Download citation
Download citation
link to html
The title compound, C22H16N3O5, also known as azoxystrobin, possesses fungicidal properties. The dihedral angles between the cyano­phen­oxy and oxophenyl rings and the central pyrimidinyl ring are 80.5 (2) and 76.0 (1)°, respectively. The crystal structure is stabilized by aromatic π–π staching inter­actions between the pyrimide rings, the centroid–centroid distance being 3.914 (9) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807052956/sj2388sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807052956/sj2388Isup2.hkl
Contains datablock I

CCDC reference: 667485

Key indicators

  • Single-crystal X-ray study
  • T = 292 K
  • Mean [sigma](C-C) = 0.007 Å
  • Disorder in main residue
  • R factor = 0.079
  • wR factor = 0.220
  • Data-to-parameter ratio = 7.7

checkCIF/PLATON results

No syntax errors found



Alert level A THETM01_ALERT_3_A The value of sine(theta_max)/wavelength is less than 0.550 Calculated sin(theta_max)/wavelength = 0.4999
Author Response: Repeated attempts to grow a better quality crystal with improved morphology failed and hence the extent of diffraction observed is poor.
PLAT023_ALERT_3_A Resolution (too) Low [sin(th)/Lambda < 0.6].....      20.81 Deg.
Author Response: Repeated attempts to grow a better quality crystal with improved morphology failed and hence the extent of diffraction observed is poor.
PLAT027_ALERT_3_A _diffrn_reflns_theta_full (too) Low ............      20.81 Deg.
Author Response: Repeated attempts to grow a better quality crystal with improved morphology failed and hence the extent of diffraction observed is poor.
PLAT430_ALERT_2_A Short Inter D...A Contact  O4     ..  O4      ..       2.43 Ang.
Author Response: This short contact is generated as a consequence of disorder of the oxygen atom into two sites O4 and O4A in the ratio of 1:1. In fact, from CD studies such contacts have been proven to have bonding nature and are closed-shell interactions (Chen et al., Acta Cryst., 2007, B63, 309).
PLAT430_ALERT_2_A Short Inter D...A Contact  O4A    ..  O4A     ..       2.39 Ang.
Author Response: This short contact is generated as a consequence of disorder of the oxygen atom into two sites O4 and O4A in the ratio of 1:1. In fact, from CD studies such contacts have been proven to have bonding nature and are closed-shell interactions (Chen et al., Acta Cryst., 2007, B63, 309).

Alert level B REFNR01_ALERT_3_B Ratio of reflections to parameters is < 8 for a centrosymmetric structure sine(theta)/lambda 0.4999 Proportion of unique data used 1.0000 Ratio reflections to parameters 7.6643 PLAT088_ALERT_3_B Poor Data / Parameter Ratio .................... 7.66
Alert level C PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.00 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.70 Ratio PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for O3 PLAT301_ALERT_3_C Main Residue Disorder ......................... 3.00 Perc. PLAT309_ALERT_2_C Single Bonded Oxygen (C-O .GT. 1.3 Ang) ........ O4A PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 7 PLAT366_ALERT_2_C Short? C(sp?)-C(sp?) Bond C18 - C19 ... 1.39 Ang. PLAT371_ALERT_2_C Long C(sp2)-C(sp1) Bond C5 - C7 ... 1.45 Ang.
5 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 7 ALERT type 2 Indicator that the structure model may be wrong or deficient 8 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

An important aspect in the rational design of bioactive molecules involves relating chemical structure to biological activity (Lewis et al., 1991). The conformation of the molecule is found to influence the levels of biological activity. Correlation of the results obtained from X-ray crystallography with biological activity has aided in the chemical design of few active agrochemicals. The activity of a series of triazolyl ketone herbicides (Anderson et al., 1983) has been investigated along with the fungicidal activities of N-phenyl succinamides (Zenei et al., 1988).

The title compound, (I), has been shown to have fungicidal properties and its structure is reported here, Fig. 1. Bond lengths and angles observed in the structure are normal (Allen et al., 1987). The crystal structure is stabilized by aromatic stacking π···π interactions (Fig. 2) between the pyrimidyl rings, the centroid to centroid distance being 3.914 (9) Å (Symmetry Code: -x + 1/2, -y + 3 /2, -z + 1).

Related literature top

For related structures, see: Lewis et al. (1991); Anderson et al. (1983); Zenei et al. (1988).

For related literature, see: Allen et al. (1987).

Experimental top

The title compound was obtained from Rallis India, Bangalore. Single crystals of the compound were grown by the slow evaporation method from acetone at 278 K.

Refinement top

Despite repeated attempts to grow a better quality crystal with improved morphology, the crystals obtained were small and weakly diffracting so that the extent of diffraction observed is poor. The carbonyl oxygen atom is disordered over two sites O4 and O4A, with the occupancy factor for the major disorder component, O4, refining to 0.517 (11). All the hydrogen atoms were placed in calculated positions and allowed to ride on the parent atoms with C—H = 0.93 - 0.96 Å and Ueq(H) = 1.2 or 1.5 Ueq(C).

Structure description top

An important aspect in the rational design of bioactive molecules involves relating chemical structure to biological activity (Lewis et al., 1991). The conformation of the molecule is found to influence the levels of biological activity. Correlation of the results obtained from X-ray crystallography with biological activity has aided in the chemical design of few active agrochemicals. The activity of a series of triazolyl ketone herbicides (Anderson et al., 1983) has been investigated along with the fungicidal activities of N-phenyl succinamides (Zenei et al., 1988).

The title compound, (I), has been shown to have fungicidal properties and its structure is reported here, Fig. 1. Bond lengths and angles observed in the structure are normal (Allen et al., 1987). The crystal structure is stabilized by aromatic stacking π···π interactions (Fig. 2) between the pyrimidyl rings, the centroid to centroid distance being 3.914 (9) Å (Symmetry Code: -x + 1/2, -y + 3 /2, -z + 1).

For related structures, see: Lewis et al. (1991); Anderson et al. (1983); Zenei et al. (1988).

For related literature, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997b); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing 50% ellipsoidal probability.
[Figure 2] Fig. 2. Part of the packing diagram for (I), highlighting the π···π intermolecular interactions (dotted line).
(2E)-Methyl 2-{2-[6-(2-cyanophenoxy)pyrimidin-4-yloxy]phenyl}-3-methoxyacrylate top
Crystal data top
C22H16N3O5F(000) = 1672
Mr = 402.38Dx = 1.289 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 565 reflections
a = 28.946 (6) Åθ = 1.2–19.6°
b = 10.803 (2) ŵ = 0.09 mm1
c = 13.302 (3) ÅT = 292 K
β = 94.61 (3)°Plate, colorless
V = 4146.1 (15) Å30.08 × 0.07 × 0.02 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
2169 independent reflections
Radiation source: fine-focus sealed tube1733 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
φ and ω scansθmax = 20.8°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997a)
h = 2828
Tmin = 0.948, Tmax = 0.998k = 1010
9000 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.220H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.1574P)2 + 9.0867P]
where P = (Fo2 + 2Fc2)/3
2169 reflections(Δ/σ)max < 0.001
283 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C22H16N3O5V = 4146.1 (15) Å3
Mr = 402.38Z = 8
Monoclinic, C2/cMo Kα radiation
a = 28.946 (6) ŵ = 0.09 mm1
b = 10.803 (2) ÅT = 292 K
c = 13.302 (3) Å0.08 × 0.07 × 0.02 mm
β = 94.61 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2169 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997a)
1733 reflections with I > 2σ(I)
Tmin = 0.948, Tmax = 0.998Rint = 0.055
9000 measured reflectionsθmax = 20.8°
Refinement top
R[F2 > 2σ(F2)] = 0.0790 restraints
wR(F2) = 0.220H-atom parameters constrained
S = 1.14Δρmax = 0.31 e Å3
2169 reflectionsΔρmin = 0.39 e Å3
283 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.72469 (11)0.4309 (3)0.3502 (2)0.0658 (10)
O20.62147 (10)0.1461 (3)0.4936 (2)0.0648 (9)
O30.51541 (13)0.2021 (4)0.4877 (3)0.0971 (13)
O40.5153 (3)0.4039 (9)0.4684 (6)0.103 (4)0.517 (11)
O4A0.5367 (3)0.4936 (7)0.2981 (7)0.106 (4)0.483 (11)
O50.58850 (14)0.3775 (3)0.2208 (3)0.0872 (12)
N10.63577 (19)0.6404 (5)0.4033 (4)0.1047 (17)
N20.72237 (14)0.4148 (3)0.5245 (3)0.0660 (12)
N30.67012 (15)0.2677 (4)0.5918 (3)0.0707 (12)
C10.7935 (2)0.7708 (5)0.3623 (4)0.0715 (15)
C20.81804 (17)0.6609 (5)0.3512 (4)0.0713 (14)
C30.79544 (16)0.5464 (4)0.3512 (3)0.0631 (13)
C40.74871 (16)0.5440 (4)0.3622 (3)0.0530 (12)
C50.72374 (15)0.6540 (4)0.3753 (3)0.0575 (13)
C60.74707 (18)0.7679 (5)0.3748 (3)0.0650 (13)
C70.6746 (2)0.6477 (5)0.3900 (4)0.0736 (15)
C80.70679 (15)0.3777 (4)0.4317 (3)0.0519 (12)
C90.7029 (2)0.3558 (5)0.5980 (4)0.0783 (16)
C100.65564 (15)0.2350 (4)0.4959 (3)0.0517 (12)
C110.67341 (14)0.2847 (4)0.4135 (3)0.0527 (12)
C120.60626 (15)0.0952 (4)0.3966 (3)0.0565 (12)
C130.62339 (17)0.0210 (5)0.3743 (4)0.0727 (14)
C140.60929 (19)0.0757 (5)0.2829 (4)0.0801 (16)
C150.57760 (18)0.0146 (5)0.2143 (4)0.0806 (16)
C160.56032 (16)0.1001 (5)0.2397 (4)0.0687 (14)
C170.57395 (14)0.1586 (4)0.3327 (3)0.0561 (12)
C180.55490 (15)0.2839 (4)0.3569 (4)0.0621 (14)
C190.52730 (19)0.3029 (6)0.4364 (5)0.0782 (16)
C200.4827 (3)0.2207 (9)0.5632 (7)0.155 (3)
C210.5617 (2)0.3891 (6)0.2961 (5)0.0779 (16)
C220.5905 (2)0.4881 (7)0.1568 (6)0.123 (3)
H10.80880.84640.36110.086*
H20.84970.66390.34380.086*
H30.81180.47330.34390.076*
H60.73100.84130.38290.078*
H90.71360.37900.66310.094*
H110.66390.25840.34850.063*
H130.64410.06140.42030.087*
H140.62080.15300.26690.096*
H150.56830.05060.15250.097*
H160.53920.13980.19430.082*
H20A0.49890.25020.62440.233*
H20B0.46770.14380.57600.233*
H20C0.45990.28060.53920.233*
H22A0.56590.54360.17050.185*
H22B0.58720.46400.08710.185*
H22C0.61980.52880.17110.185*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.076 (2)0.063 (2)0.056 (2)0.0193 (17)0.0109 (16)0.0068 (16)
O20.063 (2)0.065 (2)0.063 (2)0.0096 (17)0.0157 (16)0.0085 (16)
O30.069 (2)0.116 (3)0.107 (3)0.010 (2)0.009 (2)0.009 (3)
O40.092 (6)0.115 (7)0.102 (6)0.036 (5)0.000 (4)0.027 (5)
O4A0.120 (7)0.058 (6)0.134 (8)0.004 (5)0.021 (5)0.006 (5)
O50.089 (3)0.068 (3)0.100 (3)0.003 (2)0.016 (2)0.023 (2)
N10.068 (3)0.112 (4)0.132 (5)0.013 (3)0.004 (3)0.011 (3)
N20.087 (3)0.053 (2)0.053 (3)0.008 (2)0.028 (2)0.000 (2)
N30.097 (3)0.058 (3)0.053 (3)0.007 (2)0.017 (2)0.007 (2)
C10.085 (4)0.061 (3)0.067 (3)0.018 (3)0.010 (3)0.005 (2)
C20.054 (3)0.078 (4)0.079 (3)0.010 (3)0.013 (2)0.009 (3)
C30.056 (3)0.061 (3)0.070 (3)0.001 (3)0.011 (2)0.008 (2)
C40.057 (3)0.052 (3)0.046 (3)0.010 (2)0.019 (2)0.001 (2)
C50.054 (3)0.064 (3)0.051 (3)0.002 (3)0.017 (2)0.002 (2)
C60.072 (4)0.059 (3)0.062 (3)0.004 (3)0.011 (2)0.002 (2)
C70.072 (4)0.071 (4)0.075 (3)0.009 (3)0.014 (3)0.003 (3)
C80.056 (3)0.046 (3)0.050 (3)0.008 (2)0.015 (2)0.000 (2)
C90.118 (4)0.061 (3)0.050 (3)0.018 (3)0.027 (3)0.006 (3)
C100.055 (3)0.041 (3)0.056 (3)0.005 (2)0.018 (2)0.005 (2)
C110.051 (3)0.051 (3)0.053 (3)0.005 (2)0.019 (2)0.005 (2)
C120.052 (3)0.051 (3)0.064 (3)0.004 (2)0.009 (2)0.001 (2)
C130.069 (3)0.065 (4)0.082 (4)0.002 (3)0.012 (3)0.002 (3)
C140.079 (4)0.058 (3)0.101 (4)0.004 (3)0.008 (3)0.004 (3)
C150.074 (4)0.073 (4)0.093 (4)0.020 (3)0.003 (3)0.019 (3)
C160.045 (3)0.072 (4)0.086 (4)0.004 (2)0.018 (2)0.007 (3)
C170.043 (3)0.056 (3)0.066 (3)0.006 (2)0.014 (2)0.001 (2)
C180.046 (3)0.068 (4)0.068 (3)0.000 (2)0.020 (3)0.009 (3)
C190.057 (3)0.085 (4)0.089 (4)0.005 (3)0.020 (3)0.008 (4)
C200.114 (6)0.220 (10)0.137 (7)0.023 (6)0.040 (6)0.028 (6)
C210.067 (4)0.079 (4)0.084 (4)0.010 (3)0.024 (3)0.002 (3)
C220.116 (5)0.111 (5)0.137 (6)0.019 (4)0.030 (4)0.033 (5)
Geometric parameters (Å, º) top
O4—C191.230 (9)C18—C211.418 (8)
O4A—C211.342 (10)C4—C31.372 (7)
O1—C81.366 (5)C2—C11.398 (7)
O1—C41.409 (6)C2—C31.399 (7)
O2—C101.377 (5)C2—H20.9300
O2—C121.439 (6)N1—C71.154 (7)
N2—C91.329 (6)C3—H30.9300
N2—C81.342 (6)C13—C141.384 (7)
O5—C211.321 (7)C13—H130.9300
O5—C221.471 (8)C6—C11.367 (7)
O3—C191.345 (7)C6—H60.9300
O3—C201.448 (8)C14—C151.406 (8)
C10—N31.357 (6)C14—H140.9300
C10—C111.358 (6)C15—C161.388 (7)
N3—C91.342 (7)C15—H150.9300
C17—C121.392 (6)C9—H90.9300
C17—C161.417 (7)C16—H160.9300
C17—C181.506 (7)C1—H10.9300
C8—C111.401 (6)C22—H22A0.9600
C11—H110.9300C22—H22B0.9600
C12—C131.390 (7)C22—H22C0.9600
C5—C61.404 (7)C20—H20A0.9600
C5—C41.409 (7)C20—H20B0.9600
C5—C71.453 (8)C20—H20C0.9600
C18—C191.391 (8)
C8—O1—C4119.4 (3)C12—C13—H13120.4
C10—O2—C12116.9 (3)N1—C7—C5178.3 (6)
C9—N2—C8113.8 (4)C1—C6—C5119.9 (5)
C21—O5—C22114.5 (5)C1—C6—H6120.0
C19—O3—C20116.6 (6)C5—C6—H6120.0
N3—C10—C11123.2 (4)O5—C21—O4A116.5 (6)
N3—C10—O2111.7 (4)O5—C21—C18118.2 (5)
C11—C10—O2125.2 (4)O4A—C21—C18124.3 (7)
C9—N3—C10114.0 (4)C13—C14—C15120.0 (5)
C12—C17—C16116.1 (4)C13—C14—H14120.0
C12—C17—C18123.4 (4)C15—C14—H14120.0
C16—C17—C18120.4 (4)O4—C19—O3116.9 (7)
N2—C8—O1119.0 (4)O4—C19—C18126.0 (7)
N2—C8—C11123.3 (4)O3—C19—C18116.8 (6)
O1—C8—C11117.7 (4)C16—C15—C14119.4 (5)
C10—C11—C8116.4 (4)C16—C15—H15120.3
C10—C11—H11121.8C14—C15—H15120.3
C8—C11—H11121.8N2—C9—N3129.4 (4)
C13—C12—C17123.2 (4)N2—C9—H9115.3
C13—C12—O2116.6 (4)N3—C9—H9115.3
C17—C12—O2120.1 (4)C15—C16—C17122.0 (5)
C6—C5—C4119.1 (4)C15—C16—H16119.0
C6—C5—C7121.2 (4)C17—C16—H16119.0
C4—C5—C7119.6 (4)C6—C1—C2120.4 (5)
C19—C18—C21115.4 (5)C6—C1—H1119.8
C19—C18—C17122.5 (5)C2—C1—H1119.8
C21—C18—C17121.9 (5)O5—C22—H22A109.5
C3—C4—O1119.1 (4)O5—C22—H22B109.5
C3—C4—C5121.1 (4)H22A—C22—H22B109.5
O1—C4—C5119.5 (4)O5—C22—H22C109.5
C1—C2—C3120.6 (5)H22A—C22—H22C109.5
C1—C2—H2119.7H22B—C22—H22C109.5
C3—C2—H2119.7O3—C20—H20A109.5
C4—C3—C2118.8 (4)O3—C20—H20B109.5
C4—C3—H3120.6H20A—C20—H20B109.5
C2—C3—H3120.6O3—C20—H20C109.5
C14—C13—C12119.2 (5)H20A—C20—H20C109.5
C14—C13—H13120.4H20B—C20—H20C109.5
C12—O2—C10—N3174.3 (3)O1—C4—C3—C2172.4 (4)
C12—O2—C10—C115.3 (6)C5—C4—C3—C21.2 (6)
C11—C10—N3—C91.4 (7)C1—C2—C3—C40.0 (7)
O2—C10—N3—C9178.9 (4)C17—C12—C13—C142.4 (7)
C9—N2—C8—O1179.3 (4)O2—C12—C13—C14178.8 (4)
C9—N2—C8—C110.5 (6)C4—C5—C6—C10.4 (6)
C4—O1—C8—N217.4 (6)C7—C5—C6—C1179.0 (4)
C4—O1—C8—C11163.7 (4)C22—O5—C21—O4A6.3 (7)
N3—C10—C11—C82.8 (6)C22—O5—C21—C18175.2 (5)
O2—C10—C11—C8177.6 (4)C19—C18—C21—O5178.4 (4)
N2—C8—C11—C102.4 (6)C17—C18—C21—O55.2 (7)
O1—C8—C11—C10178.8 (4)C19—C18—C21—O4A13.7 (8)
C16—C17—C12—C132.5 (7)C17—C18—C21—O4A162.7 (6)
C18—C17—C12—C13179.4 (4)C12—C13—C14—C150.7 (8)
C16—C17—C12—O2178.7 (4)C20—O3—C19—O411.1 (9)
C18—C17—C12—O23.2 (6)C20—O3—C19—C18173.6 (5)
C10—O2—C12—C13101.8 (5)C21—C18—C19—O413.3 (8)
C10—O2—C12—C1781.7 (5)C17—C18—C19—O4170.4 (6)
C12—C17—C18—C1965.7 (6)C21—C18—C19—O3171.9 (4)
C16—C17—C18—C19116.2 (5)C17—C18—C19—O34.5 (7)
C12—C17—C18—C21118.1 (5)C13—C14—C15—C160.7 (8)
C16—C17—C18—C2159.9 (6)C8—N2—C9—N31.1 (8)
C8—O1—C4—C3112.7 (4)C10—N3—C9—N20.7 (8)
C8—O1—C4—C573.5 (5)C14—C15—C16—C170.6 (8)
C6—C5—C4—C31.4 (6)C12—C17—C16—C151.0 (7)
C7—C5—C4—C3178.0 (4)C18—C17—C16—C15179.2 (4)
C6—C5—C4—O1172.2 (4)C5—C6—C1—C20.8 (7)
C7—C5—C4—O18.4 (6)C3—C2—C1—C61.0 (7)

Experimental details

Crystal data
Chemical formulaC22H16N3O5
Mr402.38
Crystal system, space groupMonoclinic, C2/c
Temperature (K)292
a, b, c (Å)28.946 (6), 10.803 (2), 13.302 (3)
β (°) 94.61 (3)
V3)4146.1 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.08 × 0.07 × 0.02
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997a)
Tmin, Tmax0.948, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
9000, 2169, 1733
Rint0.055
θmax (°)20.8
(sin θ/λ)max1)0.500
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.220, 1.14
No. of reflections2169
No. of parameters283
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.39

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997b), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993), PLATON (Spek, 2003).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds