metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[6-meth­­oxy-2-[(4-methyl­phen­yl)iminiometh­yl]phenolate-κO1]tris­­(nitrato-κ2O,O′)ytterbium(III) monohydrate

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China, and College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China
*Correspondence e-mail: sky53@zjnu.cn

(Received 22 August 2009; accepted 10 October 2009; online 17 October 2009)

The crystal structure of title compound, [Yb(NO3)3(C15H15NO2)2]·H2O, contains two Schiff base 2-[(4-methyl­phen­yl)imino­meth­yl]-6-methoxy­phenol (HL) ligands, three independent nitrate ions that chelate to the ytterbium(III) ion in an O,O′-bidentate manner and an uncoordinated water mol­ecule. The coordination number of the YbIII ion is eight. The HL ligands chelate with a strong Yb—O(phenolate) bond and a weak Yb—O(meth­oxy) contact. The latter augments the coordination polyhedron to give a YbO10 bicapped square antiprism. Classical inter­molecular O—H⋯O and N—H⋯O hydrogen bonds as well as weak C—H⋯O contacts contribute to the stability of the structure.

Related literature

For the crystal structure of a zinc(II) complex with two chelating HL ligands, see: Xian et al. (2008[Xian, H.-D., Liu, J.-F., Li, H.-Q. & Zhao, G.-L. (2008). Acta Cryst. E64, m1422.]). For a related terbium(III) complex, see: Zhao et al. (2007[Zhao, G.-L., Shi, X. & Ng, S. W. (2007). Acta Cryst. E63, m267-m268.]). For the zigzag chain cadmium(II) complex bridged by chloride, see: Li et al. (2008[Li, H.-Q., Xian, H.-D., Liu, J.-F. & Zhao, G.-L. (2008). Acta Cryst. E64, m1593-m1594.]). For iron(III) and cobalt(III) complexes of some N-salicylideneamino acids, see: Burrows & Bailar (1966[Burrows, R. C. & Bailar, J. C. (1966). J. Am. Chem. Soc. 88, 4150-4152.]). For a heterodimetallic (Yb, La) complex, see: Costes et al. (1998[Costes, J. P., Dahan, F., Dupuis, A., Lagrave, S. & Laurent, J. P. (1998). Inorg. Chem. 37, 153-155.]). For the syntheses of rare earth complexes with Schiff bases derived from o-vanillin and adamantaneamine, see: Zhao et al. (2005[Zhao, G.-L., Zhang, P.-H. & Feng, Y.-L. (2005). Chin. J. Inorg. Chem. 21, 421-424.]).

[Scheme 1]

Experimental

Crystal data
  • [Yb(NO3)3(C15H15NO2)2]·H2O

  • Mr = 859.65

  • Triclinic, [P \overline 1]

  • a = 9.6878 (1) Å

  • b = 9.9210 (2) Å

  • c = 18.5998 (3) Å

  • α = 97.341 (1)°

  • β = 101.929 (1)°

  • γ = 106.593 (1)°

  • V = 1642.63 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.92 mm−1

  • T = 296 K

  • 0.27 × 0.16 × 0.10 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.576, Tmax = 0.757

  • 24571 measured reflections

  • 7543 independent reflections

  • 6122 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.095

  • S = 0.99

  • 7543 reflections

  • 457 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.88 e Å−3

  • Δρmin = −0.76 e Å−3

Table 1
Selected bond lengths (Å)

Yb—O3 2.225 (3)
Yb—O1 2.228 (3)
Yb—O12 2.342 (3)
Yb—O5 2.373 (3)
Yb—O9 2.379 (4)
Yb—O6 2.404 (3)
Yb—O11 2.444 (4)
Yb—O8 2.451 (4)
Yb—O2 2.833 (4)
Yb—O4 2.927 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.86 1.89 2.590 (4) 138
N2—H2A⋯O3 0.86 1.99 2.668 (4) 135
O1W—H1WB⋯O13i 0.88 1.89 (13) 2.741 162
O1W—H1WB⋯N5i 0.88 2.55 (11) 3.404 163
O1W—H1WA⋯O9ii 0.88 2.22 (11) 2.97416 144
C22—H22A⋯O1W 0.93 2.29 3.193 163
C4—H4A⋯O7iii 0.93 2.45 3.137 (7) 131
Symmetry codes: (i) x-1, y-1, z; (ii) x-1, y, z; (iii) -x+2, -y+1, -z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

It has well been confirmed that Schiff bases are important in multiple fields such as chemistry and biochemistry owing to their biological activities (Zhao et al., 2005). Schiff base complexes prepared by ligands from substituted o-vanillin have been absorbed considerable attention in the past decades due to the intriguing biological activities of o-vanillin and the convenience in Schiff bases synthesis (Burrows & Bailar, 1966). Interested in this field, we have been engaged in a major effort directed toward the development of syntheses of new analogous Schiff bases derived from o-vanillin and their rare metal complexes. In a few of articles we have reported our partial research results (Zhao et al., 2007; Xian et al. 2008; Li et al. 2008). Herein, we describe a new ytterbium(III) complex.

The structure of the title complex is shown in Fig.1, and the coordination environment of YbIII is shown in Fig. 2. In this complex the YbIII is eight-coordinated by O atoms, six of which come from three nitrate ions and two come from the Schiff base ligands (HL). The HL ligands coordinate to the YbIII ion using oxygen atoms from deprotonated phenolic hydroxyl groups. The ten Yb—O bond distances are listed in Table 1 (including weak Yb—O interactions). The distances between YbIII and methoxyl O atoms (2.833 (4) Å and 2.927 (3) Å for Yb—O2 and Yb—O4) are longer than in similar reported complexes (Costes et al., 1998; Zhao et al., 2007), and even longer than the distances between Yb and Nitrate N, indicating the interactions are weak. In contrast, in the TbIII complex Zhao (2007), the Tb—O (methoxyl) bonds are shorter and stronger (2.731 (2) Å and 2.744 (2) Å), which can be attribute to the ionic radii decrease from TbIII to YbIII due to the lanthanide contraction.

The hydrogen bonds and weak π···π non-covalent interactions lend stability to the structure. The hydrogen bonds are listed in Table 2 and the stacking plot of this compound is shown in Fig. 3. Complex molecules are linked in a chain through water molecules by hydrogen bonds, and different chains are interlocked with benzene rings of Schiff base using π···π stacking. In the HL ligands, the proton of the phenolic hydroxyl group is considered to have transferred to the N-imine atom, which involving in an intramolecular hydrogen bond (Table 2).

Related literature top

For the crystal structure of a zinc(II) complex with two chelating HL ligands, see: Xian et al. (2008). For a related terbium(III) complex, see: Zhao et al. (2007). For the zigzag chain cadmium(II) complex bridged by chloride, see: Li et al. (2008). For iron(III) and cobalt(III) complexes of some N-salicylideneamino acids, see: Burrows & Bailar (1966). For a heterodimetallic (Yb, La) complex, see: Costes et al. (1998). For the syntheses of rare earth complexes with Schiff bases derived from o-vanillin and adamantaneamine, see: Zhao et al. (2005).

Experimental top

Reagents and solvents used were of commercially available quality and without purified before using. The Schiff base ligand 2-[(4- methylphenyl)iminomethyl]-6-methoxy-phenol was prepared by condensation of o-vanillin and p-methylaniline with a high yield and which was purified by recrystallization in ethanol. The compound (1) was obtained by adding Yb(NO3)3 (1 mmol, dissolved in methanol) to N-salicylidene-p-toluidine (3 mmol) in methanol solution. The mixture solution was stirred at room temperature for 8 h to obtain a purplish red solution. At last, the deposit was filtered out and the solution was kept for evaporating. The red crystal was formed after several days.

Refinement top

The structure was solved by direct methods and successive Fourier difference synthesis. The H atoms bonded to C and N atoms were positioned geometrically and refined using a riding model [aliphatic C—H =0.96 Å, Uiso(H) = 1.5Ueq(C), aromatic C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C), and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(N)]. The H atoms bonded to water O atoms were located in difference Fourier maps and refined with O—H distance restraints of 0.88 (2) and Uiso(H) = 1.5Ueq(O).

Structure description top

It has well been confirmed that Schiff bases are important in multiple fields such as chemistry and biochemistry owing to their biological activities (Zhao et al., 2005). Schiff base complexes prepared by ligands from substituted o-vanillin have been absorbed considerable attention in the past decades due to the intriguing biological activities of o-vanillin and the convenience in Schiff bases synthesis (Burrows & Bailar, 1966). Interested in this field, we have been engaged in a major effort directed toward the development of syntheses of new analogous Schiff bases derived from o-vanillin and their rare metal complexes. In a few of articles we have reported our partial research results (Zhao et al., 2007; Xian et al. 2008; Li et al. 2008). Herein, we describe a new ytterbium(III) complex.

The structure of the title complex is shown in Fig.1, and the coordination environment of YbIII is shown in Fig. 2. In this complex the YbIII is eight-coordinated by O atoms, six of which come from three nitrate ions and two come from the Schiff base ligands (HL). The HL ligands coordinate to the YbIII ion using oxygen atoms from deprotonated phenolic hydroxyl groups. The ten Yb—O bond distances are listed in Table 1 (including weak Yb—O interactions). The distances between YbIII and methoxyl O atoms (2.833 (4) Å and 2.927 (3) Å for Yb—O2 and Yb—O4) are longer than in similar reported complexes (Costes et al., 1998; Zhao et al., 2007), and even longer than the distances between Yb and Nitrate N, indicating the interactions are weak. In contrast, in the TbIII complex Zhao (2007), the Tb—O (methoxyl) bonds are shorter and stronger (2.731 (2) Å and 2.744 (2) Å), which can be attribute to the ionic radii decrease from TbIII to YbIII due to the lanthanide contraction.

The hydrogen bonds and weak π···π non-covalent interactions lend stability to the structure. The hydrogen bonds are listed in Table 2 and the stacking plot of this compound is shown in Fig. 3. Complex molecules are linked in a chain through water molecules by hydrogen bonds, and different chains are interlocked with benzene rings of Schiff base using π···π stacking. In the HL ligands, the proton of the phenolic hydroxyl group is considered to have transferred to the N-imine atom, which involving in an intramolecular hydrogen bond (Table 2).

For the crystal structure of a zinc(II) complex with two chelating HL ligands, see: Xian et al. (2008). For a related terbium(III) complex, see: Zhao et al. (2007). For the zigzag chain cadmium(II) complex bridged by chloride, see: Li et al. (2008). For iron(III) and cobalt(III) complexes of some N-salicylideneamino acids, see: Burrows & Bailar (1966). For a heterodimetallic (Yb, La) complex, see: Costes et al. (1998). For the syntheses of rare earth complexes with Schiff bases derived from o-vanillin and adamantaneamine, see: Zhao et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The coordination environment of the Ytterbium(III) atom, showing the bicapped square antiprism.
[Figure 3] Fig. 3. The stacking plot of the title compound, showing H-bond interactions (dashed lines) and π···π stacking interactions.
Bis[6-methoxy-2-[(4-methylphenyl)iminiomethyl]phenolate- κO1]tris(nitrato-κ2O,O')ytterbium(III) monohydrate top
Crystal data top
[Yb(NO3)3(C15H15NO2)2]·H2OZ = 2
Mr = 859.65F(000) = 858
Triclinic, P1Dx = 1.738 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6878 (1) ÅCell parameters from 9270 reflections
b = 9.9210 (2) Åθ = 2.2–27.6°
c = 18.5998 (3) ŵ = 2.92 mm1
α = 97.341 (1)°T = 296 K
β = 101.929 (1)°Block, red
γ = 106.593 (1)°0.27 × 0.16 × 0.10 mm
V = 1642.63 (5) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
7543 independent reflections
Radiation source: fine-focus sealed tube6122 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 27.6°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.576, Tmax = 0.757k = 1112
24571 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.3718P]
where P = (Fo2 + 2Fc2)/3
7543 reflections(Δ/σ)max = 0.001
457 parametersΔρmax = 1.88 e Å3
4 restraintsΔρmin = 0.76 e Å3
Crystal data top
[Yb(NO3)3(C15H15NO2)2]·H2Oγ = 106.593 (1)°
Mr = 859.65V = 1642.63 (5) Å3
Triclinic, P1Z = 2
a = 9.6878 (1) ÅMo Kα radiation
b = 9.9210 (2) ŵ = 2.92 mm1
c = 18.5998 (3) ÅT = 296 K
α = 97.341 (1)°0.27 × 0.16 × 0.10 mm
β = 101.929 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
7543 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6122 reflections with I > 2σ(I)
Tmin = 0.576, Tmax = 0.757Rint = 0.029
24571 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0384 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 1.88 e Å3
7543 reflectionsΔρmin = 0.76 e Å3
457 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Yb0.968710 (17)0.805760 (19)0.249140 (10)0.04617 (8)
N11.4545 (4)1.0479 (4)0.27759 (19)0.0459 (8)
H1A1.36551.01180.28200.055*
N20.5165 (4)0.4795 (4)0.22488 (19)0.0456 (8)
H2A0.60450.52680.22260.055*
N30.8386 (5)0.7186 (5)0.0937 (2)0.0606 (10)
N41.1154 (5)0.7510 (6)0.3852 (3)0.0664 (12)
N50.9364 (6)1.0733 (5)0.2322 (3)0.0681 (12)
O11.2019 (3)0.8427 (3)0.24032 (17)0.0530 (8)
O21.0387 (3)0.5841 (4)0.1676 (2)0.0643 (9)
O30.7601 (3)0.7075 (3)0.28207 (17)0.0517 (7)
O40.8875 (3)0.9622 (4)0.36941 (19)0.0654 (9)
O50.7806 (3)0.6609 (4)0.14198 (19)0.0614 (9)
O60.9582 (4)0.8237 (4)0.12055 (19)0.0621 (8)
O70.7843 (6)0.6766 (5)0.0273 (2)0.0980 (14)
O81.1297 (5)0.8765 (5)0.3772 (2)0.0729 (10)
O91.0374 (4)0.6518 (4)0.3277 (2)0.0716 (10)
O101.1715 (5)0.7193 (5)0.4431 (2)0.0904 (13)
O110.8255 (4)0.9634 (4)0.2118 (2)0.0700 (9)
O121.0607 (4)1.0550 (3)0.2605 (2)0.0611 (9)
O130.9282 (6)1.1912 (5)0.2263 (3)0.1144 (18)
C11.3997 (4)0.8384 (5)0.1834 (2)0.0429 (9)
C21.2576 (4)0.7763 (5)0.1938 (2)0.0439 (9)
C31.1733 (5)0.6369 (5)0.1516 (2)0.0480 (10)
C41.2283 (5)0.5683 (5)0.1010 (3)0.0554 (11)
H4A1.17130.47740.07320.067*
C51.3693 (6)0.6341 (5)0.0912 (3)0.0600 (12)
H5A1.40490.58700.05630.072*
C61.4543 (5)0.7647 (5)0.1316 (2)0.0527 (11)
H6A1.54900.80650.12550.063*
C71.4944 (5)0.9742 (5)0.2276 (2)0.0467 (10)
H7A1.58891.01150.22030.056*
C80.9538 (7)0.4397 (6)0.1344 (4)0.092 (2)
H8A1.01380.37910.14520.139*
H8B0.92140.43050.08110.139*
H8C0.86850.41140.15440.139*
C91.5409 (5)1.1810 (4)0.3256 (2)0.0456 (9)
C101.6779 (5)1.2602 (5)0.3190 (3)0.0576 (11)
H10A1.71681.22820.28100.069*
C111.7572 (5)1.3869 (5)0.3689 (3)0.0619 (12)
H11A1.85021.43950.36430.074*
C121.7019 (6)1.4379 (5)0.4256 (3)0.0603 (12)
C131.5647 (6)1.3591 (6)0.4309 (3)0.0721 (15)
H13A1.52571.39210.46860.087*
C141.4825 (6)1.2312 (6)0.3812 (3)0.0673 (14)
H14A1.38881.17950.38530.081*
C151.7903 (7)1.5764 (6)0.4809 (3)0.0851 (18)
H15A1.79001.56180.53090.128*
H15B1.74621.64920.47050.128*
H15C1.89101.60610.47640.128*
C160.5417 (4)0.6699 (5)0.3259 (2)0.0442 (9)
C170.6855 (4)0.7534 (5)0.3255 (2)0.0424 (9)
C180.7486 (5)0.8889 (5)0.3747 (2)0.0481 (10)
C190.6746 (5)0.9362 (5)0.4222 (3)0.0569 (11)
H19A0.71851.02520.45440.068*
C200.5325 (6)0.8503 (6)0.4224 (3)0.0696 (15)
H20A0.48260.88250.45500.083*
C210.4670 (5)0.7214 (5)0.3758 (3)0.0602 (12)
H21A0.37200.66580.37620.072*
C220.4648 (5)0.5359 (5)0.2758 (2)0.0476 (10)
H22A0.37080.48510.27980.057*
C230.9660 (6)1.0991 (5)0.4183 (3)0.0681 (14)
H23A0.97651.08810.46950.102*
H23B0.91111.16440.40850.102*
H23C1.06281.13630.40970.102*
C240.4433 (4)0.3477 (4)0.1723 (2)0.0443 (9)
C250.3097 (5)0.2547 (5)0.1744 (3)0.0531 (11)
H25A0.26420.27590.21180.064*
C260.2433 (5)0.1309 (5)0.1216 (3)0.0589 (12)
H26A0.15240.06880.12350.071*
C270.3079 (6)0.0956 (5)0.0654 (3)0.0590 (12)
C280.4427 (6)0.1890 (6)0.0646 (3)0.0708 (14)
H28A0.48870.16670.02770.085*
C290.5122 (5)0.3158 (6)0.1174 (3)0.0628 (13)
H29A0.60330.37800.11580.075*
C300.2304 (5)0.0412 (5)0.0060 (3)0.0803 (16)
H30A0.13760.09190.01550.121*
H30B0.29300.10090.00770.121*
H30C0.21170.01710.04270.121*
O1W0.1609 (5)0.4096 (5)0.3221 (3)0.207 (4)
H1WB0.086 (11)0.330 (10)0.300 (8)0.310*
H1WA0.117 (14)0.466 (10)0.342 (5)0.310*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Yb0.03135 (10)0.04494 (13)0.05706 (13)0.00384 (8)0.01277 (8)0.00902 (9)
N10.0345 (17)0.047 (2)0.050 (2)0.0088 (15)0.0070 (15)0.0024 (16)
N20.0332 (17)0.049 (2)0.050 (2)0.0065 (15)0.0106 (15)0.0092 (16)
N30.062 (3)0.061 (3)0.058 (3)0.026 (2)0.011 (2)0.002 (2)
N40.056 (3)0.094 (4)0.062 (3)0.032 (3)0.027 (2)0.021 (3)
N50.089 (3)0.061 (3)0.082 (3)0.039 (3)0.051 (3)0.029 (2)
O10.0361 (15)0.061 (2)0.0549 (17)0.0093 (13)0.0141 (13)0.0023 (15)
O20.0433 (17)0.055 (2)0.082 (2)0.0006 (15)0.0122 (16)0.0132 (18)
O30.0392 (15)0.0500 (18)0.0610 (18)0.0054 (13)0.0213 (14)0.0007 (14)
O40.0477 (18)0.059 (2)0.072 (2)0.0028 (15)0.0197 (16)0.0090 (17)
O50.0461 (17)0.063 (2)0.064 (2)0.0046 (15)0.0174 (15)0.0037 (17)
O60.062 (2)0.055 (2)0.066 (2)0.0109 (17)0.0205 (17)0.0134 (17)
O70.130 (4)0.096 (3)0.050 (2)0.036 (3)0.003 (2)0.004 (2)
O80.086 (3)0.077 (3)0.064 (2)0.042 (2)0.0200 (19)0.008 (2)
O90.056 (2)0.069 (2)0.089 (3)0.0118 (18)0.0153 (19)0.034 (2)
O100.096 (3)0.136 (4)0.064 (2)0.064 (3)0.025 (2)0.042 (3)
O110.058 (2)0.068 (2)0.091 (3)0.0236 (19)0.0271 (19)0.019 (2)
O120.059 (2)0.0428 (18)0.087 (2)0.0130 (15)0.0361 (18)0.0134 (17)
O130.159 (5)0.073 (3)0.159 (5)0.065 (3)0.085 (4)0.056 (3)
C10.0340 (19)0.048 (2)0.046 (2)0.0135 (18)0.0083 (17)0.0095 (19)
C20.037 (2)0.050 (3)0.043 (2)0.0160 (18)0.0060 (17)0.0066 (19)
C30.039 (2)0.050 (3)0.050 (2)0.0103 (19)0.0054 (18)0.011 (2)
C40.062 (3)0.041 (3)0.055 (3)0.013 (2)0.005 (2)0.002 (2)
C50.068 (3)0.059 (3)0.057 (3)0.027 (3)0.020 (2)0.002 (2)
C60.048 (2)0.060 (3)0.052 (3)0.021 (2)0.017 (2)0.005 (2)
C70.039 (2)0.052 (3)0.047 (2)0.0164 (19)0.0076 (18)0.003 (2)
C80.069 (4)0.052 (3)0.143 (6)0.001 (3)0.019 (4)0.031 (4)
C90.044 (2)0.040 (2)0.047 (2)0.0105 (18)0.0046 (18)0.0055 (19)
C100.049 (3)0.053 (3)0.068 (3)0.010 (2)0.020 (2)0.007 (2)
C110.051 (3)0.045 (3)0.077 (3)0.001 (2)0.011 (2)0.007 (2)
C120.063 (3)0.043 (3)0.060 (3)0.006 (2)0.003 (2)0.011 (2)
C130.082 (4)0.055 (3)0.067 (3)0.009 (3)0.026 (3)0.010 (3)
C140.060 (3)0.055 (3)0.075 (3)0.003 (2)0.025 (3)0.004 (3)
C150.098 (5)0.049 (3)0.076 (4)0.003 (3)0.004 (3)0.007 (3)
C160.042 (2)0.046 (2)0.048 (2)0.0147 (18)0.0151 (18)0.0130 (19)
C170.037 (2)0.047 (2)0.045 (2)0.0138 (18)0.0128 (17)0.0111 (19)
C180.044 (2)0.050 (3)0.049 (2)0.0122 (19)0.0130 (19)0.009 (2)
C190.059 (3)0.050 (3)0.064 (3)0.020 (2)0.020 (2)0.006 (2)
C200.073 (3)0.062 (3)0.083 (4)0.022 (3)0.046 (3)0.003 (3)
C210.052 (3)0.060 (3)0.076 (3)0.017 (2)0.036 (2)0.011 (3)
C220.041 (2)0.045 (2)0.057 (3)0.0079 (18)0.0181 (19)0.017 (2)
C230.060 (3)0.054 (3)0.070 (3)0.000 (2)0.008 (2)0.004 (3)
C240.043 (2)0.039 (2)0.048 (2)0.0096 (18)0.0101 (18)0.0102 (18)
C250.049 (2)0.049 (3)0.055 (3)0.004 (2)0.017 (2)0.009 (2)
C260.051 (3)0.051 (3)0.065 (3)0.001 (2)0.015 (2)0.015 (2)
C270.061 (3)0.052 (3)0.056 (3)0.014 (2)0.004 (2)0.011 (2)
C280.064 (3)0.070 (4)0.076 (3)0.014 (3)0.029 (3)0.002 (3)
C290.045 (3)0.061 (3)0.076 (3)0.007 (2)0.025 (2)0.001 (3)
C300.083 (4)0.060 (3)0.077 (4)0.012 (3)0.001 (3)0.004 (3)
O1W0.172 (7)0.191 (9)0.248 (10)0.041 (6)0.078 (7)0.018 (7)
Geometric parameters (Å, º) top
Yb—O32.225 (3)C8—H8B0.9600
Yb—O12.228 (3)C8—H8C0.9600
Yb—O122.342 (3)C9—C101.375 (6)
Yb—O52.373 (3)C9—C141.383 (6)
Yb—O92.379 (4)C10—C111.373 (6)
Yb—O62.404 (3)C10—H10A0.9300
Yb—O112.444 (4)C11—C121.382 (7)
Yb—O82.451 (4)C11—H11A0.9300
Yb—N52.809 (5)C12—C131.367 (7)
Yb—N32.815 (4)C12—C151.510 (7)
Yb—O22.833 (4)C13—C141.384 (7)
Yb—O42.927 (3)C13—H13A0.9300
Yb—N42.833 (5)C14—H14A0.9300
N1—C71.298 (5)C15—H15A0.9600
N1—C91.414 (5)C15—H15B0.9600
N1—H1A0.8600C15—H15C0.9600
N2—C221.297 (5)C16—C171.405 (5)
N2—C241.423 (5)C16—C211.419 (6)
N2—H2A0.8600C16—C221.423 (6)
N3—O71.205 (5)C17—C181.416 (6)
N3—O51.267 (5)C18—C191.365 (6)
N3—O61.271 (5)C19—C201.397 (7)
N4—O101.223 (6)C19—H19A0.9300
N4—O81.245 (6)C20—C211.347 (7)
N4—O91.287 (6)C20—H20A0.9300
N5—O131.212 (6)C21—H21A0.9300
N5—O111.242 (6)C22—H22A0.9300
N5—O121.284 (6)C23—H23A0.9600
O1—C21.313 (5)C23—H23B0.9600
O2—C31.369 (5)C23—H23C0.9600
O2—C81.415 (6)C24—C251.369 (5)
O3—C171.310 (5)C24—C291.381 (6)
O4—C181.365 (5)C25—C261.367 (6)
O4—C231.435 (5)C25—H25A0.9300
C1—C21.402 (5)C26—C271.381 (7)
C1—C61.412 (6)C26—H26A0.9300
C1—C71.425 (6)C27—C281.373 (7)
C2—C31.417 (6)C27—C301.524 (7)
C3—C41.372 (6)C28—C291.388 (7)
C4—C51.397 (7)C28—H28A0.9300
C4—H4A0.9300C29—H29A0.9300
C5—C61.344 (6)C30—H30A0.9600
C5—H5A0.9300C30—H30B0.9600
C6—H6A0.9300C30—H30C0.9600
C7—H7A0.9300O1W—H1WB0.88
C8—H8A0.9600O1W—H1WA0.88
O3—Yb—O1157.78 (13)C2—C1—C6120.7 (4)
O3—Yb—O12119.91 (11)C2—C1—C7120.5 (4)
O1—Yb—O1277.05 (11)C6—C1—C7118.7 (4)
O3—Yb—O570.20 (11)O1—C2—C1122.4 (4)
O1—Yb—O5115.39 (10)O1—C2—C3120.0 (4)
O12—Yb—O5120.65 (13)C1—C2—C3117.6 (4)
O3—Yb—O977.22 (12)O2—C3—C4126.4 (4)
O1—Yb—O980.67 (12)O2—C3—C2113.0 (4)
O12—Yb—O9131.26 (14)C4—C3—C2120.6 (4)
O5—Yb—O9108.04 (14)C3—C4—C5120.4 (4)
O3—Yb—O6119.78 (11)C3—C4—H4A119.8
O1—Yb—O675.37 (11)C5—C4—H4A119.8
O12—Yb—O679.10 (12)C6—C5—C4120.8 (4)
O5—Yb—O653.28 (11)C6—C5—H5A119.6
O9—Yb—O6135.12 (13)C4—C5—H5A119.6
O3—Yb—O1178.88 (12)C5—C6—C1119.9 (4)
O1—Yb—O11123.06 (12)C5—C6—H6A120.0
O12—Yb—O1153.16 (12)C1—C6—H6A120.0
O5—Yb—O1176.57 (13)N1—C7—C1122.9 (4)
O9—Yb—O11152.18 (13)N1—C7—H7A118.6
O6—Yb—O1170.21 (12)C1—C7—H7A118.6
O3—Yb—O895.26 (13)O2—C8—H8A109.5
O1—Yb—O872.75 (12)O2—C8—H8B109.5
O12—Yb—O879.24 (14)H8A—C8—H8B109.5
O5—Yb—O8159.19 (15)O2—C8—H8C109.5
O9—Yb—O852.78 (14)H8A—C8—H8C109.5
O6—Yb—O8144.64 (13)H8B—C8—H8C109.5
O11—Yb—O8116.21 (13)C10—C9—C14119.7 (4)
O3—Yb—N599.59 (12)C10—C9—N1123.0 (4)
O1—Yb—N5100.65 (13)C14—C9—N1117.3 (4)
O12—Yb—N526.97 (13)C11—C10—C9119.8 (4)
O5—Yb—N598.56 (14)C11—C10—H10A120.1
O9—Yb—N5149.93 (15)C9—C10—H10A120.1
O6—Yb—N572.70 (12)C10—C11—C12121.5 (4)
O11—Yb—N526.20 (13)C10—C11—H11A119.3
O8—Yb—N598.52 (15)C12—C11—H11A119.3
O3—Yb—N395.23 (12)C13—C12—C11118.2 (4)
O1—Yb—N395.27 (12)C13—C12—C15120.6 (5)
O12—Yb—N3100.83 (13)C11—C12—C15121.3 (5)
O5—Yb—N326.55 (11)C12—C13—C14121.5 (5)
O9—Yb—N3124.08 (14)C12—C13—H13A119.3
O6—Yb—N326.74 (11)C14—C13—H13A119.3
O11—Yb—N372.08 (12)C9—C14—C13119.4 (5)
O8—Yb—N3167.78 (12)C9—C14—H14A120.3
N5—Yb—N385.88 (13)C13—C14—H14A120.3
O3—Yb—O2108.26 (10)C12—C15—H15A109.5
O1—Yb—O260.78 (10)C12—C15—H15B109.5
O12—Yb—O2130.25 (10)H15A—C15—H15B109.5
O5—Yb—O263.94 (11)C12—C15—H15C109.5
O9—Yb—O268.91 (13)H15A—C15—H15C109.5
O6—Yb—O266.31 (11)H15B—C15—H15C109.5
O11—Yb—O2133.11 (12)C17—C16—C21119.8 (4)
O8—Yb—O2109.30 (11)C17—C16—C22122.1 (4)
N5—Yb—O2137.96 (11)C21—C16—C22118.0 (4)
N3—Yb—O261.23 (11)O3—C17—C16121.6 (4)
O3—Yb—N485.22 (12)O3—C17—C18120.8 (3)
O1—Yb—N475.93 (11)C16—C17—C18117.5 (4)
O12—Yb—N4105.01 (15)C19—C18—O4125.4 (4)
O5—Yb—N4134.23 (15)C19—C18—C17121.6 (4)
O9—Yb—N426.82 (13)O4—C18—C17113.0 (4)
O6—Yb—N4149.20 (11)C18—C19—C20119.8 (4)
O11—Yb—N4136.87 (13)C18—C19—H19A120.1
O8—Yb—N425.98 (13)C20—C19—H19A120.1
N5—Yb—N4123.86 (15)C21—C20—C19120.8 (4)
N3—Yb—N4149.85 (14)C21—C20—H20A119.6
O2—Yb—N489.92 (12)C19—C20—H20A119.6
C7—N1—C9127.4 (4)C20—C21—C16120.4 (4)
C7—N1—H1A116.3C20—C21—H21A119.8
C9—N1—H1A116.3C16—C21—H21A119.8
C22—N2—C24127.0 (3)N2—C22—C16124.6 (4)
C22—N2—H2A116.5N2—C22—H22A117.7
C24—N2—H2A116.5C16—C22—H22A117.7
O7—N3—O5122.4 (5)O4—C23—H23A109.5
O7—N3—O6122.6 (5)O4—C23—H23B109.5
O5—N3—O6115.1 (4)H23A—C23—H23B109.5
O7—N3—Yb177.5 (4)O4—C23—H23C109.5
O5—N3—Yb56.8 (2)H23A—C23—H23C109.5
O6—N3—Yb58.3 (2)H23B—C23—H23C109.5
O10—N4—O8123.9 (5)C25—C24—C29120.2 (4)
O10—N4—O9120.0 (5)C25—C24—N2122.6 (4)
O8—N4—O9116.0 (4)C29—C24—N2117.2 (4)
O10—N4—Yb175.9 (4)C26—C25—C24120.0 (4)
O8—N4—Yb59.6 (3)C26—C25—H25A120.0
O9—N4—Yb56.5 (2)C24—C25—H25A120.0
O13—N5—O11122.2 (5)C25—C26—C27121.6 (4)
O13—N5—O12121.7 (5)C25—C26—H26A119.2
O11—N5—O12116.1 (4)C27—C26—H26A119.2
O13—N5—Yb177.5 (5)C28—C27—C26117.7 (5)
O11—N5—Yb60.3 (2)C28—C27—C30121.5 (5)
O12—N5—Yb55.8 (2)C26—C27—C30120.8 (4)
C2—O1—Yb131.5 (3)C27—C28—C29121.9 (5)
C3—O2—C8117.1 (4)C27—C28—H28A119.1
C3—O2—Yb110.7 (3)C29—C28—H28A119.1
C8—O2—Yb131.7 (3)C24—C29—C28118.6 (4)
C17—O3—Yb135.2 (3)C24—C29—H29A120.7
C18—O4—C23118.6 (4)C28—C29—H29A120.7
C18—O4—Yb110.7 (2)C27—C30—H30A109.5
C23—O4—Yb130.7 (3)C27—C30—H30B109.5
N3—O5—Yb96.6 (3)H30A—C30—H30B109.5
N3—O6—Yb95.0 (3)C27—C30—H30C109.5
N4—O8—Yb94.4 (3)H30A—C30—H30C109.5
N4—O9—Yb96.7 (3)H30B—C30—H30C109.5
N5—O11—Yb93.5 (3)H1WB—O1W—H1WA103
N5—O12—Yb97.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.861.892.590 (4)138
N2—H2A···O30.861.992.668 (4)135
O1W—H1WB···O13i0.881.89 (13)2.7413162
O1W—H1WB···N5i0.882.55 (11)3.4036163
O1W—H1WA···O9ii0.882.22 (11)2.9742144
C22—H22A···O1W0.932.293.1932163
C4—H4A···O7iii0.932.453.137 (7)131
Symmetry codes: (i) x1, y1, z; (ii) x1, y, z; (iii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula[Yb(NO3)3(C15H15NO2)2]·H2O
Mr859.65
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.6878 (1), 9.9210 (2), 18.5998 (3)
α, β, γ (°)97.341 (1), 101.929 (1), 106.593 (1)
V3)1642.63 (5)
Z2
Radiation typeMo Kα
µ (mm1)2.92
Crystal size (mm)0.27 × 0.16 × 0.10
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.576, 0.757
No. of measured, independent and
observed [I > 2σ(I)] reflections
24571, 7543, 6122
Rint0.029
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.095, 0.99
No. of reflections7543
No. of parameters457
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.88, 0.76

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Yb—O32.225 (3)Yb—O62.404 (3)
Yb—O12.228 (3)Yb—O112.444 (4)
Yb—O122.342 (3)Yb—O82.451 (4)
Yb—O52.373 (3)Yb—O22.833 (4)
Yb—O92.379 (4)Yb—O42.927 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.861.892.590 (4)137.6
N2—H2A···O30.861.992.668 (4)134.6
O1W—H1WB···O13i0.881.89 (13)2.74133162
O1W—H1WB···N5i0.882.55 (11)3.40359163
O1W—H1WA···O9ii0.882.22 (11)2.97416144
C22—H22A···O1W0.932.293.1932163
C4—H4A···O7iii0.932.453.137 (7)131
Symmetry codes: (i) x1, y1, z; (ii) x1, y, z; (iii) x+2, y+1, z.
 

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurrows, R. C. & Bailar, J. C. (1966). J. Am. Chem. Soc. 88, 4150–4152.  CrossRef CAS Web of Science Google Scholar
First citationCostes, J. P., Dahan, F., Dupuis, A., Lagrave, S. & Laurent, J. P. (1998). Inorg. Chem. 37, 153–155.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, H.-Q., Xian, H.-D., Liu, J.-F. & Zhao, G.-L. (2008). Acta Cryst. E64, m1593–m1594.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXian, H.-D., Liu, J.-F., Li, H.-Q. & Zhao, G.-L. (2008). Acta Cryst. E64, m1422.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, G.-L., Shi, X. & Ng, S. W. (2007). Acta Cryst. E63, m267–m268.  CSD CrossRef IUCr Journals Google Scholar
First citationZhao, G.-L., Zhang, P.-H. & Feng, Y.-L. (2005). Chin. J. Inorg. Chem. 21, 421–424.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds