Download citation
Download citation
link to html
In the title compound, C46H28Br4CuN4O2 or [Cu(L)2(phen)] {L = 2,4-dibromo-6-[(naphthalen-1-ylimino)meth­yl]phenolate, C17H10Br2NO; phen = 1,10-phenanthroline, C12H8N2}, the central CuII, which lies on a twofold axis, binds two N and two O atoms from the two Schiff base ligands and two N atoms from 1,10-phenanthroline in a distorted octa­hedral arrangement. In the crystal structure, C—H...Br hydrogen bonds link the mol­ecules into rows along c.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807042882/sj2345sup1.cif
Contains datablocks I, Global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807042882/sj2345Isup2.hkl
Contains datablock I

CCDC reference: 663571

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.013 Å
  • R factor = 0.059
  • wR factor = 0.165
  • Data-to-parameter ratio = 13.6

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT707_ALERT_1_A D...A Calc 39.190(15), Rep 3.773(13), Dev.. 2361.13 Sigma C15 -BR1 1.555 3.675 PLAT726_ALERT_1_A H...A Calc 38.96000, Rep 2.92590 Dev... 36.03 Ang. H15 -BR1 1.555 3.675 PLAT728_ALERT_1_A D-H..A Calc 103.00, Rep 152.21 Dev... 49.21 Deg. C15 -H15 -BR1 1.555 1.555 3.675
Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.90 PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.76 Ratio PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 13
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.900 Tmax scaled 0.458 Tmin scaled 0.247 PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.26
3 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Schiff bases play an important role in inorganic chemistry as they easily form stable complexes with most transition metal ions (Mostafa & Haifaa, 2007, Musie et al., 2003, Patel et al., 2006). We report herein the synthesis and crystal structure of (I), Fig 1, a mononuclear Cu(II) complex of the new Schiff base ligand 2,4-dibromo-6-((naphthalen-1-ylimino)methyl)phenolate and 1,10-phenanthroline. The copperII cation lies on a twofold axis and is coordinated by two N and two O atoms from the Schiff base and two N atoms from 1,10-phenanthroline, in a slightly distorted octahedral geometry.

In the crystal weak, non-classical C—H···Br hydrogen bonds link the molecules in rows along c, Fig 2.

Related literature top

For related complexes of Schiff bases with transition metal ions, see: Mostafa & Haifaa (2007); Musie et al. (2003); Patel et al. (2006).

For related literature, see: Mehmet et al. (2007).

Experimental top

1-naphthylamine (0.286 g, 2 mmol) and 3,5-Bibromo-2-hydroxy-benzaldehyde (0.560 g, 2 mmol) were mixed in ethanol and stirred for 30 min at room temperature to yield the Schiff base 2,4-dibromo-6-((naphthalen-1-ylimino)methyl)phenol. A mixture of this Schiff base (0.201 g, 0.5 mmol), CuSO4.5H2O2 (0.125 g, 0.5 mmol), phen (0.198 g 0.1 mmol,) and 6 drops of triethylamine in 5 ml e thanol and 5 ml acetonitrile was sealed in a 30 ml Teflon-lined stainless steel vessel, which was heated at 333 K for 7 days under autogenous pressure. On cooling to room temperature blue crystals of the title compound (I) were produced (yield: 53%, based on Cu).

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C).

Structure description top

Schiff bases play an important role in inorganic chemistry as they easily form stable complexes with most transition metal ions (Mostafa & Haifaa, 2007, Musie et al., 2003, Patel et al., 2006). We report herein the synthesis and crystal structure of (I), Fig 1, a mononuclear Cu(II) complex of the new Schiff base ligand 2,4-dibromo-6-((naphthalen-1-ylimino)methyl)phenolate and 1,10-phenanthroline. The copperII cation lies on a twofold axis and is coordinated by two N and two O atoms from the Schiff base and two N atoms from 1,10-phenanthroline, in a slightly distorted octahedral geometry.

In the crystal weak, non-classical C—H···Br hydrogen bonds link the molecules in rows along c, Fig 2.

For related complexes of Schiff bases with transition metal ions, see: Mostafa & Haifaa (2007); Musie et al. (2003); Patel et al. (2006).

For related literature, see: Mehmet et al. (2007).

Computing details top

Data collection: SMART (Bruker 2001); cell refinement: SAINT (Bruker 2001); data reduction: SAINT (Bruker 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker 1997); software used to prepare material for publication: SHELXTL (Bruker 1997).

Figures top
[Figure 1] Fig. 1. A view of (I), showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal packing of (I) with H-bonds drawn as dashed lines.
Bis{2,4-dibromo-6-[(naphthalen-1-ylimino)methyl]phenolato-κ2N, O}(1,10-phenanthroline-κ2N,N')copper(II) top
Crystal data top
[Cu(C17H10Br2NO)2(C12H8N2)]F(000) = 2068
Mr = 1051.90Dx = 1.750 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1985 reflections
a = 20.288 (2) Åθ = 2.8–20.6°
b = 14.5052 (18) ŵ = 4.59 mm1
c = 15.227 (2) ÅT = 298 K
β = 116.977 (2)°Block, blue
V = 3993.5 (9) Å30.38 × 0.19 × 0.17 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3513 independent reflections
Radiation source: fine-focus sealed tube1877 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.086
φ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1424
Tmin = 0.274, Tmax = 0.509k = 1617
10067 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0811P)2]
where P = (Fo2 + 2Fc2)/3
3513 reflections(Δ/σ)max = 0.001
258 parametersΔρmax = 0.95 e Å3
0 restraintsΔρmin = 0.73 e Å3
Crystal data top
[Cu(C17H10Br2NO)2(C12H8N2)]V = 3993.5 (9) Å3
Mr = 1051.90Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.288 (2) ŵ = 4.59 mm1
b = 14.5052 (18) ÅT = 298 K
c = 15.227 (2) Å0.38 × 0.19 × 0.17 mm
β = 116.977 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3513 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1877 reflections with I > 2σ(I)
Tmin = 0.274, Tmax = 0.509Rint = 0.086
10067 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.165H-atom parameters constrained
S = 0.97Δρmax = 0.95 e Å3
3513 reflectionsΔρmin = 0.73 e Å3
258 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.93455 (7)0.25000.0392 (4)
Br10.37169 (5)0.70105 (6)0.02414 (6)0.0636 (3)
Br20.62496 (6)0.47645 (6)0.17224 (8)0.0864 (4)
N10.6262 (3)0.9081 (4)0.2840 (4)0.0421 (15)
N20.4717 (3)1.0413 (4)0.1537 (4)0.0404 (15)
O10.4819 (3)0.8458 (3)0.1455 (3)0.0430 (12)
C10.6420 (4)0.8241 (5)0.2785 (5)0.0437 (19)
H10.69070.80640.31810.052*
C20.5920 (4)0.7527 (5)0.2168 (5)0.0398 (18)
C30.5152 (4)0.7679 (5)0.1568 (5)0.0404 (18)
C40.4749 (4)0.6892 (5)0.1040 (5)0.0435 (19)
C50.5061 (5)0.6039 (5)0.1086 (5)0.052 (2)
H50.47720.55430.07310.063*
C60.5824 (5)0.5933 (5)0.1682 (6)0.051 (2)
C70.6236 (5)0.6661 (5)0.2209 (5)0.049 (2)
H70.67410.65820.26050.058*
C80.6805 (4)0.9648 (5)0.3581 (6)0.0457 (19)
C90.7164 (5)0.9372 (5)0.4543 (6)0.061 (2)
H90.70830.87850.47190.073*
C100.7658 (6)0.9981 (7)0.5273 (7)0.085 (3)
H100.79190.97810.59210.101*
C110.7751 (5)1.0838 (7)0.5035 (8)0.087 (3)
H110.80621.12360.55280.104*
C120.7393 (5)1.1154 (5)0.4061 (8)0.066 (3)
C130.6910 (4)1.0555 (5)0.3300 (7)0.053 (2)
C140.6534 (5)1.0870 (6)0.2316 (7)0.066 (2)
H140.62281.04750.18160.079*
C150.6629 (7)1.1759 (8)0.2112 (10)0.097 (4)
H150.63731.19690.14670.116*
C160.7096 (7)1.2367 (7)0.2837 (12)0.102 (4)
H160.71581.29660.26690.122*
C170.7461 (6)1.2080 (7)0.3789 (10)0.088 (3)
H170.77601.24940.42720.105*
C180.4844 (4)1.1253 (4)0.1971 (5)0.0370 (17)
C190.4695 (4)1.2085 (5)0.1460 (6)0.049 (2)
C200.4396 (5)1.2025 (6)0.0433 (6)0.060 (2)
H200.42881.25590.00560.072*
C210.4263 (5)1.1177 (6)0.0020 (6)0.067 (3)
H210.40631.11340.07020.080*
C220.4434 (4)1.0386 (5)0.0560 (5)0.050 (2)
H220.43460.98140.02510.060*
C230.4850 (5)1.2925 (5)0.2001 (6)0.067 (3)
H230.47421.34840.16640.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0522 (8)0.0356 (7)0.0274 (7)0.0000.0161 (6)0.000
Br10.0580 (6)0.0703 (6)0.0482 (5)0.0060 (5)0.0115 (4)0.0159 (4)
Br20.0961 (9)0.0469 (6)0.0961 (8)0.0138 (5)0.0260 (7)0.0145 (5)
N10.044 (4)0.039 (3)0.041 (4)0.002 (3)0.018 (3)0.005 (3)
N20.042 (4)0.047 (4)0.032 (4)0.001 (3)0.017 (3)0.000 (3)
O10.052 (3)0.042 (3)0.030 (3)0.003 (3)0.014 (2)0.002 (2)
C10.046 (5)0.050 (5)0.035 (4)0.003 (4)0.018 (4)0.006 (3)
C20.048 (5)0.041 (4)0.030 (4)0.006 (4)0.017 (4)0.006 (3)
C30.058 (5)0.040 (4)0.027 (4)0.004 (4)0.023 (4)0.002 (3)
C40.053 (5)0.048 (4)0.030 (4)0.002 (4)0.019 (4)0.001 (3)
C50.078 (7)0.041 (4)0.035 (4)0.008 (5)0.023 (5)0.009 (3)
C60.063 (6)0.041 (4)0.047 (5)0.004 (4)0.022 (4)0.001 (4)
C70.056 (5)0.043 (4)0.042 (5)0.003 (4)0.019 (4)0.002 (3)
C80.041 (5)0.046 (4)0.048 (5)0.003 (4)0.017 (4)0.007 (4)
C90.064 (6)0.056 (5)0.047 (5)0.003 (5)0.011 (4)0.012 (4)
C100.089 (8)0.077 (6)0.044 (6)0.012 (6)0.008 (5)0.021 (5)
C110.059 (7)0.085 (7)0.087 (8)0.004 (6)0.008 (6)0.048 (6)
C120.051 (6)0.045 (5)0.093 (8)0.005 (5)0.025 (6)0.026 (5)
C130.041 (5)0.048 (5)0.074 (6)0.001 (4)0.028 (5)0.011 (4)
C140.061 (6)0.066 (6)0.073 (7)0.003 (5)0.034 (5)0.008 (5)
C150.098 (9)0.083 (8)0.141 (11)0.017 (7)0.083 (9)0.041 (8)
C160.093 (10)0.056 (7)0.193 (15)0.004 (7)0.096 (11)0.016 (8)
C170.066 (7)0.060 (7)0.145 (11)0.010 (6)0.056 (8)0.025 (7)
C180.034 (4)0.035 (4)0.042 (4)0.002 (3)0.017 (4)0.001 (3)
C190.048 (5)0.041 (4)0.059 (5)0.000 (4)0.026 (4)0.008 (4)
C200.074 (6)0.060 (5)0.051 (5)0.011 (5)0.032 (5)0.022 (4)
C210.091 (7)0.069 (6)0.035 (5)0.011 (5)0.024 (5)0.020 (4)
C220.064 (5)0.054 (5)0.033 (4)0.001 (4)0.023 (4)0.001 (3)
C230.076 (7)0.044 (4)0.081 (6)0.009 (5)0.036 (6)0.019 (4)
Geometric parameters (Å, º) top
Cu1—O11.948 (4)C9—H90.9300
Cu1—O1i1.948 (4)C10—C111.332 (13)
Cu1—N2i2.029 (5)C10—H100.9300
Cu1—N22.029 (5)C11—C121.400 (13)
Cu1—N1i2.402 (6)C11—H110.9300
Cu1—N12.402 (6)C12—C131.424 (11)
Br1—C41.893 (8)C12—C171.431 (13)
Br2—C61.890 (7)C13—C141.413 (11)
N1—C11.273 (8)C14—C151.361 (12)
N1—C81.426 (9)C14—H140.9300
N2—C221.330 (8)C15—C161.394 (16)
N2—C181.355 (8)C15—H150.9300
O1—C31.288 (8)C16—C171.360 (15)
C1—C21.455 (9)C16—H160.9300
C1—H10.9300C17—H170.9300
C2—C71.399 (9)C18—C191.393 (9)
C2—C31.421 (10)C18—C18i1.438 (13)
C3—C41.421 (9)C19—C201.401 (10)
C4—C51.377 (9)C19—C231.424 (10)
C5—C61.403 (11)C20—C211.375 (10)
C5—H50.9300C20—H200.9300
C6—C71.360 (10)C21—C221.393 (10)
C7—H70.9300C21—H210.9300
C8—C91.368 (10)C22—H220.9300
C8—C131.429 (10)C23—C23i1.357 (16)
C9—C101.417 (11)C23—H230.9300
O1—Cu1—O1i97.3 (3)C8—C9—C10120.0 (8)
O1—Cu1—N2i169.1 (2)C8—C9—H9120.0
O1i—Cu1—N2i91.5 (2)C10—C9—H9120.0
O1—Cu1—N291.5 (2)C11—C10—C9120.4 (9)
O1i—Cu1—N2169.1 (2)C11—C10—H10119.8
N2i—Cu1—N280.5 (3)C9—C10—H10119.8
O1—Cu1—N1i86.0 (2)C10—C11—C12121.6 (8)
O1i—Cu1—N1i81.9 (2)C10—C11—H11119.2
N2i—Cu1—N1i101.7 (2)C12—C11—H11119.2
N2—Cu1—N1i92.4 (2)C11—C12—C13119.8 (8)
O1—Cu1—N181.9 (2)C11—C12—C17122.8 (10)
O1i—Cu1—N186.0 (2)C13—C12—C17117.3 (10)
N2i—Cu1—N192.4 (2)C14—C13—C12120.5 (8)
N2—Cu1—N1101.7 (2)C14—C13—C8122.2 (7)
N1i—Cu1—N1161.6 (3)C12—C13—C8117.3 (8)
C1—N1—C8118.5 (6)C15—C14—C13118.9 (10)
C1—N1—Cu1114.5 (5)C15—C14—H14120.5
C8—N1—Cu1116.4 (4)C13—C14—H14120.5
C22—N2—C18117.6 (6)C14—C15—C16122.3 (12)
C22—N2—Cu1128.5 (5)C14—C15—H15118.8
C18—N2—Cu1113.9 (4)C16—C15—H15118.8
C3—O1—Cu1125.3 (4)C17—C16—C15119.7 (10)
N1—C1—C2126.9 (7)C17—C16—H16120.1
N1—C1—H1116.5C15—C16—H16120.1
C2—C1—H1116.5C16—C17—C12121.2 (10)
C7—C2—C3120.9 (6)C16—C17—H17119.4
C7—C2—C1116.0 (7)C12—C17—H17119.4
C3—C2—C1123.1 (6)N2—C18—C19124.2 (6)
O1—C3—C2125.3 (6)N2—C18—C18i115.9 (4)
O1—C3—C4119.8 (7)C19—C18—C18i120.0 (4)
C2—C3—C4114.9 (7)C18—C19—C20116.4 (7)
C5—C4—C3124.1 (7)C18—C19—C23118.9 (7)
C5—C4—Br1117.6 (6)C20—C19—C23124.7 (7)
C3—C4—Br1118.4 (5)C21—C20—C19120.2 (7)
C4—C5—C6118.5 (7)C21—C20—H20119.9
C4—C5—H5120.7C19—C20—H20119.9
C6—C5—H5120.7C20—C21—C22118.9 (7)
C7—C6—C5119.9 (7)C20—C21—H21120.5
C7—C6—Br2121.9 (6)C22—C21—H21120.5
C5—C6—Br2118.2 (6)N2—C22—C21122.8 (7)
C6—C7—C2121.7 (7)N2—C22—H22118.6
C6—C7—H7119.2C21—C22—H22118.6
C2—C7—H7119.2C23i—C23—C19121.1 (4)
C9—C8—N1121.5 (7)C23i—C23—H23119.4
C9—C8—C13120.8 (7)C19—C23—H23119.4
N1—C8—C13117.4 (7)
O1—Cu1—N1—C142.1 (5)Br2—C6—C7—C2179.3 (5)
O1i—Cu1—N1—C155.8 (5)C3—C2—C7—C60.3 (11)
N2i—Cu1—N1—C1147.2 (5)C1—C2—C7—C6178.7 (6)
N2—Cu1—N1—C1132.0 (5)C1—N1—C8—C949.5 (10)
N1i—Cu1—N1—C17.1 (5)Cu1—N1—C8—C993.2 (8)
O1—Cu1—N1—C8173.7 (5)C1—N1—C8—C13136.6 (7)
O1i—Cu1—N1—C888.4 (5)Cu1—N1—C8—C1380.8 (7)
N2i—Cu1—N1—C83.0 (5)N1—C8—C9—C10175.2 (8)
N2—Cu1—N1—C883.8 (5)C13—C8—C9—C101.4 (12)
N1i—Cu1—N1—C8137.1 (5)C8—C9—C10—C113.1 (15)
O1—Cu1—N2—C227.0 (6)C9—C10—C11—C122.7 (16)
O1i—Cu1—N2—C22136.8 (10)C10—C11—C12—C130.6 (15)
N2i—Cu1—N2—C22179.5 (8)C10—C11—C12—C17177.6 (10)
N1i—Cu1—N2—C2279.0 (6)C11—C12—C13—C14178.9 (8)
N1—Cu1—N2—C2289.1 (6)C17—C12—C13—C141.8 (12)
O1—Cu1—N2—C18172.5 (5)C11—C12—C13—C81.0 (12)
O1i—Cu1—N2—C1843.7 (14)C17—C12—C13—C8176.1 (8)
N2i—Cu1—N2—C180.1 (4)C9—C8—C13—C14178.4 (8)
N1i—Cu1—N2—C18101.4 (5)N1—C8—C13—C144.5 (11)
N1—Cu1—N2—C1890.5 (5)C9—C8—C13—C120.6 (11)
O1i—Cu1—O1—C335.9 (5)N1—C8—C13—C12173.4 (7)
N2i—Cu1—O1—C3107.5 (12)C12—C13—C14—C151.5 (13)
N2—Cu1—O1—C3150.6 (6)C8—C13—C14—C15176.3 (8)
N1i—Cu1—O1—C3117.2 (6)C13—C14—C15—C161.5 (15)
N1—Cu1—O1—C349.0 (5)C14—C15—C16—C171.7 (17)
C8—N1—C1—C2172.1 (7)C15—C16—C17—C122.0 (17)
Cu1—N1—C1—C228.7 (9)C11—C12—C17—C16179.1 (10)
N1—C1—C2—C7177.3 (7)C13—C12—C17—C162.1 (15)
N1—C1—C2—C33.7 (11)C22—N2—C18—C190.2 (11)
Cu1—O1—C3—C241.1 (9)Cu1—N2—C18—C19179.8 (6)
Cu1—O1—C3—C4141.3 (5)C22—N2—C18—C18i179.4 (7)
C7—C2—C3—O1177.1 (6)Cu1—N2—C18—C18i0.2 (10)
C1—C2—C3—O14.0 (10)N2—C18—C19—C200.1 (11)
C7—C2—C3—C40.6 (9)C18i—C18—C19—C20179.5 (8)
C1—C2—C3—C4178.3 (6)N2—C18—C19—C23179.7 (7)
O1—C3—C4—C5177.7 (6)C18i—C18—C19—C230.7 (13)
C2—C3—C4—C50.1 (10)C18—C19—C20—C210.1 (12)
O1—C3—C4—Br13.7 (9)C23—C19—C20—C21179.6 (9)
C2—C3—C4—Br1178.5 (5)C19—C20—C21—C220.3 (13)
C3—C4—C5—C60.7 (11)C18—N2—C22—C210.4 (11)
Br1—C4—C5—C6179.3 (5)Cu1—N2—C22—C21179.9 (6)
C4—C5—C6—C71.0 (11)C20—C21—C22—N20.4 (13)
C4—C5—C6—Br2178.9 (5)C18—C19—C23—C23i1.3 (16)
C5—C6—C7—C20.6 (12)C20—C19—C23—C23i179.0 (10)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···Br1ii0.932.933.773 (13)152
Symmetry code: (ii) x+3/2, y+5/2, z.

Experimental details

Crystal data
Chemical formula[Cu(C17H10Br2NO)2(C12H8N2)]
Mr1051.90
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)20.288 (2), 14.5052 (18), 15.227 (2)
β (°) 116.977 (2)
V3)3993.5 (9)
Z4
Radiation typeMo Kα
µ (mm1)4.59
Crystal size (mm)0.38 × 0.19 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.274, 0.509
No. of measured, independent and
observed [I > 2σ(I)] reflections
10067, 3513, 1877
Rint0.086
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.165, 0.97
No. of reflections3513
No. of parameters258
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.95, 0.73

Computer programs: SMART (Bruker 2001), SAINT (Bruker 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···Br1i0.92972.92593.773 (13)152.21
Symmetry code: (i) x+3/2, y+5/2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds