Download citation
Download citation
link to html
In the title compound, C11H10ClN3O2, the dihedral angle between the two rings is 5.6°. The crystal structure is stabilized by O—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680705903X/sg2207sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680705903X/sg2207Isup2.hkl
Contains datablock I

CCDC reference: 665042

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](Wav) = 0.000 Å
  • R factor = 0.041
  • wR factor = 0.114
  • Data-to-parameter ratio = 13.2

checkCIF/PLATON results

No syntax errors found



Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 25.00 From the CIF: _reflns_number_total 2038 Count of symmetry unique reflns 1082 Completeness (_total/calc) 188.35% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 956 Fraction of Friedel pairs measured 0.884 Are heavy atom types Z>Si present yes
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 0 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The chemical and pharmacological properties of pyrazoles have been investigated extensively, owing to their chelating ability with metal ions and to their potentially beneficial chemical and biological activities, (Elguero et al., 1984;), e.g; antitumor, antineoplastic,antibacterial and antimalarial (Liao et al.,2000; Fun et al.,1996; Lu et al.,1996). Recently we reported the 4-(3,5-dimethyl-1H-pyrazol-1-yl)phthalazin-1(2H)-one; (Kai et al., 2007). We report here the synthesis and crystal structure of 3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinic acid. The C—N distances range from 1.332 (4) to 1.411 (3) Å, i.e. normal values. The C=O bond length is 1.231 (3) Å, indicating that the molecule is in the keto form.

In the crystal structure, the molecules are interconnected, by intermolecular O—H···O hydrogen bonds (Fig. 2; for symmetry codes see Table1).

Related literature top

For related literature, see: Liao et al. (2000); Elguero et al. (1984); Fun et al. (1996); Lu et al. (1996); Kai et al. (2007).

Experimental top

A solution of 3-chloro-6-hydrazinylpicolinic acid(10 mmol) in 50 ml toluene was added to a solution of pentane-2,4-dione(10 mmol) in 10 ml toluene. The reaction mixture was refluxed for 1 h with stirring. then the resulting pale colorless precipitate was obtained by filtration, washed several times with ethanol and dried in vacuo (yield 90%). Analysis calculated for the title compound (C11H10ClN3O2): C, 52.40; H, 4.11; N, 16.60; O, 12.81; in the crystal, found: C, 52.50; H, 4.01; N, 16.70; O, 12.71. A me thanol solution of the title compound was slowly evaporated and colorless crystals were obtained after one week.

Refinement top

The positions of all H atoms were fixed geometrically and refined isotropically using a riding model. The bond lengths for C—H are in the range 0.93–0.96 Å, The bond lengths for N—H are 0.86 Å, respectively.

Data collection: Bruker SMART(Siemens, 1996); cell refinement: Bruker SMART(Siemens, 1996); data reduction: Bruker SAINT(Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The structure of the title compound (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Crystal packing of (I) showing the hydrogen bonded interactions as dashed lines.
[Figure 3] Fig. 3. The formation of the title compound.
3-Chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinic acid top
Crystal data top
C11H10ClN3O2F(000) = 520
Mr = 251.67Dx = 1.426 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2331 reflections
a = 17.972 (2) Åθ = 2.3–27.0°
b = 4.5618 (6) ŵ = 0.32 mm1
c = 14.303 (2) ÅT = 298 K
V = 1172.6 (3) Å3Block, colorless
Z = 40.53 × 0.50 × 0.36 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2038 independent reflections
Radiation source: fine-focus sealed tube1806 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
phi and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2116
Tmin = 0.849, Tmax = 0.894k = 35
4435 measured reflectionsl = 1716
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0709P)2 + 0.0549P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2038 reflectionsΔρmax = 0.25 e Å3
154 parametersΔρmin = 0.24 e Å3
1 restraintAbsolute structure: Flack (1983), 956 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (9)
Crystal data top
C11H10ClN3O2V = 1172.6 (3) Å3
Mr = 251.67Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 17.972 (2) ŵ = 0.32 mm1
b = 4.5618 (6) ÅT = 298 K
c = 14.303 (2) Å0.53 × 0.50 × 0.36 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2038 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1806 reflections with I > 2σ(I)
Tmin = 0.849, Tmax = 0.894Rint = 0.041
4435 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.114Δρmax = 0.25 e Å3
S = 1.06Δρmin = 0.24 e Å3
2038 reflectionsAbsolute structure: Flack (1983), 956 Friedel pairs
154 parametersAbsolute structure parameter: 0.03 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.15772 (4)1.09661 (17)0.51407 (7)0.0586 (3)
N10.00189 (14)0.5293 (6)0.44703 (17)0.0400 (6)
N20.09799 (11)0.3047 (5)0.52919 (16)0.0376 (5)
N30.12733 (14)0.2224 (6)0.61406 (17)0.0405 (6)
O10.05743 (12)0.7992 (6)0.28282 (15)0.0593 (6)
H10.07860.76460.23320.089*
O20.16318 (15)0.6490 (8)0.3462 (2)0.0877 (11)
C10.09889 (17)0.7136 (8)0.3518 (2)0.0500 (8)
C20.05762 (17)0.7100 (7)0.4443 (2)0.0410 (7)
C30.08141 (15)0.8661 (6)0.5207 (2)0.0396 (6)
C40.04237 (18)0.8392 (7)0.6036 (2)0.0461 (8)
H40.05700.94600.65590.055*
C50.01755 (17)0.6565 (7)0.6090 (2)0.0414 (7)
H50.04420.63540.66430.050*
C60.03751 (14)0.5019 (6)0.5282 (2)0.0361 (6)
C70.1212 (2)0.2198 (11)0.3557 (2)0.0657 (10)
H7A0.15560.10520.31970.099*
H7B0.12690.42330.34020.099*
H7C0.07130.15880.34170.099*
C80.13615 (16)0.1764 (8)0.4570 (2)0.0418 (7)
C90.19019 (16)0.0079 (7)0.4978 (2)0.0450 (7)
H90.22520.10740.46710.054*
C100.18273 (18)0.0425 (7)0.5939 (2)0.0431 (7)
C110.22903 (18)0.0922 (8)0.6711 (3)0.0571 (9)
H11A0.22220.01760.72770.086*
H11B0.28060.08820.65360.086*
H11C0.21370.29140.68090.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0498 (4)0.0487 (4)0.0773 (6)0.0094 (3)0.0004 (4)0.0100 (4)
N10.0391 (12)0.0466 (13)0.0342 (14)0.0025 (11)0.0008 (10)0.0018 (12)
N20.0365 (12)0.0461 (12)0.0303 (12)0.0009 (10)0.0001 (10)0.0017 (12)
N30.0390 (13)0.0494 (15)0.0330 (13)0.0017 (11)0.0002 (9)0.0009 (12)
O10.0504 (13)0.0890 (18)0.0384 (12)0.0002 (12)0.0020 (10)0.0052 (12)
O20.0599 (16)0.142 (3)0.0611 (17)0.0352 (16)0.0180 (12)0.0307 (18)
C10.048 (2)0.054 (2)0.0485 (19)0.0010 (15)0.0042 (14)0.0097 (15)
C20.0392 (16)0.0421 (16)0.0416 (16)0.0075 (13)0.0031 (12)0.0097 (14)
C30.0392 (13)0.0344 (14)0.0452 (16)0.0036 (11)0.0002 (14)0.0071 (14)
C40.0546 (19)0.0421 (16)0.0414 (18)0.0020 (14)0.0058 (14)0.0003 (13)
C50.0486 (17)0.0419 (15)0.0336 (16)0.0007 (14)0.0038 (12)0.0001 (12)
C60.0395 (13)0.0357 (13)0.0331 (14)0.0068 (11)0.0002 (12)0.0038 (13)
C70.067 (2)0.092 (3)0.0384 (19)0.015 (2)0.0096 (16)0.0034 (18)
C80.0377 (15)0.0524 (18)0.0352 (16)0.0034 (14)0.0059 (12)0.0008 (14)
C90.0348 (15)0.0531 (18)0.0472 (19)0.0001 (13)0.0069 (12)0.0063 (15)
C100.0376 (16)0.0455 (16)0.0462 (18)0.0023 (14)0.0018 (13)0.0018 (15)
C110.050 (2)0.066 (2)0.055 (2)0.0165 (16)0.0034 (15)0.0003 (17)
Geometric parameters (Å, º) top
Cl1—C31.731 (3)C4—H40.9300
N1—C61.332 (4)C5—C61.401 (4)
N1—C21.351 (4)C5—H50.9300
N2—C81.371 (4)C7—C81.487 (5)
N2—N31.376 (3)C7—H7A0.9600
N2—C61.411 (3)C7—H7B0.9600
N3—C101.322 (4)C7—H7C0.9600
O1—C11.297 (4)C8—C91.369 (5)
O1—H10.8200C9—C101.390 (5)
O2—C11.195 (4)C9—H90.9300
C1—C21.516 (4)C10—C111.513 (5)
C2—C31.374 (4)C11—H11A0.9600
C3—C41.383 (5)C11—H11B0.9600
C4—C51.364 (4)C11—H11C0.9600
C6—N1—C2117.6 (3)C5—C6—N2120.7 (2)
C8—N2—N3110.9 (2)C8—C7—H7A109.5
C8—N2—C6130.5 (3)C8—C7—H7B109.5
N3—N2—C6118.6 (2)H7A—C7—H7B109.5
C10—N3—N2105.4 (2)C8—C7—H7C109.5
C1—O1—H1109.5H7A—C7—H7C109.5
O2—C1—O1125.4 (3)H7B—C7—H7C109.5
O2—C1—C2121.9 (3)C9—C8—N2105.8 (3)
O1—C1—C2112.7 (3)C9—C8—C7128.2 (3)
N1—C2—C3122.6 (3)N2—C8—C7125.9 (3)
N1—C2—C1114.8 (3)C8—C9—C10106.8 (3)
C3—C2—C1122.5 (3)C8—C9—H9126.6
C2—C3—C4118.6 (3)C10—C9—H9126.6
C2—C3—Cl1121.2 (2)N3—C10—C9111.0 (3)
C4—C3—Cl1120.2 (2)N3—C10—C11120.5 (3)
C5—C4—C3120.2 (3)C9—C10—C11128.5 (3)
C5—C4—H4119.9C10—C11—H11A109.5
C3—C4—H4119.9C10—C11—H11B109.5
C4—C5—C6117.6 (3)H11A—C11—H11B109.5
C4—C5—H5121.2C10—C11—H11C109.5
C6—C5—H5121.2H11A—C11—H11C109.5
N1—C6—C5123.3 (3)H11B—C11—H11C109.5
N1—C6—N2116.0 (2)
C8—N2—N3—C100.5 (3)C4—C5—C6—N11.3 (4)
C6—N2—N3—C10179.4 (2)C4—C5—C6—N2178.7 (2)
C6—N1—C2—C30.9 (4)C8—N2—C6—N114.4 (4)
C6—N1—C2—C1175.7 (2)N3—N2—C6—N1167.1 (2)
O2—C1—C2—N1120.9 (4)C8—N2—C6—C5165.6 (3)
O1—C1—C2—N160.7 (4)N3—N2—C6—C512.9 (4)
O2—C1—C2—C355.7 (5)N3—N2—C8—C90.5 (3)
O1—C1—C2—C3122.8 (3)C6—N2—C8—C9179.1 (3)
N1—C2—C3—C40.7 (4)N3—N2—C8—C7178.6 (4)
C1—C2—C3—C4176.9 (3)C6—N2—C8—C70.0 (5)
N1—C2—C3—Cl1179.7 (2)N2—C8—C9—C100.3 (4)
C1—C2—C3—Cl14.0 (4)C7—C8—C9—C10178.8 (4)
C2—C3—C4—C51.2 (4)N2—N3—C10—C90.4 (4)
Cl1—C3—C4—C5179.7 (2)N2—N3—C10—C11179.5 (3)
C3—C4—C5—C60.3 (4)C8—C9—C10—N30.1 (4)
C2—N1—C6—C51.9 (4)C8—C9—C10—C11179.2 (3)
C2—N1—C6—N2178.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N3i0.821.922.723 (3)167
Symmetry code: (i) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC11H10ClN3O2
Mr251.67
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)298
a, b, c (Å)17.972 (2), 4.5618 (6), 14.303 (2)
V3)1172.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.53 × 0.50 × 0.36
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.849, 0.894
No. of measured, independent and
observed [I > 2σ(I)] reflections
4435, 2038, 1806
Rint0.041
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.114, 1.06
No. of reflections2038
No. of parameters154
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.24
Absolute structureFlack (1983), 956 Friedel pairs
Absolute structure parameter0.03 (9)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N3i0.821.922.723 (3)167
Symmetry code: (i) x, y+1, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds