metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido(2-formyl-6-hy­droxy­phenyl-κC1)mercury(II)

aCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China, and bChemical Engineering and Pharmaceutics School, Henan University of Science and Technology, Luoyang 471003, People's Republic of China
*Correspondence e-mail: xubohan@163.com

(Received 1 June 2009; accepted 5 June 2009; online 10 June 2009)

In the planar [r.m.s. deviation 0.0265 Å] title compound, [Hg(C7H5O2)Cl], the HgII atom shows a typical linear coordination by a C atom of a benzene ring and a Cl atom. The benzene C atom and the aldehyde O atom chelate the HgII atom by assuming the Hg⋯O separation of 2.817 (9) Å as a weak intra­molecular coordination bonding distance. The resulting five-membered metallacycle is nearly coplanar with the benzene ring dihedral angle 2.9 (1)°]. Inter­molecular O—H⋯O hydrogen bonds are present in the crystal structure, resulting in a one-dimensional supra­molecular architecture parallel to [201].

Related literature

For historical background and for properties of cyclo­metallated compounds, see: Dupont et al. (2005[Dupont, J., Consorti, C. S. & Spencer, J. (2005). Chem. Rev. 105, 2527-2571.]); Xu et al. (2009[Xu, C., Wang, Z. Q., Fu, W. J., Lou, X. H., Li, Y. F., Cen, F. F., Ma, H. J. & Ji, B. M. (2009). Organometallics, 28, 1909-1916.]). For the properties of cyclo­mercurated compounds, see: Wu et al. (2001[Wu, Y. J., Huo, S. Q., Gong, J. F., Cui, X. L., Ding, K. L., Du, C. X., Liu, Y. H. & Song, M. P. (2001). J. Organomet. Chem. 637-639, 27-46.]); Ryabov et al. (2003[Ryabov, A. D., Soukharev, V. S., Alexandrova, L., Lagadec, R. L. & Pfeffer, M. (2003). Inorg. Chem. 42, 6598-6600.]). For related structure, see: King et al. (2002[King, J. B., Haneline, M. R., Tsunoda, M. & Gabbai, F. P. (2002). J. Am. Chem. Soc. 124, 9350-9351.]); Zhou et al. (2005[Zhou, W. Q., Yang, W., Qiu, L. H., Yong, Y. & Yu, Z. F. (2005). J. Mol. Struct. 749, 89-95.]); Hao et al. (2007[Hao, X. Q., Gong, J. F., Song, W. T., Wu, Y. J. & Song, M. P. (2007). Inorg. Chem. Commun. 10, 371-375.]).

[Scheme 1]

Experimental

Crystal data
  • [Hg(C7H5O2)Cl]

  • Mr = 357.15

  • Monoclinic, P 21 /c

  • a = 4.7200 (19) Å

  • b = 17.702 (7) Å

  • c = 10.506 (4) Å

  • β = 98.839 (5)°

  • V = 867.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 18.00 mm−1

  • T = 296 K

  • 0.08 × 0.01 × 0.01 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.327, Tmax = 0.841

  • 5002 measured reflections

  • 1595 independent reflections

  • 1130 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.114

  • S = 1.01

  • 1595 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 0.94 e Å−3

  • Δρmin = −2.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.93 2.730 (12) 165
Symmetry code: (i) [x-1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Cyclometallated compounds containing a metal-carbon bond stabilized by the intramolecular coordination of one or two neutral atoms have a very rich chemistry and are widely used in synthesis, catalysis and materials (Dupont et al., 2005; Xu et al., 2009). Among them, cyclomercurated compounds are easy to prepare through a C—H activation process and their ease in undergoing transmetallation for the synthesis of other organometallic compounds (Wu et al., 2001; Ryabov et al., 2003).

In the planar title compound (Fig. 1), the mercury(II) atom shows a typical linear coordination geometry with a carbon atom of the benzene ring and the chloride atom in trans position. O2—Hg1 distance (2.817 (9) Å) is shorter than the sum of van der Waals radii (3.29 Å)of Hg and O (King et al., 2002), indicating the presence of the weak intramolecular coordination, while it is longer than those of the related Hg(II) complex (Zhou et al., 2005). The C—Hg and Hg—Cl bond distances are within normal ranges. The C7—Hg1—Cl1 angle is 178.1 (3)°, slightly smaller than the ideal value of 180° in organic derivatives of mercury(Hao et al., 2007). Intermolecular O—H···O hydrogen bonds are present in the crystal structure (Table 1), resulting in a one-dimensional supramolecular architecture (Fig.2).

Related literature top

For historical background and for properties of cyclometallated compounds, see: Dupont et al. (2005); Xu et al. (2009). For the properties of cyclomercurated compounds, see: Wu et al. (2001); Ryabov et al. (2003). For related structure, see: King et al. (2002); Zhou et al. (2005); Hao et al. (2007).

Experimental top

The title compound was prepared from the m-hydroxybenzaldehyde with Hg(OAc)2 and subsequent treatment with LiCl and recrystallized from dichloromethane-petroleum ether solution at room temperature to give the desired product as colorless crystals suitable for single-crystal X-ray diffraction (yield 82%; m.p 442–444 K). IR data (v_max/ cm-1): 3408, 2926, 1651, 1567, 1445, 1291, 1199, 789. NMR δ(H) 7.18(1H,d), 7.45 (1H,t), 7.52(1H,d), 10.12(1H,s), 12.11(1H,m).

Refinement top

H atoms attached to C atoms of the title compound were placed in geometrically idealized positions and treated as riding with C—H distances constrained to 0.93–0.96 Å, and with Uiso(H)=1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. Partial view of the crystal packing showing the formation of the one-dimensional chain structure formed by the intermolecular O—H···O hydrogen bonds.
Chlorido(2-formyl-6-hydroxyphenyl-κC1)mercury(II) top
Crystal data top
[Hg(C7H5O2)Cl]F(000) = 640
Mr = 357.15Dx = 2.735 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 4.7200 (19) ÅCell parameters from 1175 reflections
b = 17.702 (7) Åθ = 2.3–22.3°
c = 10.506 (4) ŵ = 18.00 mm1
β = 98.839 (5)°T = 296 K
V = 867.4 (6) Å3Block, colourless
Z = 40.08 × 0.01 × 0.01 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1595 independent reflections
Radiation source: fine-focus sealed tube1130 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ϕ and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 55
Tmin = 0.327, Tmax = 0.841k = 2121
5002 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0564P)2 + 3.2348P]
where P = (Fo2 + 2Fc2)/3
1595 reflections(Δ/σ)max = 0.001
101 parametersΔρmax = 0.94 e Å3
0 restraintsΔρmin = 2.32 e Å3
Crystal data top
[Hg(C7H5O2)Cl]V = 867.4 (6) Å3
Mr = 357.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.7200 (19) ŵ = 18.00 mm1
b = 17.702 (7) ÅT = 296 K
c = 10.506 (4) Å0.08 × 0.01 × 0.01 mm
β = 98.839 (5)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1595 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1130 reflections with I > 2σ(I)
Tmin = 0.327, Tmax = 0.841Rint = 0.050
5002 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.01Δρmax = 0.94 e Å3
1595 reflectionsΔρmin = 2.32 e Å3
101 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.26063 (12)0.66539 (3)0.30597 (6)0.0470 (2)
O10.160 (2)0.6917 (5)0.5036 (10)0.050 (2)
H10.29480.69600.54390.074*
O20.468 (2)0.7878 (5)0.1758 (9)0.052 (2)
Cl10.4684 (11)0.5580 (2)0.2416 (5)0.0833 (14)
C10.345 (3)0.8403 (7)0.2208 (14)0.043 (3)
H1A0.38020.88880.19280.052*
C20.151 (3)0.8330 (7)0.3132 (13)0.042 (3)
C30.039 (3)0.8998 (7)0.3574 (14)0.051 (4)
H30.08370.94600.32350.061*
C40.137 (3)0.8974 (7)0.4509 (13)0.048 (4)
H40.21230.94200.47880.058*
C50.204 (3)0.8276 (7)0.5043 (13)0.044 (3)
H50.31930.82570.56830.053*
C60.092 (3)0.7611 (7)0.4591 (12)0.042 (3)
C70.087 (2)0.7635 (7)0.3644 (11)0.032 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0477 (4)0.0392 (3)0.0583 (4)0.0027 (3)0.0213 (3)0.0048 (3)
O10.047 (6)0.048 (5)0.060 (6)0.006 (4)0.027 (5)0.003 (5)
O20.047 (6)0.058 (6)0.056 (6)0.003 (5)0.028 (5)0.011 (5)
Cl10.098 (4)0.044 (2)0.117 (4)0.016 (2)0.045 (3)0.010 (2)
C10.033 (7)0.043 (7)0.054 (8)0.002 (6)0.007 (6)0.005 (7)
C20.029 (6)0.053 (8)0.043 (7)0.008 (6)0.007 (6)0.000 (6)
C30.058 (9)0.034 (7)0.070 (10)0.012 (6)0.038 (8)0.012 (7)
C40.056 (9)0.035 (7)0.056 (9)0.006 (6)0.012 (7)0.010 (6)
C50.040 (8)0.053 (8)0.044 (8)0.005 (7)0.020 (6)0.007 (7)
C60.027 (7)0.054 (8)0.045 (8)0.012 (6)0.007 (6)0.000 (6)
C70.023 (6)0.043 (7)0.026 (6)0.004 (5)0.008 (5)0.001 (5)
Geometric parameters (Å, º) top
Hg1—C72.052 (12)C2—C31.403 (17)
Hg1—Cl12.288 (4)C3—C41.382 (17)
O1—C61.370 (14)C3—H30.9300
O1—H10.8200C4—C51.412 (18)
O2—C11.229 (14)C4—H40.9300
C1—C21.440 (18)C5—C61.402 (17)
C1—H1A0.9300C5—H50.9300
C2—C71.394 (16)C6—C71.403 (16)
C7—Hg1—Cl1178.1 (3)C3—C4—H4119.9
C6—O1—H1109.5C5—C4—H4119.9
O2—C1—C2125.4 (12)C6—C5—C4118.9 (11)
O2—C1—H1A117.3C6—C5—H5120.6
C2—C1—H1A117.3C4—C5—H5120.6
C7—C2—C1122.4 (12)O1—C6—C7117.8 (11)
C7—C2—C3120.1 (12)O1—C6—C5121.2 (11)
C1—C2—C3117.3 (11)C7—C6—C5121.0 (12)
C4—C3—C2120.6 (12)C2—C7—C6119.2 (11)
C4—C3—H3119.7C2—C7—Hg1120.8 (9)
C2—C3—H3119.7C6—C7—Hg1119.9 (9)
C3—C4—C5120.2 (11)
O2—C1—C2—C72 (2)C3—C2—C7—C60.8 (19)
O2—C1—C2—C3177.6 (14)C1—C2—C7—Hg11.9 (18)
C7—C2—C3—C41 (2)C3—C2—C7—Hg1177.8 (10)
C1—C2—C3—C4176.7 (14)O1—C6—C7—C2177.3 (12)
C2—C3—C4—C51 (2)C5—C6—C7—C21.1 (19)
C3—C4—C5—C61 (2)O1—C6—C7—Hg14.2 (16)
C4—C5—C6—O1177.0 (12)C5—C6—C7—Hg1177.4 (10)
C4—C5—C6—C71 (2)Cl1—Hg1—C7—C246 (10)
C1—C2—C7—C6176.6 (12)Cl1—Hg1—C7—C6132 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.932.730 (12)165
Symmetry code: (i) x1, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Hg(C7H5O2)Cl]
Mr357.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)4.7200 (19), 17.702 (7), 10.506 (4)
β (°) 98.839 (5)
V3)867.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)18.00
Crystal size (mm)0.08 × 0.01 × 0.01
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.327, 0.841
No. of measured, independent and
observed [I > 2σ(I)] reflections
5002, 1595, 1130
Rint0.050
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.114, 1.01
No. of reflections1595
No. of parameters101
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.94, 2.32

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.932.730 (12)164.8
Symmetry code: (i) x1, y+3/2, z+1/2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Henan Education Department (No. 2009B150019).

References

First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDupont, J., Consorti, C. S. & Spencer, J. (2005). Chem. Rev. 105, 2527–2571.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHao, X. Q., Gong, J. F., Song, W. T., Wu, Y. J. & Song, M. P. (2007). Inorg. Chem. Commun. 10, 371–375.  Web of Science CSD CrossRef CAS Google Scholar
First citationKing, J. B., Haneline, M. R., Tsunoda, M. & Gabbai, F. P. (2002). J. Am. Chem. Soc. 124, 9350–9351.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRyabov, A. D., Soukharev, V. S., Alexandrova, L., Lagadec, R. L. & Pfeffer, M. (2003). Inorg. Chem. 42, 6598–6600.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, Y. J., Huo, S. Q., Gong, J. F., Cui, X. L., Ding, K. L., Du, C. X., Liu, Y. H. & Song, M. P. (2001). J. Organomet. Chem. 637–639, 27–46.  Web of Science CrossRef CAS Google Scholar
First citationXu, C., Wang, Z. Q., Fu, W. J., Lou, X. H., Li, Y. F., Cen, F. F., Ma, H. J. & Ji, B. M. (2009). Organometallics, 28, 1909–1916.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, W. Q., Yang, W., Qiu, L. H., Yong, Y. & Yu, Z. F. (2005). J. Mol. Struct. 749, 89–95.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds