4766 (7)0.57403 (18)0.23214 (9)0.0170 (6)
C100.3912 (8)0.65388 (18)0.20974 (9)0.0189 (6)
C110.5132 (7)0.67004 (18)0.16607 (9)0.0186 (7)
C120.3562 (8)0.55145 (19)0.27789 (9)0.0189 (7)
C130.2478 (8)0.46338 (18)0.28616 (10)0.0197 (7)
H13A0.26800.41920.26380.024*
C140.1114 (9)0.44126 (18)0.32705 (9)0.0200 (7)
H14A0.03690.38290.33180.024*
C150.0855 (9)0.50606 (18)0.36103 (9)0.0199 (6)
C160.1977 (8)0.5937 (2)0.35411 (10)0.0230 (7)
H16A0.18340.63710.37690.028*
C170.3314 (7)0.61494 (19)0.31246 (10)0.0222 (7)
H17A0.40610.67330.30770.027*
C180.5818 (8)0.7761 (2)0.10480 (8)0.0230 (6)
H18A0.79940.76260.10810.028*
H18B0.56050.84120.10120.028*
C190.4616 (8)0.7296 (2)0.06258 (9)0.0284 (7)
H19A0.55430.75640.03620.043*
H19B0.24200.73660.06100.043*
H19C0.51230.66620.06370.043*
C200.1371 (8)0.5444 (2)0.43323 (10)0.0243 (8)
H20A0.26380.59110.41950.029*
H20B0.04600.57260.44580.029*
C210.3148 (8)0.4952 (2)0.46998 (11)0.0306 (8)
H21A0.36480.53680.49390.046*
H21B0.19110.44670.48190.046*
H21C0.50110.47070.45740.046*
C220.1818 (7)0.7186 (2)0.22906 (9)0.0210 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02481 (15)0.02126 (12)0.02480 (13)0.00135 (15)0.00071 (16)0.00381 (13)
O10.0280 (11)0.0181 (9)0.0186 (9)0.0039 (10)0.0014 (12)0.0043 (7)
O20.0376 (14)0.0207 (9)0.0173 (9)0.0022 (11)0.0044 (11)0.0004 (8)
N20.040 (2)0.0236 (13)0.0260 (12)0.0087 (13)0.0018 (12)0.0006 (10)
N10.0204 (14)0.0189 (11)0.0195 (12)0.0008 (11)0.0024 (11)0.0008 (9)
C10.0211 (16)0.0187 (12)0.0192 (13)0.0005 (15)0.0017 (15)0.0004 (10)
C20.0186 (16)0.0227 (15)0.0229 (15)0.0008 (14)0.0008 (14)0.0022 (12)
C30.0169 (18)0.0196 (13)0.0209 (14)0.0009 (12)0.0019 (13)0.0023 (11)
C40.0259 (18)0.0154 (13)0.0246 (16)0.0012 (13)0.0041 (15)0.0017 (11)
C50.0233 (17)0.0196 (13)0.0184 (13)0.0003 (15)0.0004 (15)0.0035 (10)
C60.0169 (18)0.0186 (13)0.0199 (14)0.0010 (12)0.0061 (13)0.0020 (11)
C70.0172 (16)0.0152 (13)0.0210 (15)0.0022 (12)0.0055 (13)0.0014 (11)
C80.0186 (19)0.0190 (14)0.0208 (15)0.0006 (13)0.0027 (13)0.0010 (12)
C90.0161 (17)0.0181 (12)0.0167 (13)0.0037 (12)0.0049 (12)0.0021 (10)
C100.0219 (16)0.0165 (12)0.0182 (13)0.0004 (14)0.0045 (14)0.0016 (10)
C110.0203 (19)0.0141 (12)0.0213 (13)0.0008 (12)0.0040 (12)0.0016 (10)
C120.023 (2)0.0186 (13)0.0157 (14)0.0007 (13)0.0018 (13)0.0008 (10)
C130.0243 (17)0.0159 (13)0.0191 (15)0.0034 (13)0.0033 (14)0.0017 (11)
C140.0243 (18)0.0157 (13)0.0199 (14)0.0017 (14)0.0019 (15)0.0015 (10)
C150.0240 (16)0.0215 (13)0.0140 (13)0.0030 (16)0.0007 (15)0.0007 (10)
C160.0288 (19)0.0214 (14)0.0188 (15)0.0010 (14)0.0027 (15)0.0025 (12)
C170.0260 (19)0.0169 (13)0.0237 (15)0.0011 (13)0.0053 (14)0.0001 (11)
C180.0266 (15)0.0221 (13)0.0204 (13)0.0010 (18)0.0012 (15)0.0036 (11)
C190.0302 (19)0.0321 (16)0.0230 (13)0.0023 (17)0.0012 (14)0.0030 (12)
C200.029 (2)0.0276 (15)0.0165 (13)0.0029 (15)0.0022 (14)0.0077 (11)
C210.033 (2)0.0360 (18)0.0228 (16)0.0011 (17)0.0033 (15)0.0058 (14)
C220.0264 (17)0.0196 (12)0.0171 (13)0.0023 (16)0.0042 (12)0.0026 (13)
Geometric parameters (Å, º) top
Br1—C31.905 (3)C10—C111.411 (4)
O1—C111.353 (3)C10—C221.435 (4)
O1—C181.458 (3)C12—C171.387 (4)
O2—C151.375 (3)C12—C131.402 (4)
O2—C201.429 (3)C13—C141.380 (4)
N2—C221.151 (4)C13—H13A0.9300
N1—C111.307 (4)C14—C151.388 (4)
N1—C71.372 (3)C14—H14A0.9300
C1—C21.380 (4)C15—C161.395 (4)
C1—C61.398 (4)C16—C171.392 (4)
C1—H1A0.9300C16—H16A0.9300
C2—C31.384 (4)C17—H17A0.9300
C2—H2A0.9300C18—C191.512 (4)
C3—C41.376 (4)C18—H18A0.9700
C4—C51.386 (4)C18—H18B0.9700
C4—H4A0.9300C19—H19A0.9600
C5—C61.403 (4)C19—H19B0.9600
C5—H5A0.9300C19—H19C0.9600
C6—C71.462 (4)C20—C211.514 (4)
C7—C81.397 (4)C20—H20A0.9700
C8—C91.395 (4)C20—H20B0.9700
C8—H8A0.9300C21—H21A0.9600
C9—C101.399 (4)C21—H21B0.9600
C9—C121.483 (4)C21—H21C0.9600
C11—O1—C18117.6 (2)C14—C13—H13A119.5
C15—O2—C20117.9 (2)C12—C13—H13A119.5
C11—N1—C7118.4 (3)C13—C14—C15120.1 (3)
C2—C1—C6121.4 (3)C13—C14—H14A120.0
C2—C1—H1A119.3C15—C14—H14A120.0
C6—C1—H1A119.3O2—C15—C14115.5 (2)
C1—C2—C3119.4 (3)O2—C15—C16124.3 (2)
C1—C2—H2A120.3C14—C15—C16120.2 (3)
C3—C2—H2A120.3C17—C16—C15118.8 (3)
C4—C3—C2121.0 (3)C17—C16—H16A120.6
C4—C3—Br1120.6 (2)C15—C16—H16A120.6
C2—C3—Br1118.4 (2)C12—C17—C16121.8 (3)
C3—C4—C5119.3 (3)C12—C17—H17A119.1
C3—C4—H4A120.3C16—C17—H17A119.1
C5—C4—H4A120.3O1—C18—C19112.8 (3)
C4—C5—C6121.3 (3)O1—C18—H18A109.0
C4—C5—H5A119.4C19—C18—H18A109.0
C6—C5—H5A119.4O1—C18—H18B109.0
C1—C6—C5117.6 (3)C19—C18—H18B109.0
C1—C6—C7119.6 (2)H18A—C18—H18B107.8
C5—C6—C7122.8 (3)C18—C19—H19A109.5
N1—C7—C8120.8 (3)C18—C19—H19B109.5
N1—C7—C6116.1 (3)H19A—C19—H19B109.5
C8—C7—C6123.2 (2)C18—C19—H19C109.5
C9—C8—C7120.8 (3)H19A—C19—H19C109.5
C9—C8—H8A119.6H19B—C19—H19C109.5
C7—C8—H8A119.6O2—C20—C21106.2 (2)
C8—C9—C10117.5 (3)O2—C20—H20A110.5
C8—C9—C12120.9 (3)C21—C20—H20A110.5
C10—C9—C12121.6 (3)O2—C20—H20B110.5
C9—C10—C11118.2 (3)C21—C20—H20B110.5
C9—C10—C22122.7 (3)H20A—C20—H20B108.7
C11—C10—C22119.1 (2)C20—C21—H21A109.5
N1—C11—O1120.1 (2)C20—C21—H21B109.5
N1—C11—C10124.4 (3)H21A—C21—H21B109.5
O1—C11—C10115.6 (2)C20—C21—H21C109.5
C17—C12—C13118.1 (3)H21A—C21—H21C109.5
C17—C12—C9122.9 (2)H21B—C21—H21C109.5
C13—C12—C9118.9 (2)N2—C22—C10179.0 (3)
C14—C13—C12120.9 (3)
C6—C1—C2—C30.8 (5)C7—N1—C11—C101.9 (4)
C1—C2—C3—C41.3 (5)C18—O1—C11—N111.6 (4)
C1—C2—C3—Br1177.1 (2)C18—O1—C11—C10168.9 (3)
C2—C3—C4—C50.6 (5)C9—C10—C11—N10.1 (5)
Br1—C3—C4—C5177.8 (2)C22—C10—C11—N1179.0 (3)
C3—C4—C5—C60.6 (5)C9—C10—C11—O1179.4 (3)
C2—C1—C6—C50.4 (5)C22—C10—C11—O10.5 (4)
C2—C1—C6—C7178.0 (3)C8—C9—C12—C17140.0 (3)
C4—C5—C6—C11.1 (5)C10—C9—C12—C1742.6 (5)
C4—C5—C6—C7177.2 (3)C8—C9—C12—C1343.3 (4)
C11—N1—C7—C81.7 (4)C10—C9—C12—C13134.0 (3)
C11—N1—C7—C6177.2 (3)C17—C12—C13—C142.0 (5)
C1—C6—C7—N15.4 (4)C9—C12—C13—C14174.8 (3)
C5—C6—C7—N1173.0 (3)C12—C13—C14—C151.3 (5)
C1—C6—C7—C8175.7 (3)C20—O2—C15—C14169.1 (3)
C5—C6—C7—C85.9 (5)C20—O2—C15—C1610.8 (5)
N1—C7—C8—C90.3 (4)C13—C14—C15—O2179.8 (3)
C6—C7—C8—C9179.1 (3)C13—C14—C15—C160.2 (5)
C7—C8—C9—C102.0 (4)O2—C15—C16—C17179.1 (3)
C7—C8—C9—C12179.5 (3)C14—C15—C16—C170.9 (5)
C8—C9—C10—C111.9 (4)C13—C12—C17—C161.3 (5)
C12—C9—C10—C11179.3 (3)C9—C12—C17—C16175.4 (3)
C8—C9—C10—C22177.0 (3)C15—C16—C17—C120.1 (5)
C12—C9—C10—C220.4 (5)C11—O1—C18—C1983.0 (3)
C7—N1—C11—O1177.6 (3)C15—O2—C20—C21174.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···N10.932.412.758 (4)102
C5—H5A···N2i0.932.583.446 (4)156
C13—H13A···N2ii0.932.533.206 (4)130
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H19BrN2O2
Mr423.29
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)4.3414 (2), 14.7392 (6), 29.4409 (13)
V3)1883.89 (14)
Z4
Radiation typeMo Kα
µ (mm1)2.20
Crystal size (mm)0.57 × 0.05 × 0.03
Data collection
DiffractometerBruker APEXII CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.368, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
18389, 5477, 4081
Rint0.076
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.084, 0.99
No. of reflections5477
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.54
Absolute structureFlack (1983), 2269 Friedel pairs
Absolute structure parameter0.008 (9)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···N10.932.412.758 (4)102
C5—H5A···N2i0.932.583.446 (4)156
C13—H13A···N2ii0.932.533.206 (4)130
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§Thomson Reuters ResearcherID: A-3561-2009. Additional correspondence author, e-mail: hkfun@usm.my.

Acknowledgements

The authors thank the Thailand Research Fund (TRF) for a research grant (RSA 5280033) and Prince of Songkla University for financial support. AMI is grateful to the Director, NITK-Surathkal, India, for providing research facilities and the Head of the Department of Chemistry and Dean R&D, NITK-Surathkal, for their encouragement. The authors also thank the Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBorgna, P., Pregnolato, M., Gamba, I. A. & Mellerio, G. (1993). J. Heterocycl. Chem. 30, 1079–1084.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Fun, H.-K., Suwunwong, T., Padaki, M. & Isloor, A. M. (2009). Acta Cryst. E65, o2914–o2915.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Patil, P. S., Dharmaprakash, S. M. & Chantrapromma, S. (2008). Acta Cryst. E64, o1540–o1541.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGoda, F. E., Abdel-Aziz, A. A.-M. & Attef, O. A. (2004). Bioorg. Med. Chem. 12, 1845–1852.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKamal, A., Khan, M. N. A., Reddy, K. S. & Rohini, K. (2007). Bioorg. Med. Chem. 15, 1004–1013.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMalinka, W., Ryng, S., Sieklucka-Dziuba, M., Rajtar, G., Głowniak, A. & Kleinrok, Z. (1998). Farmaco. 53, 504–512.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o79-o80
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds