metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua{5,5′-di­meth­oxy-2,2-[ethane-1,2-diylbis(nitrilo­methyl­idyne)]diphenolato}nickel(II)

aDepartment of Chemistry, Jiaying University, Meizhou 514015, People's Republic of China
*Correspondence e-mail: chunbao_tang@126.com

(Received 22 September 2009; accepted 26 September 2009; online 3 October 2009)

The title mononuclear nickel(II) complex, [Ni(C18H18N2O4)(H2O)], possesses crystallographic mirror symmetry. The Ni atom is five-coordinated in a square-pyramidal geometry, with two imine N and two phenolate O atoms of the Schiff base ligand in the square plane, and the water O atom in the axial position. In the crystal, the mol­ecules are linked via inter­molecular O—H⋯O hydrogen bonds, forming chains along the a axis.

Related literature

For related structures, see: Angulo et al. (2001[Angulo, I. M., Bouwman, E., Lutz, M., Mul, W. P. & Spek, A. L. (2001). Inorg. Chem. 40, 2073-2082.]); Dey et al. (2004[Dey, S. K., Mondal, N., El Fallah, M. S., Vicente, R., Escuer, A., Solans, X., Font-Bardia, M., Matsushita, T., Gramlich, V. & Mitra, S. (2004). Inorg. Chem. 43, 2427-2434.]); Edison et al. (2004[Edison, S. E., Krause Bauer, J. A. & Baldwin, M. J. (2004). Acta Cryst. E60, m1930-m1932.]); Ramadevi et al. (2005[Ramadevi, P., Kumaresan, S. & Muir, K. W. (2005). Acta Cryst. E61, m1749-m1751.]); Suh et al. (1996[Suh, M. P., Oh, K. Y., Lee, J. W. & Bae, Y. Y. (1996). J. Am. Chem. Soc. 118, 777-783.]); Tang (2009[Tang, C. (2009). Acta Cryst. E65, m317.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C18H18N2O4)(H2O)]

  • Mr = 403.07

  • Orthorhombic, P n m a

  • a = 8.7698 (3) Å

  • b = 27.0608 (9) Å

  • c = 7.4731 (2) Å

  • V = 1773.5 (1) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.13 mm−1

  • T = 298 K

  • 0.18 × 0.17 × 0.17 mm

Data collection
  • Bruker SMART CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.823, Tmax = 0.832

  • 9937 measured reflections

  • 1978 independent reflections

  • 1762 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.085

  • S = 1.04

  • 1978 reflections

  • 125 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1i 0.847 (10) 1.969 (17) 2.734 (2) 150 (3)
Symmetry code: (i) [x+{\script{1\over 2}}, y, -z+{\script{5\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Nickel(II) complexes play an important role in both bioinorganic chemistry and coordination chemistry (Suh et al., 1996; Dey et al., 2004; Angulo et al., 2001; Ramadevi et al., 2005; Edison et al., 2004). Recently, the author has reported a nickel(II) complex with a related Schiff base ligand (Tang, 2009). As a continuation of this work, the title mononuclear nickel(II) complex, Fig. 1, is reported here.

The molecule of the title complex possesses crystallographic mirror symmetry. The Ni atom in the complex is five-coordinated by two imine N and two phenolate O atoms of the Schiff base ligand, and by one water O atom, forming a square-pyramidal geometry.

In the crystal structure, the molecules are linked through intermolecular O—H···O hydrogen bonds (Table 1), forming chains along the a axis, as shown in Fig. 2.

Related literature top

For related structures, see: Angulo et al. (2001); Dey et al. (2004); Edison et al. (2004); Ramadevi et al. (2005); Suh et al. (1996); Tang (2009).

Experimental top

4-Methoxy-2-hydroxybenzaldehyde (0.2 mmol, 30.5 mg), ethane-1,2-diamine (0.1 mmol, 6.0 mg) and nickel(II) nitrate hexahydrate (0.1 mmol, 29.1 mg) were mixed in a methanol solution (20 ml). The mixture was stirred at room temperature for 30 min to give a green solution. The solution was allowed to stand in air for 5 days, yielding green block-shaped crystals of the title complex.

Refinement top

Water H atoms were located from a difference Fourier map and refined isotropically, with O—H distance restrained to 0.85 (1) Å. Other H atoms were constrained to ideal geometries, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Nickel(II) complexes play an important role in both bioinorganic chemistry and coordination chemistry (Suh et al., 1996; Dey et al., 2004; Angulo et al., 2001; Ramadevi et al., 2005; Edison et al., 2004). Recently, the author has reported a nickel(II) complex with a related Schiff base ligand (Tang, 2009). As a continuation of this work, the title mononuclear nickel(II) complex, Fig. 1, is reported here.

The molecule of the title complex possesses crystallographic mirror symmetry. The Ni atom in the complex is five-coordinated by two imine N and two phenolate O atoms of the Schiff base ligand, and by one water O atom, forming a square-pyramidal geometry.

In the crystal structure, the molecules are linked through intermolecular O—H···O hydrogen bonds (Table 1), forming chains along the a axis, as shown in Fig. 2.

For related structures, see: Angulo et al. (2001); Dey et al. (2004); Edison et al. (2004); Ramadevi et al. (2005); Suh et al. (1996); Tang (2009).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing of the title complex, viewed along the c axis. Intermolecular O—H···O hydrogen bonds are shown as dashed lines.
Aqua{5,5'-dimethoxy-2,2-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato}nickel(II) top
Crystal data top
[Ni(C18H18N2O4)(H2O)]F(000) = 840
Mr = 403.07Dx = 1.510 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 4326 reflections
a = 8.7698 (3) Åθ = 2.3–29.2°
b = 27.0608 (9) ŵ = 1.13 mm1
c = 7.4731 (2) ÅT = 298 K
V = 1773.5 (1) Å3Block, green
Z = 40.18 × 0.17 × 0.17 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
1978 independent reflections
Radiation source: fine-focus sealed tube1762 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 27.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1011
Tmin = 0.823, Tmax = 0.832k = 3432
9937 measured reflectionsl = 98
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0327P)2 + 1.6368P]
where P = (Fo2 + 2Fc2)/3
1978 reflections(Δ/σ)max = 0.001
125 parametersΔρmax = 0.39 e Å3
1 restraintΔρmin = 0.46 e Å3
Crystal data top
[Ni(C18H18N2O4)(H2O)]V = 1773.5 (1) Å3
Mr = 403.07Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 8.7698 (3) ŵ = 1.13 mm1
b = 27.0608 (9) ÅT = 298 K
c = 7.4731 (2) Å0.18 × 0.17 × 0.17 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
1978 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1762 reflections with I > 2σ(I)
Tmin = 0.823, Tmax = 0.832Rint = 0.023
9937 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0341 restraint
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.39 e Å3
1978 reflectionsΔρmin = 0.46 e Å3
125 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.04557 (4)0.25001.04045 (5)0.03460 (13)
N10.1893 (2)0.29806 (9)0.9426 (3)0.0540 (5)
O10.10331 (18)0.30124 (6)1.0871 (2)0.0459 (4)
O20.3611 (2)0.45495 (6)1.0277 (2)0.0558 (5)
O30.1380 (3)0.25001.3276 (3)0.0467 (5)
C10.0251 (3)0.36946 (9)0.9443 (3)0.0425 (5)
C20.1014 (3)0.34714 (8)1.0324 (3)0.0379 (5)
C30.2323 (3)0.37628 (8)1.0615 (3)0.0412 (5)
H3A0.31600.36251.11970.049*
C40.2387 (3)0.42474 (9)1.0054 (3)0.0440 (5)
C50.1154 (3)0.44666 (9)0.9178 (3)0.0535 (6)
H50.12040.47930.87910.064*
C60.0129 (3)0.41896 (9)0.8904 (3)0.0519 (6)
H60.09580.43360.83360.062*
C70.1637 (3)0.34352 (10)0.9075 (3)0.0501 (6)
H70.24180.36130.85320.060*
C80.3344 (3)0.27498 (13)0.8944 (7)0.1204 (18)
H8A0.36330.28630.77600.144*
H8B0.41190.28630.97740.144*
C90.4961 (3)0.43441 (10)1.1044 (4)0.0623 (7)
H9A0.53060.40731.03210.093*
H9B0.57400.45931.10960.093*
H9C0.47430.42281.22310.093*
H30.194 (3)0.2744 (7)1.355 (4)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02532 (19)0.0415 (2)0.0369 (2)0.0000.00467 (15)0.000
N10.0328 (10)0.0682 (14)0.0611 (13)0.0012 (9)0.0092 (9)0.0186 (11)
O10.0374 (8)0.0394 (8)0.0610 (10)0.0007 (7)0.0115 (7)0.0110 (7)
O20.0664 (11)0.0380 (9)0.0631 (11)0.0067 (8)0.0063 (9)0.0083 (8)
O30.0341 (12)0.0514 (14)0.0545 (14)0.0000.0101 (11)0.000
C10.0450 (12)0.0462 (12)0.0363 (11)0.0125 (10)0.0011 (9)0.0016 (10)
C20.0390 (11)0.0389 (11)0.0360 (10)0.0064 (9)0.0016 (9)0.0025 (9)
C30.0421 (12)0.0373 (11)0.0443 (12)0.0050 (9)0.0034 (10)0.0022 (9)
C40.0555 (14)0.0387 (12)0.0378 (11)0.0029 (10)0.0022 (10)0.0006 (9)
C50.0708 (17)0.0381 (12)0.0518 (14)0.0100 (12)0.0048 (13)0.0077 (11)
C60.0578 (15)0.0502 (14)0.0478 (13)0.0181 (12)0.0072 (12)0.0067 (11)
C70.0397 (12)0.0629 (16)0.0478 (13)0.0120 (11)0.0051 (10)0.0133 (12)
C80.0448 (16)0.104 (3)0.212 (5)0.0225 (16)0.056 (2)0.079 (3)
C90.0617 (16)0.0539 (15)0.0713 (18)0.0134 (13)0.0116 (15)0.0120 (14)
Geometric parameters (Å, º) top
Ni1—O1i1.9363 (16)C2—C31.410 (3)
Ni1—O11.9363 (16)C3—C41.378 (3)
Ni1—N1i1.953 (2)C3—H3A0.9300
Ni1—N11.953 (2)C4—C51.396 (3)
Ni1—O32.294 (2)C5—C61.367 (4)
N1—C71.278 (3)C5—H50.9300
N1—C81.463 (3)C6—H60.9300
O1—C21.308 (3)C7—H70.9300
O2—C41.359 (3)C8—C8i1.352 (7)
O2—C91.428 (3)C8—H8A0.9700
O3—H30.847 (10)C8—H8B0.9700
C1—C61.403 (3)C9—H9A0.9600
C1—C21.424 (3)C9—H9B0.9600
C1—C71.430 (3)C9—H9C0.9600
O1i—Ni1—O191.47 (9)O2—C4—C3124.6 (2)
O1i—Ni1—N1i91.48 (8)O2—C4—C5114.4 (2)
O1—Ni1—N1i168.38 (9)C3—C4—C5121.0 (2)
O1i—Ni1—N1168.38 (9)C6—C5—C4118.3 (2)
O1—Ni1—N191.48 (8)C6—C5—H5120.8
N1i—Ni1—N183.49 (13)C4—C5—H5120.8
O1i—Ni1—O394.00 (7)C5—C6—C1122.9 (2)
O1—Ni1—O394.00 (7)C5—C6—H6118.6
N1i—Ni1—O397.00 (8)C1—C6—H6118.6
N1—Ni1—O397.00 (8)N1—C7—C1125.6 (2)
C7—N1—C8120.9 (2)N1—C7—H7117.2
C7—N1—Ni1127.17 (17)C1—C7—H7117.2
C8—N1—Ni1111.69 (19)C8i—C8—N1115.27 (16)
C2—O1—Ni1127.95 (14)C8i—C8—H8A108.5
C4—O2—C9118.01 (19)N1—C8—H8A108.5
Ni1—O3—H3115 (2)C8i—C8—H8B108.5
C6—C1—C2118.6 (2)N1—C8—H8B108.5
C6—C1—C7118.6 (2)H8A—C8—H8B107.5
C2—C1—C7122.8 (2)O2—C9—H9A109.5
O1—C2—C3118.17 (19)O2—C9—H9B109.5
O1—C2—C1123.9 (2)H9A—C9—H9B109.5
C3—C2—C1117.9 (2)O2—C9—H9C109.5
C4—C3—C2121.2 (2)H9A—C9—H9C109.5
C4—C3—H3A119.4H9B—C9—H9C109.5
C2—C3—H3A119.4
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1ii0.85 (1)1.97 (2)2.734 (2)150 (3)
Symmetry code: (ii) x+1/2, y, z+5/2.

Experimental details

Crystal data
Chemical formula[Ni(C18H18N2O4)(H2O)]
Mr403.07
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)298
a, b, c (Å)8.7698 (3), 27.0608 (9), 7.4731 (2)
V3)1773.5 (1)
Z4
Radiation typeMo Kα
µ (mm1)1.13
Crystal size (mm)0.18 × 0.17 × 0.17
Data collection
DiffractometerBruker SMART CCD area detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.823, 0.832
No. of measured, independent and
observed [I > 2σ(I)] reflections
9937, 1978, 1762
Rint0.023
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.085, 1.04
No. of reflections1978
No. of parameters125
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.46

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.847 (10)1.969 (17)2.734 (2)150 (3)
Symmetry code: (i) x+1/2, y, z+5/2.
 

Acknowledgements

Financial support from the Jiaying University research fund is gratefully acknowledged.

References

First citationAngulo, I. M., Bouwman, E., Lutz, M., Mul, W. P. & Spek, A. L. (2001). Inorg. Chem. 40, 2073–2082.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDey, S. K., Mondal, N., El Fallah, M. S., Vicente, R., Escuer, A., Solans, X., Font-Bardia, M., Matsushita, T., Gramlich, V. & Mitra, S. (2004). Inorg. Chem. 43, 2427–2434.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEdison, S. E., Krause Bauer, J. A. & Baldwin, M. J. (2004). Acta Cryst. E60, m1930-m1932.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamadevi, P., Kumaresan, S. & Muir, K. W. (2005). Acta Cryst. E61, m1749–m1751.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuh, M. P., Oh, K. Y., Lee, J. W. & Bae, Y. Y. (1996). J. Am. Chem. Soc. 118, 777–783.  CSD CrossRef CAS Web of Science Google Scholar
First citationTang, C. (2009). Acta Cryst. E65, m317.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds