metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1516-m1517

Bis[2,2′-(2-amino­ethyl­imino)­di(ethyl­ammonium)] di-μ-sulfido-bis­[di­sulfido­stannate(IV)]

aDepartment of Chemistry, Chatham University, 1 Woodland Road, Pittsburgh, PA 15232, USA, and bDepartment of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, USA
*Correspondence e-mail: macneil@chatham.edu

(Received 22 August 2011; accepted 20 September 2011; online 12 October 2011)

The asymmetric unit of the title compound, (C6H20N4)2[Sn2S6], comprises half of a [Sn2S6]4− anion and a diprotonated tris­(2-amino­eth­yl)amine cation. The anion lies on an inversion center, while the atoms of the cation occupy general positions. An intra­molecular N—H⋯N hydrogen bond is observed in the cation. In the crystal, strong N—H⋯S hydrogen bonding between the terminal sulfur atoms of the anion and the protonated amine N atoms of the cations result in a three-dimensional network.

Related literature

For synthetic conditions and the structure of the hydrated form of this complex, see: Näther et al. (2003[Näther, C., Scherb, S. & Bensch, W. (2003). Acta Cryst. E59, m280-m282.]). For solvothermal syntheses of compounds with [Sn2S6]4− anions, see: Behrens et al. (2003[Behrens, M., Scherb, S., Näther, C. & Bensch, W. (2003). Z. Anorg. Allg. Chem. 629, 1367-1373.]); Jia et al. (2005[Jia, D. X., Dai, J., Zhu, Q. Y., Lu, W. & Guo, W. J. (2005). Chin. J. Struct. Chem. 24, 1157-1163.]); Jiang et al. (1998a[Jiang, T., Lough, A., Ozin, G. A. & Bedard, R. L. (1998a). J. Mater. Chem. 8, 733-741.]); Li et al. (1997[Li, J., Marler, B., Kessler, H., Soulard, M. & Kallus, S. (1997). Inorg. Chem. 36, 4697-4701.]). For other thio­stannate anions, see: Jiang et al. (1998b[Jiang, T., Lough, A. & Ozin, G. A. (1998b). Adv. Mater. 10, 42-46.]). For a review article covering related compounds, see: Zhou et al. (2009[Zhou, J., Dai, J., Bian, G. Q. & Li, C. Y. (2009). Coord. Chem. Rev. 253, 1221-1247.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H20N4)2[Sn2S6]

  • Mr = 363.13

  • Monoclinic, P 21 /c

  • a = 9.9280 (2) Å

  • b = 14.8845 (3) Å

  • c = 10.2498 (2) Å

  • β = 115.758 (1)°

  • V = 1364.15 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.31 mm−1

  • T = 296 K

  • 0.61 × 0.57 × 0.39 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.334, Tmax = 0.467

  • 25432 measured reflections

  • 4907 independent reflections

  • 4460 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.058

  • S = 1.04

  • 4907 reflections

  • 132 parameters

  • H-atom parameters constrained

  • Δρmax = 1.22 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—S1 2.3307 (4)
Sn1—S2 2.3447 (4)
Sn1—S3i 2.4550 (4)
Sn1—S3 2.4564 (4)
Symmetry code: (i) -x, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9C⋯N10 0.89 2.10 2.965 (3) 163
N9—H9B⋯S1ii 0.89 2.44 3.314 (2) 167
N9—H9A⋯S2iii 0.89 2.49 3.370 (2) 168
N7—H7C⋯S1i 0.89 2.36 3.243 (2) 174
N7—H7B⋯S2iv 0.89 2.40 3.278 (2) 170
N7—H7A⋯S2v 0.89 2.57 3.411 (2) 159
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x+1, y, z; (iv) x, y, z-1; (v) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (Palmer, 2010[Palmer, D. (2010). Crystal Maker CrystalMaker Software Ltd, Oxford, England.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

While solvothermal syntheses have produced an assortment of anionic thiostannate building blocks, the [Sn2S6]4- moiety has been one of the most common (Zhou et al., 2009). It has also been shown that under certain conditions [Sn2S6]4- anions can be converted to forms such as [Sn3S7]2- and [Sn4S9]-, forming two-dimensional layered anionic networks (Jiang et al., 1998a,b). In 2003, solvothermal experiments aimed at preparing [Co(tren)2][Sn2S6] using the chelating ligand tris(2-aminoethyl)amine (C6H18N4, tren), resulted in the isolation and characterization of (H2tren)2[Sn2S6].2H2O (Näther et al., 2003) as a side product. We have now shown that the anhydrous version of this compound, (I) can be accessed when the reaction is carried out in anhydrous conditions and without any transition metal present. In the title compound, (H2tren)2[Sn2S6], (Fig. 1), the terminal Sn—S bonds, at 2.3307 (4) and 2.3447 (5) Å, are shorter than the Sn—S bond of 2.4565 (6) Å formed with the bridging sulfur. The interior S—Sn—S angle of 92.78 (2)° is tighter than those involving terminal sulfurs, where these angles range from 108.22 (2) to 120.55 (2)°. Collectively, the geometric parameters of the [Sn2S6]4- anion are in reasonable accordance with similar structures (Näther et al., 2003; Behrens et al., 2003). In the (H2tren)2+ cation, the C—N bond lengths for the two protonated pendant amines are slightly longer, at 1.490 (3) and 1.473 (3) Å, than the 1.446 (5) Å C—N bond for the neutral arm. The most distinct structural difference between the anhydrous structure and the previously reported hydrated form (Näther et al., 2003) is the positioning of the NH2 pedant amine. In the hydrated structure, it is aligned to facilitate a H-bonding interaction (H···N—H of 2.08 Å) with an NH3+ amine on a neighboring cation. In the anhydrous structure, the hydrogen bonding interaction (N9—H9C···N10, 2.10 Å) is formed within the same ligand, Fig. 2. Strong hydrogen bonding between the terminal sulfur atoms on the anion and the protonated amine centers on the cation (Fig. 2, Table 2) results in a three-dimensional network, Fig. 3.

Related literature top

For synthetic conditions and the structure of the hydrated form of this complex, see: Näther et al. (2003). For solvothermal syntheses of compounds with [Sn2S6]4- anions, see: Behrens et al. (2003); Jia et al. (2005); Jiang et al. (1998a); Li et al. (1997). For other thiostannite anions, see: Jiang et al. (1998b). For a review article covering related compounds, see: Zhou et al. (2009).

Experimental top

The title compound was prepared by solvothermal synthesis, using conditions comparable to Näther et al. (2003). 5.0 ml of tris-2-aminoethylamine (tren) was mixed with 1.00 mmol Sn and 3.0 mmol S in a 23 ml Parr(R); acid digestion apparatus. The mixture was heated to 423 K over 5 h and maintained at that temperature for 144 h. It was cooled to 363 K at 2 K/h, then cooled to 313 K at 6 K/h. The clear, colorless crystals were washed with hexane and recovered by vacuum filtration. This protocol produced large crystals, often several mm on the longest axis, and in one instance measuring over 20 mm.

Refinement top

All H atoms except for those on N(10) were placed at calculated positions (C—H at 0.97 Å, N—H at 0.87 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(N). The two H atoms on N(10) were identified from the difference Fourier map and refined as a rigid group with Uiso(H) = 1.5Ueq(N).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of (C6H20N4)2[Sn2S6].The thermal ellipsoids have been drawn at the 50% probability level. Symmetry code: (i) = -x, -y + 1, -z + 1.
[Figure 2] Fig. 2. Hydrogen bonding interactions within the (H2tren)2+ cation and between the cation and the terminal sulfurs of the [Sn2S6]4- anion. Symmetry codes as presented in Table 2.
[Figure 3] Fig. 3. View down the a axis illustrating the three-dimensional hydrogen bonding network.
Bis[2,2'-(2-aminoethylimino)di(ethylammonium)] di-µ-sulfido-bis[disulfidostannate(IV)] top
Crystal data top
(C6H20N4)2[Sn2S6]F(000) = 728
Mr = 363.13Dx = 1.768 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9995 reflections
a = 9.9280 (2) Åθ = 2.3–33.1°
b = 14.8845 (3) ŵ = 2.31 mm1
c = 10.2498 (2) ÅT = 296 K
β = 115.758 (1)°Clear, colourless
V = 1364.15 (5) Å30.61 × 0.57 × 0.39 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
4907 independent reflections
Radiation source: fine-focus sealed tube4460 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω Scans scansθmax = 33.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1414
Tmin = 0.334, Tmax = 0.467k = 2222
25432 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0298P)2 + 0.7916P]
where P = (Fo2 + 2Fc2)/3
4907 reflections(Δ/σ)max = 0.002
132 parametersΔρmax = 1.22 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
(C6H20N4)2[Sn2S6]V = 1364.15 (5) Å3
Mr = 363.13Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.9280 (2) ŵ = 2.31 mm1
b = 14.8845 (3) ÅT = 296 K
c = 10.2498 (2) Å0.61 × 0.57 × 0.39 mm
β = 115.758 (1)°
Data collection top
Bruker SMART APEX
diffractometer
4907 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
4460 reflections with I > 2σ(I)
Tmin = 0.334, Tmax = 0.467Rint = 0.023
25432 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.058H-atom parameters constrained
S = 1.04Δρmax = 1.22 e Å3
4907 reflectionsΔρmin = 0.51 e Å3
132 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.01082 (1)0.468130 (7)0.66292 (1)0.02312 (4)
S10.18598 (5)0.52916 (3)0.87984 (5)0.03186 (9)
S20.15015 (5)0.35310 (3)0.66377 (5)0.03259 (9)
S30.13815 (5)0.41901 (3)0.51649 (5)0.03229 (9)
C10.1339 (2)0.3225 (1)0.0717 (2)0.0349 (3)
H1A0.16000.38330.05730.042*
H1B0.17150.28180.02130.042*
C20.2059 (2)0.3005 (1)0.2327 (2)0.0380 (4)
H2A0.16200.33790.28170.046*
H2B0.18620.23820.24630.046*
C30.4166 (3)0.4070 (2)0.3308 (4)0.0552 (6)
H3A0.47110.41300.43510.066*
H3B0.33080.44680.29840.066*
C40.5166 (3)0.4348 (2)0.2610 (3)0.0528 (6)
H4A0.45960.43370.15650.063*
H4B0.55070.49590.28950.063*
C50.4481 (3)0.2526 (2)0.4178 (2)0.0466 (5)
H5A0.53970.28140.48520.056*
H5B0.38750.24070.46890.056*
C60.4856 (3)0.1665 (2)0.3699 (3)0.0510 (5)
H6A0.54350.12970.45380.061*
H6B0.39420.13440.31060.061*
N70.0318 (2)0.3140 (1)0.0112 (2)0.0350 (3)
H7A0.05510.26100.03610.053*
H7B0.07150.31810.08490.053*
H7C0.06770.35770.04620.053*
N80.3655 (2)0.3154 (1)0.2955 (2)0.0340 (3)
N90.6473 (2)0.3752 (1)0.3030 (2)0.0393 (4)
H9A0.70350.37910.39810.059*
H9B0.70090.39160.25640.059*
H9C0.61650.31870.27990.059*
N100.5705 (3)0.1814 (1)0.2875 (3)0.0535 (5)
H10A0.63630.13880.28870.080*
H10B0.50460.18680.18570.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02520 (5)0.02399 (6)0.02090 (5)0.00209 (3)0.01070 (4)0.00039 (3)
S10.0316 (2)0.0363 (2)0.0254 (2)0.0069 (1)0.0102 (1)0.0050 (1)
S20.0325 (2)0.0375 (2)0.0268 (2)0.0115 (2)0.0120 (1)0.0009 (1)
S30.0400 (2)0.0321 (2)0.0300 (2)0.0127 (2)0.0201 (2)0.0057 (1)
C10.0357 (8)0.0370 (9)0.0362 (9)0.0016 (7)0.0196 (7)0.0056 (7)
C20.0316 (8)0.049 (1)0.0347 (9)0.0045 (7)0.0157 (7)0.0022 (8)
C30.052 (1)0.036 (1)0.089 (2)0.0123 (9)0.041 (1)0.019 (1)
C40.049 (1)0.037 (1)0.075 (2)0.0066 (8)0.022 (1)0.011 (1)
C50.042 (1)0.062 (1)0.037 (1)0.0056 (9)0.0190 (9)0.0023 (9)
C60.043 (1)0.056 (1)0.053 (1)0.0121 (9)0.020 (1)0.021 (1)
N70.0356 (7)0.0375 (8)0.0291 (7)0.0014 (6)0.0112 (6)0.0019 (6)
N80.0280 (6)0.0343 (7)0.0407 (8)0.0060 (5)0.0160 (6)0.0056 (6)
N90.0330 (7)0.0461 (9)0.0379 (8)0.0106 (7)0.0146 (6)0.0023 (7)
N100.055 (1)0.049 (1)0.067 (1)0.0051 (9)0.037 (1)0.009 (1)
Geometric parameters (Å, º) top
Sn1—S12.3307 (4)C4—H4A0.9700
Sn1—S22.3447 (4)C4—H4B0.9700
Sn1—S3i2.4550 (4)C5—C61.477 (4)
Sn1—S32.4564 (4)C5—N81.491 (3)
S3—Sn1i2.4550 (4)C5—H5A0.9700
C1—N71.490 (2)C5—H5B0.9700
C1—C21.521 (3)C6—N101.446 (3)
C1—H1A0.9700C6—H6A0.9700
C1—H1B0.9700C6—H6B0.9700
C2—N81.445 (2)N7—H7A0.8900
C2—H2A0.9700N7—H7B0.8900
C2—H2B0.9700N7—H7C0.8900
C3—N81.444 (3)N9—H9A0.8900
C3—C41.512 (4)N9—H9B0.8900
C3—H3A0.9700N9—H9C0.8900
C3—H3B0.9700N10—H10A0.9066
C4—N91.474 (3)N10—H10B0.9645
S1—Sn1—S2120.55 (2)C6—C5—N8113.0 (2)
S1—Sn1—S3i113.87 (2)C6—C5—H5A109.0
S2—Sn1—S3i108.22 (2)N8—C5—H5A109.0
S1—Sn1—S3109.28 (2)C6—C5—H5B109.0
S2—Sn1—S3108.51 (2)N8—C5—H5B109.0
S3i—Sn1—S392.78 (1)H5A—C5—H5B107.8
Sn1i—S3—Sn187.22 (1)N10—C6—C5110.8 (2)
N7—C1—C2110.3 (1)N10—C6—H6A109.5
N7—C1—H1A109.6C5—C6—H6A109.5
C2—C1—H1A109.6N10—C6—H6B109.5
N7—C1—H1B109.6C5—C6—H6B109.5
C2—C1—H1B109.6H6A—C6—H6B108.1
H1A—C1—H1B108.1C1—N7—H7A109.5
N8—C2—C1110.9 (2)C1—N7—H7B109.5
N8—C2—H2A109.5H7A—N7—H7B109.5
C1—C2—H2A109.5C1—N7—H7C109.5
N8—C2—H2B109.5H7A—N7—H7C109.5
C1—C2—H2B109.5H7B—N7—H7C109.5
H2A—C2—H2B108.0C2—N8—C3117.1 (2)
N8—C3—C4111.8 (2)C2—N8—C5112.0 (2)
N8—C3—H3A109.3C3—N8—C5112.1 (2)
C4—C3—H3A109.3C4—N9—H9A109.5
N8—C3—H3B109.3C4—N9—H9B109.5
C4—C3—H3B109.3H9A—N9—H9B109.5
H3A—C3—H3B107.9C4—N9—H9C109.5
N9—C4—C3111.9 (2)H9A—N9—H9C109.5
N9—C4—H4A109.2H9B—N9—H9C109.5
C3—C4—H4A109.2C6—N10—H10A119.0
N9—C4—H4B109.2C6—N10—H10B110.6
C3—C4—H4B109.2H10A—N10—H10B102.6
H4A—C4—H4B107.9
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9C···N100.892.102.965 (3)163
N9—H9B···S1ii0.892.443.314 (2)167
N9—H9A···S2iii0.892.493.370 (2)168
N7—H7C···S1i0.892.363.243 (2)174
N7—H7B···S2iv0.892.403.278 (2)170
N7—H7A···S2v0.892.573.411 (2)159
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x, y, z1; (v) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula(C6H20N4)2[Sn2S6]
Mr363.13
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.9280 (2), 14.8845 (3), 10.2498 (2)
β (°) 115.758 (1)
V3)1364.15 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.31
Crystal size (mm)0.61 × 0.57 × 0.39
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.334, 0.467
No. of measured, independent and
observed [I > 2σ(I)] reflections
25432, 4907, 4460
Rint0.023
(sin θ/λ)max1)0.769
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.058, 1.04
No. of reflections4907
No. of parameters132
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.22, 0.51

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (Palmer, 2010), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Sn1—S12.3307 (4)Sn1—S3i2.4550 (4)
Sn1—S22.3447 (4)Sn1—S32.4564 (4)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9C···N100.892.102.965 (3)163.2
N9—H9B···S1ii0.892.443.314 (2)166.5
N9—H9A···S2iii0.892.493.370 (2)167.9
N7—H7C···S1i0.892.363.243 (2)174.3
N7—H7B···S2iv0.892.403.278 (2)170.1
N7—H7A···S2v0.892.573.411 (2)158.5
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x, y, z1; (v) x, y+1/2, z1/2.
 

Acknowledgements

This project was funded by the National Science Foundation (NSF) CAREER Award DMR-0645304 and the instrumentation was purchased with NSF grant, CRIF-0234872. This material is based upon work supported by the NSF under CHE-1005145 and CHE-1144419.

References

First citationBehrens, M., Scherb, S., Näther, C. & Bensch, W. (2003). Z. Anorg. Allg. Chem. 629, 1367–1373.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJia, D. X., Dai, J., Zhu, Q. Y., Lu, W. & Guo, W. J. (2005). Chin. J. Struct. Chem. 24, 1157–1163.  CAS Google Scholar
First citationJiang, T., Lough, A. & Ozin, G. A. (1998b). Adv. Mater. 10, 42–46.  Web of Science CrossRef CAS Google Scholar
First citationJiang, T., Lough, A., Ozin, G. A. & Bedard, R. L. (1998a). J. Mater. Chem. 8, 733–741.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, J., Marler, B., Kessler, H., Soulard, M. & Kallus, S. (1997). Inorg. Chem. 36, 4697–4701.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationNäther, C., Scherb, S. & Bensch, W. (2003). Acta Cryst. E59, m280–m282.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPalmer, D. (2010). Crystal Maker CrystalMaker Software Ltd, Oxford, England.  Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, J., Dai, J., Bian, G. Q. & Li, C. Y. (2009). Coord. Chem. Rev. 253, 1221–1247.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1516-m1517
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds