Download citation
Download citation
link to html
The title compound, C20H18N4O2, is a mol­ecular clip based on the glycoluril framework. The two benzene rings are each fused to a seven-membered ring; these rings bind four of the N atoms from separate rings of the glycoluril system to form the sidewalls of the mol­ecular clip. The crystal packing is stabilized by non-classical C—H...O hydrogen bonds. There are no π–π stacking inter­actions in the crystal structure. The mol­ecule provides a model with approximate non-crystallographic C2v symmetry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807053378/si2040sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807053378/si2040Isup2.hkl
Contains datablock I

CCDC reference: 667475

Key indicators

  • Single-crystal X-ray study
  • T = 292 K
  • Mean [sigma](C-C)= 0.003 Å
  • R factor = 0.053
  • wR factor = 0.127
  • Data-to-parameter ratio = 15.5

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

The glycoluril skeleton has served as an important building block for the preparation of a wide variety of supramolecular systems, including molecular clips (Rowan et al., 1999; Yin et al., 2006; Li et al., 2006), the cucurbit[n]uril family (Freeman et al., 1981), and molecular capsules (Rebek,2005). In addition, Isaacs and co-workers have synthesized many methlene-bridged glycouril dimers from the title compound (Wu et al., 2002).

The molecular structure of the title compound is shown in Fig. 1. The crystal packing is stabilized by inversion-related intermolecular C19—H19···O1 hydrogen bonds, forming dimers. These dimers are linked by additional C7—H7A···O2 hydrogen bonds (Table 1). Many examples of π···π interactions between the molecular clips are observed in the crystal structures presented by Wang et al. (2006), however, there are no such interactions observed in our example structure.

Related literature top

For the preparation of the title compound, see: Wang et al. (2006). For historical background of the title compound, see: Rowan et al. (1999); Yin et al. (2006); Li et al. (2006); Freeman et al. (1981); Rebek (2005); Wu et al. (2002).

Experimental top

The title compound was synthesized according to the procedure of Wang et al. (2006) in 42% isolated yield. Crystals of the title compound suitable for X-ray data collection were obtained by slow evaporation of a chloroform and methaol solution in ratio of 100:1 at 293 K.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined using a riding model, with Uiso(H) = 1.2 Ueq(C) (1.5Ueq(C) for methly) of the parent atoms.

Structure description top

The glycoluril skeleton has served as an important building block for the preparation of a wide variety of supramolecular systems, including molecular clips (Rowan et al., 1999; Yin et al., 2006; Li et al., 2006), the cucurbit[n]uril family (Freeman et al., 1981), and molecular capsules (Rebek,2005). In addition, Isaacs and co-workers have synthesized many methlene-bridged glycouril dimers from the title compound (Wu et al., 2002).

The molecular structure of the title compound is shown in Fig. 1. The crystal packing is stabilized by inversion-related intermolecular C19—H19···O1 hydrogen bonds, forming dimers. These dimers are linked by additional C7—H7A···O2 hydrogen bonds (Table 1). Many examples of π···π interactions between the molecular clips are observed in the crystal structures presented by Wang et al. (2006), however, there are no such interactions observed in our example structure.

For the preparation of the title compound, see: Wang et al. (2006). For historical background of the title compound, see: Rowan et al. (1999); Yin et al. (2006); Li et al. (2006); Freeman et al. (1981); Rebek (2005); Wu et al. (2002).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. View of the title molecule showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 10% probability level. H atoms are represented by spheres of arbitrary radius.
15a,15b-Dihydro-5H,7H,9H,14H,17H-15,16-methanodibenzo[e]diazepino[2,3 - c;3',2'-e]imidazole-7,18-dione top
Crystal data top
C20H18N4O2F(000) = 728
Mr = 346.38Dx = 1.379 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1842 reflections
a = 10.2660 (16) Åθ = 2.3–20.2°
b = 11.2985 (18) ŵ = 0.09 mm1
c = 14.522 (2) ÅT = 292 K
β = 97.923 (3)°Plate, colorless
V = 1668.3 (4) Å30.20 × 0.10 × 0.04 mm
Z = 4
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
2139 reflections with I > 2σ(I)'
Radiation source: fine-focus sealed tubeRint = 0.056
Graphite monochromatorθmax = 27.0°, θmin = 2.3°
φ and ω scansh = 1213
13800 measured reflectionsk = 1414
3632 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.054P)2]
where P = (Fo2 + 2Fc2)/3
3632 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C20H18N4O2V = 1668.3 (4) Å3
Mr = 346.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.2660 (16) ŵ = 0.09 mm1
b = 11.2985 (18) ÅT = 292 K
c = 14.522 (2) Å0.20 × 0.10 × 0.04 mm
β = 97.923 (3)°
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
2139 reflections with I > 2σ(I)'
13800 measured reflectionsRint = 0.056
3632 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 0.98Δρmax = 0.16 e Å3
3632 reflectionsΔρmin = 0.16 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.09320 (19)0.78732 (18)0.33914 (14)0.0469 (5)
C20.0178 (2)0.6858 (2)0.32550 (18)0.0608 (6)
H20.00160.65260.26640.073*
C30.0341 (2)0.6327 (2)0.3985 (2)0.0768 (8)
H30.08340.56360.38870.092*
C40.0123 (2)0.6827 (3)0.4847 (2)0.0790 (8)
H40.04700.64790.53400.095*
C50.0606 (2)0.7841 (2)0.49881 (16)0.0645 (7)
H50.07330.81810.55770.077*
C60.11589 (19)0.83734 (18)0.42791 (14)0.0464 (5)
C70.1984 (2)0.94700 (19)0.44777 (15)0.0559 (6)
H7A0.15691.01170.41090.067*
H7B0.20040.96780.51270.067*
C80.1512 (2)0.8415 (2)0.25890 (14)0.0574 (6)
H8A0.12350.79540.20330.069*
H8B0.11650.92090.24820.069*
C90.4266 (2)0.87315 (16)0.48619 (14)0.0470 (5)
C100.3746 (2)0.76527 (19)0.24463 (13)0.0471 (5)
C110.3627 (2)0.93601 (17)0.33387 (13)0.0468 (5)
H110.35301.01530.30650.056*
C120.5054 (2)0.89188 (17)0.34320 (13)0.0476 (5)
H120.56680.95550.33300.057*
C130.6453 (2)0.78303 (18)0.47387 (14)0.0549 (6)
H13A0.65460.78420.54120.066*
H13B0.72100.82330.45530.066*
C140.6128 (2)0.7208 (2)0.27315 (14)0.0582 (6)
H14A0.69250.76790.27870.070*
H14B0.60400.68170.21310.070*
C150.62998 (19)0.62694 (18)0.34763 (14)0.0457 (5)
C160.64605 (19)0.65618 (17)0.44180 (14)0.0444 (5)
C170.6686 (2)0.5659 (2)0.50689 (16)0.0564 (6)
H170.67890.58450.56990.068*
C180.6759 (2)0.4489 (2)0.48021 (19)0.0656 (7)
H180.69200.38980.52490.079*
C190.6596 (2)0.4205 (2)0.3879 (2)0.0677 (7)
H190.66430.34200.36940.081*
C200.6363 (2)0.5086 (2)0.32287 (17)0.0600 (6)
H200.62430.48850.26020.072*
N10.33311 (17)0.93432 (14)0.42804 (11)0.0477 (4)
N20.29307 (17)0.84723 (15)0.27388 (11)0.0487 (4)
N30.52758 (17)0.84800 (14)0.43754 (11)0.0489 (5)
N40.50216 (17)0.80036 (15)0.27382 (11)0.0493 (4)
O10.42173 (16)0.84965 (13)0.56762 (10)0.0608 (4)
O20.34199 (15)0.67820 (14)0.19698 (10)0.0660 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0418 (12)0.0504 (13)0.0468 (12)0.0045 (10)0.0002 (9)0.0011 (10)
C20.0425 (13)0.0628 (15)0.0758 (17)0.0016 (11)0.0035 (12)0.0180 (13)
C30.0443 (15)0.0651 (17)0.120 (2)0.0110 (13)0.0065 (15)0.0016 (17)
C40.0596 (17)0.093 (2)0.084 (2)0.0135 (15)0.0100 (14)0.0250 (16)
C50.0598 (16)0.0816 (19)0.0520 (14)0.0043 (14)0.0078 (12)0.0053 (12)
C60.0488 (13)0.0438 (12)0.0464 (12)0.0040 (10)0.0055 (10)0.0007 (10)
C70.0733 (17)0.0474 (13)0.0477 (13)0.0014 (11)0.0107 (11)0.0061 (10)
C80.0573 (15)0.0741 (16)0.0379 (12)0.0006 (12)0.0040 (10)0.0028 (11)
C90.0732 (15)0.0272 (10)0.0391 (12)0.0098 (10)0.0025 (11)0.0047 (9)
C100.0588 (15)0.0515 (13)0.0296 (10)0.0040 (11)0.0006 (10)0.0026 (10)
C110.0641 (15)0.0334 (11)0.0424 (12)0.0049 (10)0.0062 (10)0.0054 (9)
C120.0599 (14)0.0391 (11)0.0425 (12)0.0105 (10)0.0030 (10)0.0020 (9)
C130.0672 (15)0.0483 (13)0.0447 (12)0.0040 (11)0.0082 (11)0.0066 (10)
C140.0581 (15)0.0751 (16)0.0413 (12)0.0033 (13)0.0067 (10)0.0051 (11)
C150.0386 (12)0.0485 (13)0.0493 (13)0.0022 (10)0.0037 (9)0.0076 (10)
C160.0412 (12)0.0414 (12)0.0499 (12)0.0027 (9)0.0039 (9)0.0027 (10)
C170.0536 (14)0.0557 (14)0.0611 (15)0.0025 (11)0.0125 (11)0.0040 (12)
C180.0592 (16)0.0475 (14)0.092 (2)0.0033 (12)0.0186 (14)0.0134 (13)
C190.0563 (16)0.0437 (14)0.103 (2)0.0019 (12)0.0104 (14)0.0104 (15)
C200.0451 (14)0.0637 (16)0.0699 (16)0.0027 (12)0.0037 (11)0.0220 (13)
N10.0604 (12)0.0393 (10)0.0429 (10)0.0058 (8)0.0053 (9)0.0045 (8)
N20.0516 (11)0.0542 (11)0.0386 (9)0.0002 (9)0.0004 (8)0.0049 (8)
N30.0657 (12)0.0402 (10)0.0382 (10)0.0041 (9)0.0019 (9)0.0024 (8)
N40.0541 (11)0.0527 (11)0.0409 (10)0.0018 (9)0.0054 (8)0.0043 (8)
O10.0920 (12)0.0513 (9)0.0380 (8)0.0111 (8)0.0048 (7)0.0027 (7)
O20.0781 (11)0.0682 (11)0.0487 (9)0.0066 (9)0.0016 (8)0.0227 (8)
Geometric parameters (Å, º) top
C1—C21.383 (3)C11—N21.451 (2)
C1—C61.397 (3)C11—C121.536 (3)
C1—C81.509 (3)C11—H110.9800
C2—C31.387 (3)C12—N41.441 (2)
C2—H20.9300C12—N31.445 (2)
C3—C41.365 (4)C12—H120.9800
C3—H30.9300C13—N31.450 (3)
C4—C51.369 (4)C13—C161.507 (3)
C4—H40.9300C13—H13A0.9700
C5—C61.380 (3)C13—H13B0.9700
C5—H50.9300C14—N41.450 (3)
C6—C71.506 (3)C14—C151.508 (3)
C7—N11.457 (3)C14—H14A0.9700
C7—H7A0.9700C14—H14B0.9700
C7—H7B0.9700C15—C201.388 (3)
C8—N21.444 (3)C15—C161.394 (3)
C8—H8A0.9700C16—C171.388 (3)
C8—H8B0.9700C17—C181.382 (3)
C9—O11.220 (2)C17—H170.9300
C9—N31.362 (3)C18—C191.366 (3)
C9—N11.374 (3)C18—H180.9300
C10—O21.223 (2)C19—C201.371 (3)
C10—N21.355 (3)C19—H190.9300
C10—N41.378 (3)C20—H200.9300
C11—N11.441 (2)
C2—C1—C6119.1 (2)N4—C12—H12112.0
C2—C1—C8119.9 (2)N3—C12—H12112.0
C6—C1—C8120.99 (19)C11—C12—H12112.0
C1—C2—C3121.1 (2)N3—C13—C16114.12 (16)
C1—C2—H2119.5N3—C13—H13A108.7
C3—C2—H2119.5C16—C13—H13A108.7
C4—C3—C2119.4 (2)N3—C13—H13B108.7
C4—C3—H3120.3C16—C13—H13B108.7
C2—C3—H3120.3H13A—C13—H13B107.6
C3—C4—C5120.1 (3)N4—C14—C15116.47 (17)
C3—C4—H4120.0N4—C14—H14A108.2
C5—C4—H4120.0C15—C14—H14A108.2
C4—C5—C6121.7 (2)N4—C14—H14B108.2
C4—C5—H5119.1C15—C14—H14B108.2
C6—C5—H5119.1H14A—C14—H14B107.3
C5—C6—C1118.6 (2)C20—C15—C16118.60 (19)
C5—C6—C7119.6 (2)C20—C15—C14119.77 (19)
C1—C6—C7121.82 (19)C16—C15—C14121.56 (18)
N1—C7—C6113.92 (17)C17—C16—C15118.66 (19)
N1—C7—H7A108.8C17—C16—C13119.73 (19)
C6—C7—H7A108.8C15—C16—C13121.55 (18)
N1—C7—H7B108.8C18—C17—C16121.5 (2)
C6—C7—H7B108.8C18—C17—H17119.3
H7A—C7—H7B107.7C16—C17—H17119.3
N2—C8—C1113.52 (16)C19—C18—C17119.7 (2)
N2—C8—H8A108.9C19—C18—H18120.1
C1—C8—H8A108.9C17—C18—H18120.1
N2—C8—H8B108.9C18—C19—C20119.4 (2)
C1—C8—H8B108.9C18—C19—H19120.3
H8A—C8—H8B107.7C20—C19—H19120.3
O1—C9—N3126.4 (2)C19—C20—C15122.1 (2)
O1—C9—N1125.9 (2)C19—C20—H20119.0
N3—C9—N1107.65 (17)C15—C20—H20119.0
O2—C10—N2126.4 (2)C9—N1—C11111.65 (17)
O2—C10—N4125.5 (2)C9—N1—C7122.01 (18)
N2—C10—N4107.99 (18)C11—N1—C7121.00 (17)
N1—C11—N2114.20 (16)C10—N2—C8125.16 (18)
N1—C11—C12103.60 (16)C10—N2—C11112.71 (17)
N2—C11—C12102.33 (16)C8—N2—C11121.65 (17)
N1—C11—H11112.0C9—N3—C12112.86 (17)
N2—C11—H11112.0C9—N3—C13124.92 (17)
C12—C11—H11112.0C12—N3—C13122.21 (17)
N4—C12—N3113.71 (16)C10—N4—C12110.57 (17)
N4—C12—C11103.96 (16)C10—N4—C14122.12 (18)
N3—C12—C11102.62 (16)C12—N4—C14120.47 (16)
C6—C1—C2—C30.7 (3)N3—C9—N1—C7162.83 (16)
C8—C1—C2—C3178.5 (2)N2—C11—N1—C997.8 (2)
C1—C2—C3—C41.2 (4)C12—C11—N1—C912.7 (2)
C2—C3—C4—C50.3 (4)N2—C11—N1—C756.9 (2)
C3—C4—C5—C61.2 (4)C12—C11—N1—C7167.34 (16)
C4—C5—C6—C11.7 (3)C6—C7—N1—C976.3 (2)
C4—C5—C6—C7178.3 (2)C6—C7—N1—C1175.7 (2)
C2—C1—C6—C50.8 (3)O2—C10—N2—C84.5 (3)
C8—C1—C6—C5179.91 (19)N4—C10—N2—C8178.65 (17)
C2—C1—C6—C7179.28 (19)O2—C10—N2—C11176.66 (19)
C8—C1—C6—C70.1 (3)N4—C10—N2—C116.5 (2)
C5—C6—C7—N1120.4 (2)C1—C8—N2—C1094.7 (2)
C1—C6—C7—N159.6 (3)C1—C8—N2—C1176.8 (2)
C2—C1—C8—N2119.7 (2)N1—C11—N2—C10114.59 (19)
C6—C1—C8—N259.5 (3)C12—C11—N2—C103.4 (2)
N1—C11—C12—N4130.26 (15)N1—C11—N2—C857.9 (2)
N2—C11—C12—N411.27 (19)C12—C11—N2—C8169.12 (17)
N1—C11—C12—N311.55 (18)O1—C9—N3—C12177.63 (18)
N2—C11—C12—N3107.43 (16)N1—C9—N3—C120.1 (2)
N4—C14—C15—C20124.7 (2)O1—C9—N3—C133.2 (3)
N4—C14—C15—C1658.4 (3)N1—C9—N3—C13179.29 (16)
C20—C15—C16—C170.4 (3)N4—C12—N3—C9119.08 (19)
C14—C15—C16—C17176.54 (19)C11—C12—N3—C97.5 (2)
C20—C15—C16—C13177.8 (2)N4—C12—N3—C1360.2 (2)
C14—C15—C16—C130.8 (3)C11—C12—N3—C13171.78 (16)
N3—C13—C16—C17126.3 (2)C16—C13—N3—C9102.5 (2)
N3—C13—C16—C1556.4 (3)C16—C13—N3—C1276.7 (2)
C15—C16—C17—C180.4 (3)O2—C10—N4—C12168.60 (19)
C13—C16—C17—C18177.0 (2)N2—C10—N4—C1214.5 (2)
C16—C17—C18—C190.6 (3)O2—C10—N4—C1417.6 (3)
C17—C18—C19—C200.1 (3)N2—C10—N4—C14165.55 (17)
C18—C19—C20—C150.7 (3)N3—C12—N4—C1094.7 (2)
C16—C15—C20—C191.0 (3)C11—C12—N4—C1016.1 (2)
C14—C15—C20—C19176.1 (2)N3—C12—N4—C1456.9 (2)
O1—C9—N1—C11173.95 (18)C11—C12—N4—C14167.67 (17)
N3—C9—N1—C118.5 (2)C15—C14—N4—C1074.2 (2)
O1—C9—N1—C719.6 (3)C15—C14—N4—C1274.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···O1i0.932.553.252 (3)132
C13—H13A···O10.972.582.924 (3)101
C7—H7A···O2ii0.972.453.343 (3)153
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H18N4O2
Mr346.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)292
a, b, c (Å)10.2660 (16), 11.2985 (18), 14.522 (2)
β (°) 97.923 (3)
V3)1668.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.10 × 0.04
Data collection
DiffractometerBruker SMART 4K CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)'] reflections
13800, 3632, 2139
Rint0.056
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.127, 0.98
No. of reflections3632
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.16

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···O1i0.932.553.252 (3)132.1
C7—H7A···O2ii0.972.453.343 (3)153.2
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds