Download citation
Download citation
link to html
The title cocrystal, [Mn(C19H20N2O2)(C5H5N)(CH3OH)]PF6·[Mn(C18H18N2O2)(C5H5N)(CH3OH)]PF6, is a 1:1 co-crystal of two MnIII complexes with Schiff base ligands. In each structure, the MnIII centre is in a six-coordinate distorted octa­hedral N3O3 environment, with the N2O2 donor atoms of the tetra­dentate Schiff base ligand as the equatorial plane and the pyridine and methanol mol­ecules in the two axial positions. The difference in the two components of the co-crystal, which are disordered over the same site, is the addition of a methyl group to one of the two methyl­ene C atoms linking the imine N atoms of the Schiff base ligand in one component. In the crystal structure, inter­molecular O—H...O hydrogen bonds and weak inter­molecular C—H...O inter­actions link the mol­ecules into a network. A weak C—H...N intra­molecular inter­action is also observed in the structure of [Mn(C19H20N2O2)(C5H5N)(CH3OH)]PF6.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807053883/sj2395sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807053883/sj2395Isup2.hkl
Contains datablock I

CCDC reference: 672592

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.003 Å
  • Disorder in main residue
  • R factor = 0.049
  • wR factor = 0.138
  • Data-to-parameter ratio = 21.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.25 PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.45 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 4.00 Ratio PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for P1 PLAT301_ALERT_3_C Main Residue Disorder ......................... 1.00 Perc. PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 1
Alert level G FORMU01_ALERT_1_G There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C49 H56 F12 Mn2 N6 O10 P2 Atom count from _chemical_formula_moiety:
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Transition metal compounds containing Schiff base ligands have been of interest for many years (Kani et al., 2000; Habibi et al., 2007; Paschke et al., 2002), since they play an important role in the development of coordination chemistry, particularly in relation to catalysis and enzymatic reactions, as well as molecular magnetism (Cozzi et al., 2004; Darensbourg et al., 2006; Dimauro & Kozlowski, 2002). A considerable number of complexes with multidentate Schiff bases containing O,N donor atoms have been studied (Clarke et al., 1998; Marchetti et al., 1999). In this paper, we report the crystal structure of two co-crystallized MnIII-Schiff base complexes.

The asymmetric unit of the cocrystal (Fig. 1) consists of a mixture of 0.5[Mn(C19H20N2O2)(C5H5N)(CH3OH)], 0.5[Mn(C18H18N2O2)(C5H5N)(CH3OH)] and PF6. The difference between the two components of the co-crystal concerned the substituents on the C21 atom; in one case two H atoms were attached whereas in the other component one H atom is replaced by the methyl group (C22). The environment around MnIII shows a distorted octahedral geometry with the N2O2 of tetradentate Schiff base ligand as the basal plane. The two phenolic O atoms and two imine N atoms are in cis positions. The pyridine and methanol molecules are in the two axial positions. The Mn1—O1 and Mn1—O2 distances of 1.8909 (13) Å and 1.8655 (14) Å, and Mn—N1 and Mn1—N2 distances of 1.9764 (17) Å and 1.9887 (16) Å, respectively lie in the same range as observed for closely related MnIII complexes of Schiff base ligands (Mitra et al., 2006; Naskar et al., 2004). However there are elongations of the axial bonds Mn1—O5 = 2.2986 (16) Å and Mn1—N3 = 2.3532 (18) Å. The dihedral angle between the two benzene rings of the Schiff base ligand is 18.83 (9)°. One methoxy group is coplanar with the attached benzene ring while another one is slightly twisted out of the ring plane as indicated by the torsion angles C23—O3—C4—C5 = 0.6 (3)° and C24—O4—C11—C10 = -16.7 (4)°. Other bond lengths and angles in the ligands are in normal ranges (Allen et al., 1987).

In the crystal packing (Fig. 2), the methanol molecule is involved in an intermolecular O—H···O hydrogen bond and weak C–H···O intermolecular interactions linking the molecules into a network (Table 1, Fig. 2). Morover in the structure of [Mn(C19H20N2O2)(C5H5N)(CH3OH)] ion, a weak C–H···N interaction between the pyridine and the C22 methyl group was also present [C22—H22C···N3].

Related literature top

For values of bond lengths and angles, see Allen et al. (1987). For related structures, see, for example: Mitra et al. (2006); Naskar et al. (2004). For details of Schiff base complexes and their applications, see, for example: Clarke et al. (1998); Cozzi et al. (2004); Darensbourg et al. (2006); Dimauro & Kozlowski (2002); Habibi et al. (2007); Marchetti et al. (1999); Kani et al. (2000); Paschke et al. (2002).

Experimental top

To a stirred solution of Mn(CH3COO)2·2H2O (0.0662 g, 0.5 mmol) in methanol (25 ml) was added an equimolar quantity of (2-hydroxy 5-methoxy benzaldehyde and 1,2 diamino propane (0.171 g, 0.5 mmol). The pink solution turned dark brown immediately upon formation of the MnII complexes. To this solution was added 4 mmol of pyridine, and air was bubbled through the reaction mixture for about 3 h. 0.5 mmol of NH4PF6 was then added to the resulting dark brown solution and stirred for 5 minutes. A dark brown microcrystalline solid was formed by slow evaporation of methanol at room temperature. Brown single crystals of the MnIII complexes suitable for x-ray structure determination were obtained after recrystallization by slow evaporation from methanol/propanol (2:1 v/v) solution at room temperature after several days.

Refinement top

The H atom attached to the O atom of the methanol ligand was located in a difference map and isotropically refined. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with the C—H distances in the range 0.93–0.98 Å. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL (Sheldrick, 1998); molecular graphics: SHELXTL (Sheldrick, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 1998) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title cocrystal, showing 50% probability displacement ellipsoids and the atomic numbering. Bonds to the C22 methyl group of the second component of the co-crystal are drawn as open lines. All other bonds are shown as filled lines.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed approximately along the b axis. C—H···O and O—H···O interactions were drawn as dashed lines.
{4,4'-dimethoxy-2,2'-[propane-1,2- diylbis(nitrilomethylidyne)]diphenolato}methanol(pyridine)manganese(III) hexafluorophosphate–{4,4'-dimethoxy-2,2'-[ethane-1,2- diylbis(nitrilomethylidyne)]diphenolato}methanol(pyridine)manganese(III) hexafluorophosphate (1/1) top
Crystal data top
[Mn(C19H20N2O2)(C5H5N)(CH4O)]PF6·[Mn(C18H18N2O2)(C5H5N)(CH4O)]PF6F(000) = 2640
Mr = 1288.82Dx = 1.563 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7977 reflections
a = 23.4332 (6) Åθ = 1.7–30.0°
b = 16.3878 (4) ŵ = 0.62 mm1
c = 14.2963 (4) ÅT = 100 K
β = 93.988 (1)°Block, brown
V = 5476.8 (2) Å30.57 × 0.26 × 0.23 mm
Z = 4
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
7977 independent reflections
Radiation source: fine-focus sealed tube6665 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 8.33 pixels mm-1θmax = 30.0°, θmin = 1.7°
ω scansh = 3232
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 2323
Tmin = 0.716, Tmax = 0.871l = 1920
43484 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0685P)2 + 11.1129P]
where P = (Fo2 + 2Fc2)/3
7977 reflections(Δ/σ)max = 0.001
379 parametersΔρmax = 1.40 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Mn(C19H20N2O2)(C5H5N)(CH4O)]PF6·[Mn(C18H18N2O2)(C5H5N)(CH4O)]PF6V = 5476.8 (2) Å3
Mr = 1288.82Z = 4
Monoclinic, C2/cMo Kα radiation
a = 23.4332 (6) ŵ = 0.62 mm1
b = 16.3878 (4) ÅT = 100 K
c = 14.2963 (4) Å0.57 × 0.26 × 0.23 mm
β = 93.988 (1)°
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
7977 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
6665 reflections with I > 2σ(I)
Tmin = 0.716, Tmax = 0.871Rint = 0.033
43484 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0685P)2 + 11.1129P]
where P = (Fo2 + 2Fc2)/3
7977 reflectionsΔρmax = 1.40 e Å3
379 parametersΔρmin = 0.62 e Å3
Special details top

Experimental. The low-temparture data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.086000 (11)0.179324 (17)0.64225 (2)0.01968 (9)
P10.22652 (3)0.50955 (5)0.58969 (6)0.04204 (17)
F10.23555 (11)0.46971 (17)0.69076 (15)0.0831 (7)
F20.28040 (8)0.46209 (14)0.55735 (16)0.0696 (6)
F30.17260 (8)0.55855 (15)0.62030 (19)0.0787 (7)
F40.21769 (8)0.54870 (12)0.48656 (14)0.0568 (5)
F50.26607 (8)0.58567 (14)0.62166 (17)0.0716 (6)
F60.18576 (9)0.43551 (12)0.55787 (15)0.0648 (5)
O10.01672 (6)0.23882 (8)0.63767 (10)0.0216 (3)
O20.04976 (6)0.08047 (8)0.61213 (11)0.0225 (3)
O30.01802 (6)0.57202 (8)0.61205 (11)0.0262 (3)
O40.12736 (7)0.23205 (9)0.55721 (13)0.0325 (4)
O50.07737 (6)0.15465 (9)0.79891 (11)0.0243 (3)
N10.13089 (7)0.27512 (10)0.68817 (14)0.0257 (4)
N20.16274 (7)0.12696 (10)0.64994 (13)0.0240 (3)
N30.10136 (7)0.21039 (11)0.48527 (13)0.0258 (3)
C10.01127 (8)0.32005 (11)0.63213 (13)0.0193 (3)
C20.04206 (8)0.35280 (12)0.60048 (13)0.0205 (3)
H2A0.07230.31780.58330.025*
C30.05027 (8)0.43644 (12)0.59452 (14)0.0218 (4)
H3A0.08590.45690.57350.026*
C40.00546 (9)0.49047 (11)0.61986 (13)0.0214 (4)
C50.04696 (8)0.45992 (11)0.65106 (13)0.0206 (3)
H5A0.07680.49550.66830.025*
C60.05608 (8)0.37491 (11)0.65722 (13)0.0200 (3)
C70.11259 (8)0.34918 (12)0.69061 (15)0.0237 (4)
H7A0.13770.38880.71570.028*
C80.17357 (8)0.05123 (12)0.63493 (15)0.0243 (4)
H8A0.21170.03520.63860.029*
C90.13105 (8)0.01061 (11)0.61284 (14)0.0214 (4)
C100.15082 (8)0.09082 (12)0.59678 (15)0.0241 (4)
H10A0.18990.10160.60080.029*
C110.11268 (9)0.15269 (12)0.57541 (15)0.0241 (4)
C120.05378 (9)0.13682 (12)0.57161 (15)0.0243 (4)
H12A0.02790.17910.55890.029*
C130.03392 (8)0.05904 (12)0.58664 (14)0.0226 (4)
H13A0.00530.04970.58450.027*
C140.07180 (8)0.00630 (11)0.60511 (14)0.0205 (3)
C150.10906 (9)0.14901 (14)0.42499 (17)0.0297 (4)
H15A0.10810.09570.44720.036*
C160.11828 (13)0.16116 (16)0.33226 (19)0.0413 (6)
H16A0.12240.11690.29250.050*
C170.12144 (14)0.24039 (17)0.29851 (19)0.0448 (6)
H17A0.12740.25010.23580.054*
C180.11554 (13)0.30451 (15)0.36011 (18)0.0403 (6)
H18A0.11880.35830.34030.048*
C190.10472 (11)0.28675 (14)0.45162 (16)0.0329 (5)
H19A0.09950.33000.49230.039*
C200.18887 (10)0.25330 (15)0.7290 (2)0.0430 (6)
H20A0.18710.23420.79300.052*
H20B0.21410.30030.72920.052*
C210.21073 (9)0.18537 (13)0.6669 (2)0.0375 (6)
H21A0.24190.15700.70280.045*
H21B0.22310.20680.60920.045*0.50
C220.2334 (2)0.2189 (3)0.5850 (4)0.0370 (10)0.50
H22A0.24500.17540.54560.055*0.50
H22B0.26580.25250.60310.055*0.50
H22C0.20460.25120.55140.055*0.50
C230.02777 (10)0.62700 (12)0.63792 (16)0.0291 (4)
H23A0.01430.68220.63150.044*
H23B0.05840.61850.59780.044*
H23C0.04130.61720.70180.044*
C240.18388 (13)0.24614 (17)0.5361 (3)0.0666 (11)
H24A0.18730.30070.51270.100*
H24B0.20880.23950.59180.100*
H24C0.19430.20790.48940.100*
C250.08497 (9)0.07339 (13)0.83507 (16)0.0272 (4)
H25A0.07950.07330.90100.041*
H25B0.12290.05490.82520.041*
H25C0.05760.03760.80320.041*
H1O50.0485 (13)0.1735 (18)0.820 (2)0.036 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01588 (14)0.01570 (14)0.02743 (16)0.00017 (9)0.00126 (10)0.00030 (11)
P10.0271 (3)0.0463 (4)0.0540 (4)0.0051 (3)0.0123 (3)0.0030 (3)
F10.0822 (15)0.115 (2)0.0517 (12)0.0267 (15)0.0045 (11)0.0177 (13)
F20.0533 (11)0.0738 (13)0.0848 (15)0.0268 (10)0.0260 (10)0.0223 (11)
F30.0429 (10)0.0824 (15)0.1151 (19)0.0016 (10)0.0375 (11)0.0248 (14)
F40.0494 (10)0.0566 (11)0.0648 (12)0.0035 (8)0.0067 (8)0.0195 (9)
F50.0468 (10)0.0760 (14)0.0926 (16)0.0250 (10)0.0103 (10)0.0108 (12)
F60.0711 (13)0.0595 (12)0.0652 (12)0.0296 (10)0.0135 (10)0.0030 (10)
O10.0177 (6)0.0156 (6)0.0316 (7)0.0000 (5)0.0021 (5)0.0012 (5)
O20.0169 (6)0.0165 (6)0.0340 (8)0.0001 (5)0.0010 (5)0.0021 (5)
O30.0312 (7)0.0160 (6)0.0310 (8)0.0016 (5)0.0004 (6)0.0002 (6)
O40.0333 (8)0.0180 (7)0.0475 (10)0.0032 (6)0.0121 (7)0.0022 (6)
O50.0214 (6)0.0211 (6)0.0309 (8)0.0022 (5)0.0053 (5)0.0007 (6)
N10.0184 (7)0.0206 (8)0.0374 (10)0.0000 (6)0.0025 (6)0.0008 (7)
N20.0166 (7)0.0208 (8)0.0347 (9)0.0009 (6)0.0019 (6)0.0006 (7)
N30.0249 (8)0.0247 (8)0.0276 (9)0.0025 (6)0.0012 (6)0.0014 (7)
C10.0205 (8)0.0176 (8)0.0202 (8)0.0004 (6)0.0039 (6)0.0004 (7)
C20.0201 (8)0.0203 (8)0.0213 (9)0.0004 (6)0.0020 (6)0.0004 (7)
C30.0236 (8)0.0200 (8)0.0219 (9)0.0032 (7)0.0023 (7)0.0009 (7)
C40.0298 (9)0.0166 (8)0.0182 (8)0.0012 (7)0.0049 (7)0.0002 (7)
C50.0246 (8)0.0179 (8)0.0198 (8)0.0021 (7)0.0045 (7)0.0011 (7)
C60.0216 (8)0.0177 (8)0.0209 (9)0.0000 (6)0.0028 (6)0.0003 (7)
C70.0220 (8)0.0194 (8)0.0296 (10)0.0027 (7)0.0012 (7)0.0020 (8)
C80.0182 (8)0.0216 (9)0.0335 (10)0.0015 (7)0.0040 (7)0.0021 (8)
C90.0193 (8)0.0189 (8)0.0265 (9)0.0012 (6)0.0048 (7)0.0013 (7)
C100.0227 (9)0.0204 (9)0.0298 (10)0.0042 (7)0.0065 (7)0.0031 (8)
C110.0275 (9)0.0178 (8)0.0276 (10)0.0030 (7)0.0066 (7)0.0027 (7)
C120.0262 (9)0.0183 (8)0.0286 (10)0.0013 (7)0.0035 (7)0.0015 (7)
C130.0213 (8)0.0189 (8)0.0276 (10)0.0003 (7)0.0029 (7)0.0000 (7)
C140.0211 (8)0.0184 (8)0.0223 (9)0.0010 (6)0.0034 (7)0.0015 (7)
C150.0292 (10)0.0261 (10)0.0339 (11)0.0007 (8)0.0034 (8)0.0040 (9)
C160.0591 (16)0.0320 (12)0.0333 (13)0.0033 (11)0.0065 (11)0.0090 (10)
C170.0682 (18)0.0389 (13)0.0279 (12)0.0129 (13)0.0071 (12)0.0003 (10)
C180.0598 (16)0.0284 (11)0.0328 (12)0.0155 (11)0.0038 (11)0.0028 (10)
C190.0436 (12)0.0265 (10)0.0285 (11)0.0109 (9)0.0020 (9)0.0006 (9)
C200.0249 (10)0.0292 (11)0.0723 (19)0.0044 (8)0.0146 (11)0.0136 (12)
C210.0186 (9)0.0229 (10)0.0709 (18)0.0023 (7)0.0032 (10)0.0033 (11)
C220.027 (2)0.030 (2)0.054 (3)0.0042 (17)0.0057 (19)0.003 (2)
C230.0385 (11)0.0178 (9)0.0307 (11)0.0025 (8)0.0010 (8)0.0008 (8)
C240.0460 (16)0.0268 (12)0.132 (3)0.0040 (11)0.0426 (19)0.0128 (17)
C250.0290 (10)0.0243 (9)0.0287 (10)0.0027 (8)0.0049 (8)0.0029 (8)
Geometric parameters (Å, º) top
Mn1—O21.8655 (14)C8—H8A0.9300
Mn1—O11.8909 (13)C9—C141.413 (3)
Mn1—N11.9764 (17)C9—C101.418 (3)
Mn1—N21.9887 (16)C10—C111.372 (3)
Mn1—O52.2986 (16)C10—H10A0.9300
Mn1—N32.3532 (18)C11—C121.402 (3)
P1—F21.5792 (19)C12—C131.379 (3)
P1—F31.584 (2)C12—H12A0.9300
P1—F11.586 (2)C13—C141.404 (3)
P1—F61.5909 (19)C13—H13A0.9300
P1—F51.601 (2)C15—C161.372 (4)
P1—F41.608 (2)C15—H15A0.9300
O1—C11.339 (2)C16—C171.389 (4)
O2—C141.327 (2)C16—H16A0.9300
O3—C41.371 (2)C17—C181.384 (4)
O3—C231.430 (3)C17—H17A0.9300
O4—C111.375 (2)C18—C191.381 (3)
O4—C241.398 (3)C18—H18A0.9300
O5—C251.435 (2)C19—H19A0.9300
O5—H1O50.82 (3)C20—C211.534 (4)
N1—C71.288 (3)C20—H20A0.9700
N1—C201.485 (3)C20—H20B0.9700
N2—C81.288 (3)C21—C221.428 (6)
N2—C211.484 (3)C21—H21A0.9800
N3—C151.345 (3)C21—H21B0.9599
N3—C191.345 (3)C22—H21B0.4775
C1—C21.406 (3)C22—H22A0.9600
C1—C61.410 (3)C22—H22B0.9600
C2—C31.386 (3)C22—H22C0.9600
C2—H2A0.9300C23—H23A0.9600
C3—C41.402 (3)C23—H23B0.9600
C3—H3A0.9300C23—H23C0.9600
C4—C51.372 (3)C24—H24A0.9600
C5—C61.411 (3)C24—H24B0.9600
C5—H5A0.9300C24—H24C0.9600
C6—C71.439 (3)C25—H25A0.9600
C7—H7A0.9300C25—H25B0.9600
C8—C91.441 (3)C25—H25C0.9600
O2—Mn1—O193.66 (6)C14—C9—C8122.69 (17)
O2—Mn1—N1171.76 (7)C10—C9—C8117.32 (17)
O1—Mn1—N192.16 (6)C11—C10—C9120.41 (18)
O2—Mn1—N291.92 (6)C11—C10—H10A119.8
O1—Mn1—N2174.42 (6)C9—C10—H10A119.8
N1—Mn1—N282.30 (7)C10—C11—O4125.01 (18)
O2—Mn1—O590.15 (6)C10—C11—C12119.73 (18)
O1—Mn1—O589.48 (6)O4—C11—C12115.26 (18)
N1—Mn1—O584.08 (7)C13—C12—C11120.50 (18)
N2—Mn1—O590.61 (6)C13—C12—H12A119.7
O2—Mn1—N393.73 (6)C11—C12—H12A119.7
O1—Mn1—N392.48 (6)C12—C13—C14121.23 (18)
N1—Mn1—N391.83 (7)C12—C13—H13A119.4
N2—Mn1—N387.04 (7)C14—C13—H13A119.4
O5—Mn1—N3175.53 (6)O2—C14—C13117.93 (16)
F2—P1—F3178.74 (14)O2—C14—C9124.01 (17)
F2—P1—F190.30 (14)C13—C14—C9118.04 (17)
F3—P1—F190.88 (15)N3—C15—C16123.2 (2)
F2—P1—F690.97 (13)N3—C15—H15A118.4
F3—P1—F689.49 (12)C16—C15—H15A118.4
F1—P1—F689.19 (12)C15—C16—C17119.1 (2)
F2—P1—F590.50 (12)C15—C16—H16A120.4
F3—P1—F589.03 (12)C17—C16—H16A120.4
F1—P1—F591.31 (14)C18—C17—C16118.6 (2)
F6—P1—F5178.45 (13)C18—C17—H17A120.7
F2—P1—F489.00 (11)C16—C17—H17A120.7
F3—P1—F489.82 (13)C19—C18—C17118.4 (2)
F1—P1—F4179.15 (15)C19—C18—H18A120.8
F6—P1—F490.33 (11)C17—C18—H18A120.8
F5—P1—F489.19 (12)N3—C19—C18123.7 (2)
C1—O1—Mn1126.35 (12)N3—C19—H19A118.2
C14—O2—Mn1129.75 (12)C18—C19—H19A118.2
C4—O3—C23116.11 (16)N1—C20—C21106.3 (2)
C11—O4—C24116.77 (18)N1—C20—H20A110.5
C25—O5—Mn1119.81 (12)C21—C20—H20A110.5
C25—O5—H1O5108 (2)N1—C20—H20B110.5
Mn1—O5—H1O5115 (2)C21—C20—H20B110.5
C7—N1—C20120.88 (18)H20A—C20—H20B108.7
C7—N1—Mn1125.93 (14)C22—C21—N2115.8 (3)
C20—N1—Mn1113.00 (14)C22—C21—C20110.7 (3)
C8—N2—C21119.55 (17)N2—C21—C20106.44 (18)
C8—N2—Mn1126.47 (14)C22—C21—H21A107.7
C21—N2—Mn1113.76 (13)N2—C21—H21A108.0
C15—N3—C19116.9 (2)C20—C21—H21A107.9
C15—N3—Mn1119.05 (15)N2—C21—H21B111.5
C19—N3—Mn1123.99 (15)C20—C21—H21B111.4
O1—C1—C2118.52 (17)H21A—C21—H21B111.3
O1—C1—C6123.55 (17)C21—C22—H22A109.5
C2—C1—C6117.92 (17)C21—C22—H22B109.5
C3—C2—C1120.92 (18)H22A—C22—H22B109.5
C3—C2—H2A119.5C21—C22—H22C109.5
C1—C2—H2A119.5H22A—C22—H22C109.5
C2—C3—C4120.70 (18)H22B—C22—H22C109.5
C2—C3—H3A119.6O3—C23—H23A109.5
C4—C3—H3A119.6O3—C23—H23B109.5
O3—C4—C5124.35 (18)H23A—C23—H23B109.5
O3—C4—C3116.23 (17)O3—C23—H23C109.5
C5—C4—C3119.41 (17)H23A—C23—H23C109.5
C4—C5—C6120.58 (18)H23B—C23—H23C109.5
C4—C5—H5A119.7O4—C24—H24A109.5
C6—C5—H5A119.7O4—C24—H24B109.5
C1—C6—C5120.45 (17)H24A—C24—H24B109.5
C1—C6—C7123.34 (17)O4—C24—H24C109.5
C5—C6—C7116.21 (17)H24A—C24—H24C109.5
N1—C7—C6124.55 (18)H24B—C24—H24C109.5
N1—C7—H7A117.7O5—C25—H25A109.5
C6—C7—H7A117.7O5—C25—H25B109.5
N2—C8—C9124.98 (18)H25A—C25—H25B109.5
N2—C8—H8A117.5O5—C25—H25C109.5
C9—C8—H8A117.5H25A—C25—H25C109.5
C14—C9—C10119.98 (18)H25B—C25—H25C109.5
O2—Mn1—O1—C1163.78 (16)O1—C1—C6—C5178.93 (18)
N1—Mn1—O1—C122.05 (16)C2—C1—C6—C50.4 (3)
O5—Mn1—O1—C1106.10 (16)O1—C1—C6—C70.6 (3)
N3—Mn1—O1—C169.88 (16)C2—C1—C6—C7179.99 (19)
O1—Mn1—O2—C14177.40 (17)C4—C5—C6—C10.5 (3)
N2—Mn1—O2—C142.71 (18)C4—C5—C6—C7179.89 (18)
O5—Mn1—O2—C1487.91 (17)C20—N1—C7—C6176.6 (2)
N3—Mn1—O2—C1489.87 (17)Mn1—N1—C7—C61.9 (3)
O2—Mn1—O5—C2538.30 (14)C1—C6—C7—N110.8 (3)
O1—Mn1—O5—C25131.96 (14)C5—C6—C7—N1169.7 (2)
N1—Mn1—O5—C25135.81 (14)C21—N2—C8—C9176.6 (2)
N2—Mn1—O5—C2553.61 (14)Mn1—N2—C8—C92.4 (3)
O1—Mn1—N1—C711.3 (2)N2—C8—C9—C140.1 (3)
N2—Mn1—N1—C7168.0 (2)N2—C8—C9—C10178.9 (2)
O5—Mn1—N1—C7100.59 (19)C14—C9—C10—C111.2 (3)
N3—Mn1—N1—C781.22 (19)C8—C9—C10—C11179.99 (19)
O1—Mn1—N1—C20163.71 (18)C9—C10—C11—O4178.9 (2)
N2—Mn1—N1—C2016.97 (18)C9—C10—C11—C121.5 (3)
O5—Mn1—N1—C2074.46 (18)C24—O4—C11—C1016.7 (4)
N3—Mn1—N1—C20103.73 (18)C24—O4—C11—C12163.7 (3)
O2—Mn1—N2—C81.1 (2)C10—C11—C12—C131.8 (3)
N1—Mn1—N2—C8175.2 (2)O4—C11—C12—C13178.60 (19)
O5—Mn1—N2—C891.29 (19)C11—C12—C13—C140.7 (3)
N3—Mn1—N2—C892.52 (19)Mn1—O2—C14—C13176.23 (14)
O2—Mn1—N2—C21175.65 (17)Mn1—O2—C14—C95.4 (3)
N1—Mn1—N2—C2110.24 (17)C12—C13—C14—O2175.21 (19)
O5—Mn1—N2—C2194.18 (17)C12—C13—C14—C93.3 (3)
N3—Mn1—N2—C2182.00 (17)C10—C9—C14—O2174.86 (19)
O2—Mn1—N3—C1530.74 (16)C8—C9—C14—O23.9 (3)
O1—Mn1—N3—C15124.58 (16)C10—C9—C14—C133.5 (3)
N1—Mn1—N3—C15143.18 (16)C8—C9—C14—C13177.73 (19)
N2—Mn1—N3—C1560.99 (16)C19—N3—C15—C162.0 (3)
O2—Mn1—N3—C19151.36 (18)Mn1—N3—C15—C16179.99 (19)
O1—Mn1—N3—C1957.52 (18)N3—C15—C16—C171.8 (4)
N1—Mn1—N3—C1934.72 (18)C15—C16—C17—C180.4 (4)
N2—Mn1—N3—C19116.91 (18)C16—C17—C18—C192.3 (4)
Mn1—O1—C1—C2160.46 (14)C15—N3—C19—C180.1 (4)
Mn1—O1—C1—C620.2 (3)Mn1—N3—C19—C18177.9 (2)
O1—C1—C2—C3179.18 (18)C17—C18—C19—N32.2 (4)
C6—C1—C2—C30.2 (3)C7—N1—C20—C21145.7 (2)
C1—C2—C3—C40.1 (3)Mn1—N1—C20—C2139.0 (3)
C23—O3—C4—C50.6 (3)C8—N2—C21—C2284.9 (3)
C23—O3—C4—C3179.98 (17)Mn1—N2—C21—C2290.0 (3)
C2—C3—C4—O3179.58 (17)C8—N2—C21—C20151.6 (2)
C2—C3—C4—C50.2 (3)Mn1—N2—C21—C2033.5 (3)
O3—C4—C5—C6179.76 (18)N1—C20—C21—C2281.6 (3)
C3—C4—C5—C60.4 (3)N1—C20—C21—N245.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1O5···O1i0.82 (3)1.99 (3)2.804 (2)169 (3)
C17—H17A···O4ii0.932.573.465 (3)161
C22—H22C···N30.962.623.318 (5)130
Symmetry codes: (i) x, y, z+3/2; (ii) x, y, z1/2.

Experimental details

Crystal data
Chemical formula[Mn(C19H20N2O2)(C5H5N)(CH4O)]PF6·[Mn(C18H18N2O2)(C5H5N)(CH4O)]PF6
Mr1288.82
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)23.4332 (6), 16.3878 (4), 14.2963 (4)
β (°) 93.988 (1)
V3)5476.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.62
Crystal size (mm)0.57 × 0.26 × 0.23
Data collection
DiffractometerBruker SMART APEX2 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.716, 0.871
No. of measured, independent and
observed [I > 2σ(I)] reflections
43484, 7977, 6665
Rint0.033
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.138, 1.04
No. of reflections7977
No. of parameters379
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0685P)2 + 11.1129P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.40, 0.62

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 1998) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1O5···O1i0.82 (3)1.99 (3)2.804 (2)169 (3)
C17—H17A···O4ii0.932.57023.465 (3)161
C22—H22C···N30.962.62223.318 (5)130
Symmetry codes: (i) x, y, z+3/2; (ii) x, y, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds