organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3,5-Tris(2H-tetra­zol-5-ylmeth­­oxy)­benzene

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: hyye@seu.edu.cn

(Received 13 November 2007; accepted 23 November 2007; online 6 December 2007)

The title compound, C12H12N12O3, was obtained by the hydro­thermal reaction of 1,3,5-tricyano­methoxy­benzene and (CH3)3SiN3. The mol­ecule is almost planar, with an r.m.s. deviation of 0.0976 Å from the plane through all atoms in the mol­ecule. The three tetra­zole rings make dihedral angles of 13.09 (19), 2.01 (19) and 11.56 (18)° with one another and corresponding angles of 8.66 (17), 5.44 (16) and 3.51 (17)° with the central benzene ring. In the crystal structure, inter­molecular N—H⋯N hydrogen bonds form well separated one-dimensional planar sheets.

Related literature

For the use of tetra­zole derivatives in coordination chemisty, see: Arp et al. (2000[Arp, H. P. H., Decken, A., Passmore, J. & Wood, D. J. (2000). Inorg. Chem. 39, 1840-1848.]); Hu et al. (2007[Hu, B., Xu, X.-B., Li, Y.-X. & Ye, H.-Y. (2007). Acta Cryst. E63, m2698.]); Wang et al. (2005[Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278-5285.]); Xiong et al. (2002[Xiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed. 41, 3800-3803.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12N12O3

  • Mr = 372.34

  • Triclinic, [P \overline 1]

  • a = 4.9851 (4) Å

  • b = 11.8822 (7) Å

  • c = 14.1349 (13) Å

  • α = 99.60 (3)°

  • β = 92.87 (2)°

  • γ = 100.943 (15)°

  • V = 807.64 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 (2) K

  • 0.25 × 0.2 × 0.12 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.891, Tmax = 1 (expected range = 0.879–0.986)

  • 8398 measured reflections

  • 3686 independent reflections

  • 2653 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.149

  • S = 1.05

  • 3686 reflections

  • 256 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N7i 0.92 (3) 1.97 (3) 2.872 (3) 168 (3)
N5—H5A⋯N10ii 0.89 (3) 2.01 (3) 2.892 (2) 171 (3)
N12—H12A⋯N3iii 0.91 (3) 1.94 (3) 2.840 (3) 174 (2)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x-1, -y+1, -z+1; (iii) -x+1, -y+1, -z+2.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL/PC (Sheldrick, 1999[Sheldrick, G. M. (1999). SHELXTL/PC. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

In the past five years, we have focused on the chemistry of tetrazole derivatives 5 because of their multiple coordination modes as ligands to metal ions and for the construction of novel metal-organic frameworks (Wang, et al. 2005; Xiong, et al. 2002). We report here the crystal structure of the title compound, 1,3,5-tris((2H-tetrazol-5-yl)methoxy)benzene (I), (Fig.1).

In I, there are three chemically equivalent tetrazole moieties. The bond distances and bond angles of the three tetrazole rings are in the usual ranges (Wang, et al. 2005; ARP, et al. 2000; Hu, et al. 2007). The molecule is almost planar with an r.m.s. deviation of 0.0976 Å from the plane through all atoms in the molecule. Dihedral angles between the C8 and C10, C10 and C12 and C8 and C12 tetrazole rings are 13.56 (15), 2.01 (19) & 11.56 (18)°, respectively. Dihedral angles between the benzene ring and the C8, C10 and C12 tetrazole rings are 8.66 (17), 5.44 (16) & 3.51 (17)°, respectively. In each tetrazole ring, one N=N bond (N2=N3, N6=N7, and N10=N11), is distinctly shorter than the other two N—N distances (Table I). In the crystal structure, inversion related N1—H1A···N7i, N5—H5A···N10ii, and N12—H12Aiii···N3 hydrogen bonds link the molecules into infinite planar sheets. (Symmetry codes: (i) -x + 2, -y - 1, -z + 1; (ii) -x, -y, -z + 1; (iii) -x + 2, -y, -z + 2.) (Fig.2).

Related literature top

For the use of tetrazole derivatives in coordination chemisty, see: ARP et al. (2000); Hu et al. (2007); Wang et al. (2005); Xiong et al. (2002).

Experimental top

A mixture of benzene-1,3,5-triol (2.5 g, 0.02 mol), 10 g K2CO3, 30 ml and acetone 2-bromoacetonitrile (8.6 g, 0.023 mol) was refluxed overnight. After cooling, the resulting dark mixture was extracted with ether (30 ml), and then the extract was removed at reduced pressure to give a pale yellow solid crude product, which was recrystallized in ethanol to obtain white 1,3,5-tricyanomethoxy-benzene (2.4 g, 0.01 mol). A mixture of 1,3,5-tricyanomethoxy-benzene (24 mg, 0.1 mmol) and (CH3)3SiN3 (67 mg, 0.6 mmol), ethanol (0.8 ml) and water (0.4 ml) was sealed in a Pyrex tube at 110 °C for one day. On cooling to room temperature, pale yellow block-like crystals suitable for X-ray analysis were obtained.

Refinement top

Positional parameters of all H atoms bonded to C were calculated geometrically and allowed to ride on the C atoms to which they are bound, with d(C—H) = 0.93 Å for sp2 or d(C—H) = 0.97Å for sp3 and Uiso(H) = 1.2Ueq(C). The N—H hydrogen atoms of tetrazole rings were located in a difference Fourier map and refined freely with isotropic temperature factors.

Structure description top

In the past five years, we have focused on the chemistry of tetrazole derivatives 5 because of their multiple coordination modes as ligands to metal ions and for the construction of novel metal-organic frameworks (Wang, et al. 2005; Xiong, et al. 2002). We report here the crystal structure of the title compound, 1,3,5-tris((2H-tetrazol-5-yl)methoxy)benzene (I), (Fig.1).

In I, there are three chemically equivalent tetrazole moieties. The bond distances and bond angles of the three tetrazole rings are in the usual ranges (Wang, et al. 2005; ARP, et al. 2000; Hu, et al. 2007). The molecule is almost planar with an r.m.s. deviation of 0.0976 Å from the plane through all atoms in the molecule. Dihedral angles between the C8 and C10, C10 and C12 and C8 and C12 tetrazole rings are 13.56 (15), 2.01 (19) & 11.56 (18)°, respectively. Dihedral angles between the benzene ring and the C8, C10 and C12 tetrazole rings are 8.66 (17), 5.44 (16) & 3.51 (17)°, respectively. In each tetrazole ring, one N=N bond (N2=N3, N6=N7, and N10=N11), is distinctly shorter than the other two N—N distances (Table I). In the crystal structure, inversion related N1—H1A···N7i, N5—H5A···N10ii, and N12—H12Aiii···N3 hydrogen bonds link the molecules into infinite planar sheets. (Symmetry codes: (i) -x + 2, -y - 1, -z + 1; (ii) -x, -y, -z + 1; (iii) -x + 2, -y, -z + 2.) (Fig.2).

For the use of tetrazole derivatives in coordination chemisty, see: ARP et al. (2000); Hu et al. (2007); Wang et al. (2005); Xiong et al. (2002).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 1999).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the a axis. All hydrogen atoms not involved in hydrogen bonding (dashed lines) were omitted for clarity.
1,3,5-Tris(2H-tetrazol-5-ylmethoxy)benzene top
Crystal data top
C12H12N12O3Z = 2
Mr = 372.34F(000) = 384
Triclinic, P1Dx = 1.531 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.9851 (4) ÅCell parameters from 1880 reflections
b = 11.8822 (7) Åθ = 3.1–27.5°
c = 14.1349 (13) ŵ = 0.12 mm1
α = 99.60 (3)°T = 293 K
β = 92.87 (2)°Block, colorless
γ = 100.943 (15)°0.25 × 0.2 × 0.12 mm
V = 807.64 (11) Å3
Data collection top
Rigaku Mercury2 (2 × 2 bin mode)
diffractometer
3686 independent reflections
Radiation source: fine-focus sealed tube2653 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 66
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1515
Tmin = 0.891, Tmax = 1l = 1818
8398 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0711P)2 + 0.2604P]
where P = (Fo2 + 2Fc2)/3
3686 reflections(Δ/σ)max < 0.001
256 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C12H12N12O3γ = 100.943 (15)°
Mr = 372.34V = 807.64 (11) Å3
Triclinic, P1Z = 2
a = 4.9851 (4) ÅMo Kα radiation
b = 11.8822 (7) ŵ = 0.12 mm1
c = 14.1349 (13) ÅT = 293 K
α = 99.60 (3)°0.25 × 0.2 × 0.12 mm
β = 92.87 (2)°
Data collection top
Rigaku Mercury2 (2 × 2 bin mode)
diffractometer
3686 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2653 reflections with I > 2σ(I)
Tmin = 0.891, Tmax = 1Rint = 0.036
8398 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.53 e Å3
3686 reflectionsΔρmin = 0.23 e Å3
256 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4944 (3)0.29164 (13)0.81580 (10)0.0364 (4)
O20.0878 (3)0.18419 (13)0.49413 (10)0.0343 (4)
O30.1336 (3)0.50558 (12)0.70463 (9)0.0309 (4)
N10.8441 (5)0.23109 (18)0.93683 (14)0.0450 (6)
N21.0188 (5)0.21973 (19)1.00837 (15)0.0543 (6)
N31.0297 (4)0.30962 (18)1.07529 (13)0.0435 (5)
N40.8662 (4)0.38061 (17)1.04861 (13)0.0419 (5)
N50.0149 (4)0.07285 (16)0.31051 (12)0.0338 (4)
N60.0071 (4)0.00274 (18)0.22479 (13)0.0433 (5)
N70.1856 (4)0.06057 (17)0.23524 (13)0.0426 (5)
N80.3127 (4)0.03434 (16)0.32650 (12)0.0369 (5)
N90.6125 (4)0.66664 (15)0.62247 (12)0.0329 (4)
N100.6780 (4)0.75385 (16)0.68837 (13)0.0363 (5)
N110.5411 (4)0.76527 (16)0.77066 (13)0.0381 (5)
N120.3816 (4)0.68545 (16)0.75912 (13)0.0318 (4)
C10.3201 (4)0.31401 (17)0.74592 (14)0.0260 (4)
C20.3001 (4)0.23846 (17)0.65792 (14)0.0276 (5)
H2A0.39990.17940.64920.033*
C30.1271 (4)0.25444 (17)0.58426 (13)0.0248 (4)
C40.0233 (4)0.34265 (17)0.59459 (13)0.0251 (4)
H4A0.13730.35250.54380.030*
C50.0037 (4)0.41535 (16)0.68380 (13)0.0235 (4)
C60.1764 (4)0.40318 (17)0.76073 (13)0.0262 (4)
H6A0.19410.45330.81970.031*
C70.5606 (5)0.37403 (19)0.90189 (14)0.0337 (5)
H7B0.39660.38250.93420.040*
H7C0.64710.44940.88850.040*
C80.7525 (4)0.32884 (18)0.96283 (14)0.0304 (5)
C90.2734 (4)0.10828 (18)0.47337 (14)0.0288 (5)
H9B0.25530.05140.51580.035*
H9C0.46080.15200.48190.035*
C100.2012 (4)0.04925 (17)0.37119 (14)0.0271 (4)
C110.2956 (4)0.52921 (18)0.62784 (14)0.0278 (5)
H11A0.43330.46070.60020.033*
H11B0.18160.55160.57770.033*
C120.4281 (4)0.62620 (17)0.66905 (14)0.0256 (4)
H12A0.268 (5)0.681 (2)0.8099 (19)0.048 (7)*
H5A0.090 (7)0.126 (3)0.318 (2)0.077 (10)*
H1A0.808 (6)0.176 (3)0.882 (2)0.064 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0490 (9)0.0375 (8)0.0236 (7)0.0275 (7)0.0165 (7)0.0079 (6)
O20.0413 (9)0.0390 (8)0.0234 (7)0.0269 (7)0.0091 (6)0.0103 (6)
O30.0391 (8)0.0347 (8)0.0221 (7)0.0253 (7)0.0067 (6)0.0033 (6)
N10.0618 (14)0.0433 (11)0.0291 (10)0.0286 (10)0.0201 (9)0.0090 (9)
N20.0733 (16)0.0548 (13)0.0368 (11)0.0376 (12)0.0231 (11)0.0061 (10)
N30.0542 (13)0.0512 (12)0.0267 (10)0.0262 (10)0.0139 (9)0.0014 (9)
N40.0558 (13)0.0448 (11)0.0241 (9)0.0238 (10)0.0154 (9)0.0069 (8)
N50.0411 (11)0.0361 (10)0.0257 (9)0.0227 (9)0.0054 (8)0.0046 (8)
N60.0566 (13)0.0449 (11)0.0283 (10)0.0256 (10)0.0070 (9)0.0086 (8)
N70.0576 (13)0.0404 (11)0.0303 (10)0.0252 (10)0.0025 (9)0.0078 (8)
N80.0483 (12)0.0362 (10)0.0279 (9)0.0245 (9)0.0041 (8)0.0051 (8)
N90.0360 (10)0.0357 (10)0.0305 (9)0.0208 (8)0.0076 (8)0.0030 (8)
N100.0386 (11)0.0351 (10)0.0391 (10)0.0221 (8)0.0043 (8)0.0034 (8)
N110.0452 (11)0.0385 (10)0.0338 (10)0.0251 (9)0.0039 (8)0.0009 (8)
N120.0381 (10)0.0347 (10)0.0258 (9)0.0218 (8)0.0064 (8)0.0002 (7)
C10.0287 (10)0.0285 (10)0.0215 (9)0.0131 (8)0.0066 (8)0.0010 (8)
C20.0317 (11)0.0266 (10)0.0254 (10)0.0161 (8)0.0037 (8)0.0026 (8)
C30.0275 (10)0.0260 (10)0.0194 (9)0.0097 (8)0.0031 (8)0.0032 (8)
C40.0262 (10)0.0293 (10)0.0205 (9)0.0127 (8)0.0050 (8)0.0011 (8)
C50.0241 (10)0.0246 (10)0.0238 (9)0.0131 (8)0.0004 (8)0.0013 (8)
C60.0314 (11)0.0290 (10)0.0183 (9)0.0136 (8)0.0053 (8)0.0022 (8)
C70.0420 (12)0.0352 (12)0.0234 (10)0.0191 (10)0.0117 (9)0.0048 (9)
C80.0375 (12)0.0319 (11)0.0219 (10)0.0158 (9)0.0064 (9)0.0028 (8)
C90.0341 (11)0.0279 (10)0.0254 (10)0.0156 (9)0.0024 (8)0.0020 (8)
C100.0317 (11)0.0247 (10)0.0261 (10)0.0122 (8)0.0013 (8)0.0015 (8)
C110.0313 (11)0.0333 (11)0.0216 (10)0.0176 (9)0.0044 (8)0.0017 (8)
C120.0272 (10)0.0269 (10)0.0235 (9)0.0099 (8)0.0036 (8)0.0032 (8)
Geometric parameters (Å, º) top
O1—C11.375 (2)N11—N121.344 (2)
O1—C71.410 (2)N12—C121.334 (3)
O2—C31.384 (2)N12—H12A0.91 (3)
O2—C91.418 (2)C1—C61.382 (3)
O3—C51.378 (2)C1—C21.394 (3)
O3—C111.417 (2)C2—C31.379 (3)
N1—C81.330 (3)C2—H2A0.9300
N1—N21.342 (3)C3—C41.393 (3)
N1—H1A0.92 (3)C4—C51.389 (3)
N2—N31.294 (3)C4—H4A0.9300
N3—N41.362 (3)C5—C61.397 (3)
N4—C81.312 (3)C6—H6A0.9300
N5—C101.333 (3)C7—C81.488 (3)
N5—N61.345 (2)C7—H7B0.9700
N5—H5A0.89 (3)C7—H7C0.9700
N6—N71.288 (3)C9—C101.490 (3)
N7—N81.368 (2)C9—H9B0.9700
N8—C101.315 (3)C9—H9C0.9700
N9—C121.312 (2)C11—C121.486 (3)
N9—N101.373 (2)C11—H11A0.9700
N10—N111.292 (3)C11—H11B0.9700
C1—O1—C7117.89 (15)O3—C5—C4123.76 (16)
C3—O2—C9116.70 (15)O3—C5—C6113.94 (16)
C5—O3—C11117.10 (15)C4—C5—C6122.29 (17)
C8—N1—N2108.52 (18)C1—C6—C5117.55 (17)
C8—N1—H1A131.7 (18)C1—C6—H6A121.2
N2—N1—H1A119.7 (18)C5—C6—H6A121.2
N3—N2—N1106.11 (18)O1—C7—C8106.33 (16)
N2—N3—N4110.95 (17)O1—C7—H7B110.5
C8—N4—N3105.18 (17)C8—C7—H7B110.5
C10—N5—N6108.75 (17)O1—C7—H7C110.5
C10—N5—H5A131 (2)C8—C7—H7C110.5
N6—N5—H5A120 (2)H7B—C7—H7C108.7
N7—N6—N5105.78 (17)N4—C8—N1109.23 (18)
N6—N7—N8111.65 (17)N4—C8—C7125.76 (18)
C10—N8—N7104.66 (17)N1—C8—C7124.96 (17)
C12—N9—N10105.02 (16)O2—C9—C10106.34 (16)
N11—N10—N9111.16 (16)O2—C9—H9B110.5
N10—N11—N12105.82 (17)C10—C9—H9B110.5
C12—N12—N11109.01 (16)O2—C9—H9C110.5
C12—N12—H12A132.7 (17)C10—C9—H9C110.5
N11—N12—H12A118.2 (17)H9B—C9—H9C108.7
O1—C1—C6123.45 (17)N8—C10—N5109.17 (17)
O1—C1—C2114.07 (16)N8—C10—C9125.23 (18)
C6—C1—C2122.48 (17)N5—C10—C9125.60 (17)
C3—C2—C1117.63 (17)O3—C11—C12106.70 (15)
C3—C2—H2A121.2O3—C11—H11A110.4
C1—C2—H2A121.2C12—C11—H11A110.4
C2—C3—O2122.91 (17)O3—C11—H11B110.4
C2—C3—C4122.66 (17)C12—C11—H11B110.4
O2—C3—C4114.43 (16)H11A—C11—H11B108.6
C5—C4—C3117.38 (17)N9—C12—N12108.99 (17)
C5—C4—H4A121.3N9—C12—C11125.19 (17)
C3—C4—H4A121.3N12—C12—C11125.81 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N7i0.92 (3)1.97 (3)2.872 (3)168 (3)
N5—H5A···N10ii0.89 (3)2.01 (3)2.892 (2)171 (3)
N12—H12A···N3iii0.91 (3)1.94 (3)2.840 (3)174 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y+1, z+1; (iii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC12H12N12O3
Mr372.34
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)4.9851 (4), 11.8822 (7), 14.1349 (13)
α, β, γ (°)99.60 (3), 92.87 (2), 100.943 (15)
V3)807.64 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.25 × 0.2 × 0.12
Data collection
DiffractometerRigaku Mercury2 (2 × 2 bin mode)
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.891, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
8398, 3686, 2653
Rint0.036
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.149, 1.05
No. of reflections3686
No. of parameters256
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.23

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1999).

Selected bond lengths (Å) top
N1—C81.330 (3)N7—N81.368 (2)
N1—N21.342 (3)N8—C101.315 (3)
N2—N31.294 (3)N9—C121.312 (2)
N3—N41.362 (3)N9—N101.373 (2)
N4—C81.312 (3)N10—N111.292 (3)
N5—C101.333 (3)N11—N121.344 (2)
N5—N61.345 (2)N12—C121.334 (3)
N6—N71.288 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N7i0.92 (3)1.97 (3)2.872 (3)168 (3)
N5—H5A···N10ii0.89 (3)2.01 (3)2.892 (2)171 (3)
N12—H12A···N3iii0.91 (3)1.94 (3)2.840 (3)174 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y+1, z+1; (iii) x+1, y+1, z+2.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationArp, H. P. H., Decken, A., Passmore, J. & Wood, D. J. (2000). Inorg. Chem. 39, 1840–1848.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHu, B., Xu, X.-B., Li, Y.-X. & Ye, H.-Y. (2007). Acta Cryst. E63, m2698.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1999). SHELXTL/PC. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278–5285.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationXiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed. 41, 3800–3803.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds